Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Selection
2.3. Sample Analysis
2.4. Whole Exome Capture and Sequencing
2.5. Exome Analysis Pipeline
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Analysis of Genomic Scores
3.3. Analysis of Mutational Signatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Jaiyesimi, I.A.; Leighl, N.B.; Ismaila, N.; Alluri, K.; Florez, N.; Gadgeel, S.; Masters, G.; Schenk, E.L.; Schneider, B.J.; Sequist, L.; et al. Therapy for Stage IV Non–Small Cell Lung Cancer with Driver Alterations: ASCO Living Guideline, Version 2023.3. J. Clin. Oncol. 2024, 42, e1–e22. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.H.; Singh, N.; Ismaila, N.; Masters, G.; Riely, G.J.; Robinson, A.G.; Schneider, B.J.; Jaiyesimi, I.A. Therapy for Stage IV Non–Small-Cell Lung Cancer with Driver Alterations: ASCO Living Guideline, Version 2023.2. J. Clin. Oncol. 2023, 41, e63–e72. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The Repertoire of Mutational Signatures in Human Cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic Mutation and Copy Number Alteration Discovery in Cancer by Exome Sequencing. Genome Res. 2012, 22, 568–576. [Google Scholar] [CrossRef]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive Detection of Somatic Point Mutations in Impure and Heterogeneous Cancer Samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef]
- Saunders, C.T.; Wong, W.S.W.; Swamy, S.; Becq, J.; Murray, L.J.; Cheetham, R.K. Strelka: Accurate Somatic Small-Variant Calling from Sequenced Tumor–Normal Sample Pairs. Bioinformatics 2012, 28, 1811–1817. [Google Scholar] [CrossRef]
- Hundal, J.; Carreno, B.M.; Petti, A.A.; Linette, G.P.; Griffith, O.L.; Mardis, E.R.; Griffith, M. pVAC-Seq: A Genome-Guided in Silico Approach to Identifying Tumor Neoantigens. Genome Med. 2016, 8, 11. [Google Scholar] [CrossRef]
- Warren, R.L.; Choe, G.; Freeman, D.J.; Castellarin, M.; Munro, S.; Moore, R.; Holt, R.A. Derivation of HLA Types from Shotgun Sequence Datasets. Genome Med. 2012, 4, 95. [Google Scholar] [CrossRef]
- Niu, B.; Ye, K.; Zhang, Q.; Lu, C.; Xie, M.; McLellan, M.D.; Wendl, M.C.; Ding, L. MSIsensor: Microsatellite Instability Detection Using Paired Tumor-Normal Sequence Data. Bioinformatics 2014, 30, 1015–1016. [Google Scholar] [CrossRef]
- Ha, G.; Roth, A.; Khattra, J.; Ho, J.; Yap, D.; Prentice, L.M.; Melnyk, N.; McPherson, A.; Bashashati, A.; Laks, E.; et al. TITAN: Inference of Copy Number Architectures in Clonal Cell Populations from Tumor Whole-Genome Sequence Data. Genome Res. 2014, 24, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Danlos, F.-X.; Texier, M.; Job, B.; Mouraud, S.; Cassard, L.; Baldini, C.; Varga, A.; Yurchenko, A.A.; Rabeau, A.; Champiat, S.; et al. Genomic Instability and Protumoral Inflammation Are Associated with Primary Resistance to Anti–PD-1 + Antiangiogenesis in Malignant Pleural Mesothelioma. Cancer Discov. 2023, 13, 858–879. [Google Scholar] [CrossRef] [PubMed]
- Sztupinszki, Z.; Diossy, M.; Krzystanek, M.; Reiniger, L.; Csabai, I.; Favero, F.; Birkbak, N.J.; Eklund, A.C.; Syed, A.; Szallasi, Z. Migrating the SNP Array-Based Homologous Recombination Deficiency Measures to next Generation Sequencing Data of Breast Cancer. npj Breast Cancer 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for Comprehensive Adaptive Immunity Profiling. Nat. Methods 2015, 12, 380–381. [Google Scholar] [CrossRef]
- Díaz-Gay, M.; Vangara, R.; Barnes, M.; Wang, X.; Islam, S.M.A.; Vermes, I.; Narasimman, N.B.; Yang, T.; Jiang, Z.; Moody, S.; et al. Assigning Mutational Signatures to Individual Samples and Individual Somatic Mutations with SigProfilerAssignment. Bioinformatics 2023, 39, btad756. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2023, 34, 358–376. Available online: https://www.sciencedirect.com/science/article/pii/S0923753422047858?via%3Dihub (accessed on 4 July 2024). [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Dalens, L.; Niogret, J.; Kaderbhai, C.G.; Boidot, R. Is There a Role for Large Exome Sequencing in the Management of Metastatic Non-Small Cell Lung Cancer: A Brief Report of Real Life. Front. Oncol. 2022, 12, 863057. [Google Scholar] [CrossRef]
- Dalens, L.; Lecuelle, J.; Favier, L.; Fraisse, C.; Lagrange, A.; Kaderbhai, C.; Boidot, R.; Chevrier, S.; Mananet, H.; Derangère, V.; et al. Exome-Based Genomic Markers Could Improve Prediction of Checkpoint Inhibitor Efficacy Independently of Tumor Type. Int. J. Mol. Sci. 2023, 24, 7592. [Google Scholar] [CrossRef] [PubMed]
- Niogret, J.; Dalens, L.; Truntzer, C.; Chevrier, S.; Favier, L.; Lagrange, A.; Coudert, B.; Fraisse, C.; Foucher, P.; Zouak, A.; et al. Does Large NGS Panel Analysed Using Exome Tumour Sequencing Improve the Management of Advanced Non-Small-Cell Lung Cancers? Lung Cancer 2021, 161, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Holder, A.M.; Dedeilia, A.; Sierra-Davidson, K.; Cohen, S.; Liu, D.; Parikh, A.; Boland, G.M. Defining Clinically Useful Biomarkers of Immune Checkpoint Inhibitors in Solid Tumours. Nat. Rev. Cancer 2024, 24, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Negrao, M.V.; Skoulidis, F.; Montesion, M.; Schulze, K.; Bara, I.; Shen, V.; Xu, H.; Hu, S.; Sui, D.; Elamin, Y.Y.; et al. Oncogene-Specific Differences in Tumor Mutational Burden, PD-L1 Expression, and Outcomes from Immunotherapy in Non-Small Cell Lung Cancer. J. Immunother. Cancer 2021, 9, e002891. [Google Scholar] [CrossRef]
- Ready, N.; Hellmann, M.D.; Awad, M.M.; Otterson, G.A.; Gutierrez, M.; Gainor, J.F.; Borghaei, H.; Jolivet, J.; Horn, L.; Mates, M.; et al. First-Line Nivolumab Plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. J. Clin. Oncol. 2019, 37, 992–1000. [Google Scholar] [CrossRef]
- Zhao, P.; Li, L.; Jiang, X.; Li, Q. Mismatch Repair Deficiency/Microsatellite Instability-High as a Predictor for Anti-PD-1/PD-L1 Immunotherapy Efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Campbell, P.J.; Stratton, M.R. Deciphering Signatures of Mutational Processes Operative in Human Cancer. Cell Rep. 2013, 3, 246–259. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Stratton, M.R. Mutational Signatures: The Patterns of Somatic Mutations Hidden in Cancer Genomes. Curr. Opin. Genet. Dev. 2014, 24, 52–60. [Google Scholar] [CrossRef]
- Otlu, B.; Díaz-Gay, M.; Vermes, I.; Bergstrom, E.N.; Zhivagui, M.; Barnes, M.; Alexandrov, L.B. Topography of Mutational Signatures in Human Cancer. Cell Rep. 2023, 42, 112930. [Google Scholar] [CrossRef]
- Schuster-Böckler, B.; Lehner, B. Chromatin Organization Is a Major Influence on Regional Mutation Rates in Human Cancer Cells. Nature 2012, 488, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ma, W.; Sun, B.; Fan, L.; Xu, K.; Hall, S.R.R.; Al-Hurani, M.F.; Schmid, R.A.; Peng, R.-W.; Hida, T.; et al. Smoking Signature Is Superior to Programmed Death-Ligand 1 Expression in Predicting Pathological Response to Neoadjuvant Immunotherapy in Lung Cancer Patients. Transl. Lung Cancer Res. 2021, 10, 3807–3822. [Google Scholar] [CrossRef] [PubMed]
Variables | Whole Cohort N = 132 |
---|---|
Age | 64 (58, 72) |
Unknown | 23 |
Sex | |
Male | 62 (57%) |
Female | 47 (43%) |
Unknown | 23 |
Smoking status | |
Never smoker | 15 (15%) |
Current smoker | 35 (34%) |
Former smoker | 52 (51%) |
Unknown | 30 |
WHO performance status | |
0 | 16 (15%) |
1 | 62 (58%) |
2 | 24 (23%) |
3 | 4 (3.8%) |
Unknown | 26 |
Brain metastasis | |
0 | 79 (72%) |
1 | 31 (28%) |
Unknown | 22 |
Lymph node metastasis | |
0 | 22 (20%) |
1 | 88 (80%) |
Unknown | 22 |
Lung metastasis | |
0 | 86 (78%) |
1 | 24 (22%) |
Unknown | 22 |
Bone metastasis | |
0 | 58 (53%) |
1 | 52 (47%) |
Unknown | 22 |
PDL1 (cutoff at 50%) | |
<50% | 69 (62%) |
≥50% | 43 (38%) |
Unknown | 20 |
Histological type | |
Adenocarcinoma | 95 (73%) |
Carcinoma | 16 (12%) |
Other | 20 (15%) |
Unknown | 1 |
Histological type | |
Squamous | 16 (12%) |
Non-squamous | 115 (88%) |
Unknown | 1 |
Treatments | |
Chemotherapy | 40 (43%) |
Chemoimmunotherapy | 28 (30%) |
Immunotherapy | 9 (9.6%) |
Targeted therapy | 17 (18%) |
Unknown | 38 |
Response | |
Complete response | 9 (7%) |
Partial response | 51 (44%) |
Stable disease | 26 (22%) |
Progressive disease | 30 (26%) |
Unknown | 16 |
Variables | Whole Cohort N = 132 |
---|---|
TMB score | 6.9 (4.3, 10.8) |
Unknown | 14 |
Number of neoantigens/Mb | 9 (6, 17) |
Unknown | 17 |
Number of strong neoantigens/Mb | 1 (0, 3) |
Unknown | 17 |
TCR clonality | 1 (0, 2) |
KRAS/EGFR mutation | |
KRAS G12C | 15 (11%) |
Other KRAS | 24 (18%) |
EGFR | 12 (9.1%) |
No mutation | 81 (61%) |
HRD score | 32 (22, 42) |
Unknown | 13 |
MSI score | 0.08 (0.00, 1.15) |
Unknown | 14 |
CNA score | 0.25 (0.09, 0.40) |
Unknown | 13 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
SBS7a | 1.10 | [1.04; 1.16] | 0.002 | 1.08 | [1.01; 1.14] | 0.02 |
SBS19 | 1.06 | [1.01; 1.11] | 0.013 | 1.07 | [1.02; 1.12] | 0.005 |
SBS24 | 1.01 | [1.00; 1.01] | 0.008 | 1.00 | [0.99; 1.01] | >0.9 |
SBS28 | 1.07 | [1.03; 1.11] | <0.001 | 1.08 | [1.04; 1.12] | <0.001 |
SBS89 | 1.01 | [1.00; 1.01] | <0.001 | 1.01 | [1.00; 1.01] | <0.001 |
DBS6 | 1.24 | [1.05; 1.47] | 0.011 | 1.28 | [1.08; 1.51] | 0.004 |
DBS9 | 1.75 | [1.17; 2.62] | 0.006 | 1.87 | [1.25; 2.81] | 0.002 |
DBS15 | 1.22 | [1.02; 1.46] | 0.032 | 1.25 | [1.05; 1.50] | 0.014 |
Treatment | Chemotherapy | Chemoimmunotherapy | Immunotherapy | Targeted Therapy | |
---|---|---|---|---|---|
Group | |||||
SBSLow | 32 (32%) | 24 (24%) | 5 (5%) | 17 (17%) | |
SBSHigh | 5 (33%) | 4 (27%) | 4 (27%) | 0 (0%) | |
DBSLow | 21 (24%) | 26 (30%) | 6 (7%) | 13 (15%) | |
DBSHigh | 13 (60%) | 2 (9%) | 2 (9%) | 2 (9%) |
Mutation | KRAS G12C | Other KRAS | EGFR | No Mutation | |
---|---|---|---|---|---|
Group | |||||
SBSLow | 12 (12%) | 21 (21%) | 12 (12%) | 56 (56%) | |
SBSHigh | 3 (20%) | 2 (13%) | 0 (0%) | 10 (66%) | |
DBSLow | 11 (12%) | 18 (20%) | 9 (10%) | 50 (57%) | |
DBSHigh | 3 (14%) | 5 (23%) | 2 (9%) | 12 (55%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peroz, M.; Mananet, H.; Roussot, N.; Kaderbhai, C.G.; Derangère, V.; Truntzer, C.; Ghiringhelli, F. Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer. Cancers 2024, 16, 3115. https://doi.org/10.3390/cancers16173115
Peroz M, Mananet H, Roussot N, Kaderbhai CG, Derangère V, Truntzer C, Ghiringhelli F. Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer. Cancers. 2024; 16(17):3115. https://doi.org/10.3390/cancers16173115
Chicago/Turabian StylePeroz, Morgane, Hugo Mananet, Nicolas Roussot, Courèche Guillaume Kaderbhai, Valentin Derangère, Caroline Truntzer, and François Ghiringhelli. 2024. "Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer" Cancers 16, no. 17: 3115. https://doi.org/10.3390/cancers16173115
APA StylePeroz, M., Mananet, H., Roussot, N., Kaderbhai, C. G., Derangère, V., Truntzer, C., & Ghiringhelli, F. (2024). Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer. Cancers, 16(17), 3115. https://doi.org/10.3390/cancers16173115