Ascites and Serum Interleukin-10 Levels as a Prognostic Tool for Ovarian Cancer Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Sample Collection, Preparation and Storage
2.4. IL-10 Detection
2.5. Ethics Approval
2.6. Statistical Analysis
3. Results
3.1. Ascites IL-10 Levels in OC Cohort
3.2. Survival Analysis
3.3. Serum IL-10 Levels in OC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability-High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef]
- Makker, V.; Colombo, N.; Casado Herráez, A.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Shapira-Frommer, R.; Santin, A.D.; Lisyanskaya, A.S.; Pignata, S.; Vergote, I.; Raspagliesi, F.; Sonke, G.S.; Birrer, M.; Provencher, D.M.; et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the phase II KEYNOTE-100 study. Ann. Oncol. 2019, 30, 1080–1087. [Google Scholar] [CrossRef]
- Riedinger, J.M.; Bonnetain, F.; Basuyau, J.P.; Eche, N.; Larbre, H.; Dalifard, I.; Wafflart, J.; Ricolleau, G.; Pichon, M.F. Change in CA 125 levels after the first cycle of induction chemotherapy is an independent predictor of epithelial ovarian tumour outcome. Ann. Oncol. 2007, 18, 881–885. [Google Scholar] [CrossRef]
- Batchu, R.B.; Gruzdyn, O.V.; Kolli, B.K.; Dachepalli, R.; Umar, P.S.; Rai, S.K.; Singh, N.; Tavva, P.S.; Weaver, D.W.; Gruber, S.A. IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer. Adv. Exp. Med. Biol. 2021, 1290, 51–65. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, F.; Chen, H.; Lv, W.; Gan, N. The expression of interleukin-10 in patients with primary ovarian epithelial carcinoma and in ovarian carcinoma cell lines. J. Int. Med. Res. 2007, 35, 290–300. [Google Scholar] [CrossRef]
- Gotlieb, W.H.; Abrams, J.S.; Watson, J.M.; Velu, T.J.; Berek, J.S.; Martínez-Maza, O. Presence of interleukin 10 (IL-10) in the ascites of patients with ovarian and other intra-abdominal cancers. Cytokine 1992, 4, 385–390. [Google Scholar] [CrossRef]
- Lane, D.; Matte, I.; Garde-Granger, P.; Bessette, P.; Piché, A. Ascites IL-10 Promotes Ovarian Cancer Cell Migration. Cancer Microenviron. 2018, 11, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Deng, Z.; Peng, Y.; Han, L.; Liu, J.; Wang, L.; Li, B.; Zhao, J.; Jiao, S.; Wei, H. Ascites-derived IL-6 and IL-10 synergistically expand CD14. Oncotarget 2017, 8, 76843–76856. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Cummings, M.; Thangavelu, A.; Theophilou, G.; de Jong, D.; Orsi, N.M. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers 2021, 13, 6231. [Google Scholar] [CrossRef]
- Sato, T.; Terai, M.; Tamura, Y.; Alexeev, V.; Mastrangelo, M.J.; Selvan, S.R. Interleukin 10 in the tumor microenvironment: A target for anticancer immunotherapy. Immunol. Res. 2011, 51, 170–182. [Google Scholar] [CrossRef]
- Siminzar, P.; Tohidkia, M.R.; Eppard, E.; Vahidfar, N.; Tarighatnia, A.; Aghanejad, A. Recent Trends in Diagnostic Biomarkers of Tumor Microenvironment. Mol. Imaging Biol. 2023, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Mustea, A.; Könsgen, D.; Braicu, E.I.; Pirvulescu, C.; Sun, P.; Sofroni, D.; Lichtenegger, W.; Sehouli, J. Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res. 2006, 26, 1715–1718. [Google Scholar]
- Young, J.; Badgery-Parker, T.; Dobbins, T.; Jorgensen, M.; Gibbs, P.; Faragher, I.; Jones, I.; Currow, D. Comparison of ECOG/WHO performance status and ASA score as a measure of functional status. J. Pain Symptom Manag. 2015, 49, 258–264. [Google Scholar] [CrossRef]
- Rustin, G.J.; Nelstrop, A.E.; Tuxen, M.K.; Lambert, H.E. Defining progression of ovarian carcinoma during follow-up according to CA 125: A North Thames Ovary Group Study. Ann. Oncol. 1996, 7, 361–364. [Google Scholar] [CrossRef]
- Mogensen, O. Prognostic value of CA 125 in advanced ovarian cancer. Gynecol. Oncol. 1992, 44, 207–212. [Google Scholar] [CrossRef]
- Le Page, C.; Rahimi, K.; Köbel, M.; Tonin, P.N.; Meunier, L.; Portelance, L.; Bernard, M.; Nelson, B.H.; Bernardini, M.Q.; Bartlett, J.M.; et al. Characteristics and outcome of the COEUR Canadian validation cohort for ovarian cancer biomarkers. BMC Cancer 2018, 18, 347. [Google Scholar] [CrossRef]
- Antoneeva, I.I.; Abakumova, T.V.; Dolgova, D.R.; Gening, T.P.; Pirmamedova, S.S.; Myasnikova, D.F.; Gening, S.O. Cytokine Status of Serum in Ovarian Cancer Patients with Different Tumor Neoadjuvant Chemotherapy Response. Anticancer Agents Med. Chem. 2017, 17, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zou, K.; Jiang, H.; Li, Z. The complex role of IL-10 in malignant ascites: A review. Cancer Immunol. Immunother. 2024, 73, 32. [Google Scholar] [CrossRef] [PubMed]
- Lambeck, A.J.; Crijns, A.P.; Leffers, N.; Sluiter, W.J.; ten Hoor, K.A.; Braid, M.; van der Zee, A.G.; Daemen, T.; Nijman, H.W.; Kast, W.M. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: A potential role for interleukin 7. Clin. Cancer Res. 2007, 13, 2385–2391. [Google Scholar] [CrossRef] [PubMed]
- Reinartz, S.; Finkernagel, F.; Adhikary, T.; Rohnalter, V.; Schumann, T.; Schober, Y.; Nockher, W.A.; Nist, A.; Stiewe, T.; Jansen, J.M.; et al. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome. Genome Biol. 2016, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Sarris, A.H.; Kliche, K.O.; Pethambaram, P.; Preti, A.; Tucker, S.; Jackow, C.; Messina, O.; Pugh, W.; Hagemeister, F.B.; McLaughlin, P.; et al. Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann. Oncol. 1999, 10, 433–440. [Google Scholar] [CrossRef]
- Ning, F.; Cole, C.B.; Annunziata, C.M. Driving Immune Responses in the Ovarian Tumor Microenvironment. Front. Oncol. 2020, 10, 604084. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Liu, J.R.; Patel, B.; Solomon, D.E.; Vaidya, B.; Gupta, V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng. Transl. Med. 2016, 1, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, P.; Karyampudi, L.; Shreeder, B.; Krempski, J.; Bahr, D.; Daum, J.; Kalli, K.R.; Goode, E.L.; Block, M.S.; Cannon, M.J.; et al. IL10 Release upon PD-1 Blockade Sustains Immunosuppression in Ovarian Cancer. Cancer Res. 2017, 77, 6667–6678. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, J.; Liu, Q.; Song, W.; Zhang, X.; Tiruthani, K.; Hu, H.; Das, M.; Goodwin, T.J.; Liu, R.; et al. Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano 2018, 12, 9830–9841. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Wu, X.; Wei, M.Q.; Zhang, B.; Liu, X.; Wang, Y. IL-10 signalling blockade at the time of immunization inhibits Human papillomavirus 16 E7 transformed TC-1 tumour cells growth in mice. Cell Immunol. 2014, 290, 145–151. [Google Scholar] [CrossRef]
Characteristics | N (%), Median (IQR) |
---|---|
Age (years) | 63 (55–73) |
Body mass index (kg/m2) | 24 (21–28) |
ASA a | |
1 | 5 (6.4) |
2 | 45 (58) |
3 | 26 (33) |
4 | 2 (2.6) |
Initial stage | |
I | 8 (7.5) |
II | 6 (5.7) |
III | 83 (78) |
IV | 9 (8.5) |
Histology | |
High-grade serous | 88 (83) |
Endometrioid | 10 (9.4) |
Clear cell | 4 (3.8) |
Low-grade serous | 3 (2.8) |
Adenosquamous | 1 (0.9) |
Surgery b | |
Primary cytoreduction | 51 (50) |
Interval cytoreduction | 35 (34) |
Secondary cytoreduction | 1 (1.0) |
No surgery | 15 (15) |
Residual surgical disease c,d | |
Optimal | 76 (72) |
Suboptimal | 14 (13) |
(A) | ||||
Characteristic | Progression-Free Survival | Overall Survival | ||
HR (CI95) | p-value | HR (CI95) | p-value | |
Age | 1.02 (1.00–1.05) | 0.10 | 1.04 (1.02–1.06) | <0.001 |
Histology subtype | ||||
Serous | Ref. | Ref. | ||
Endometrioid | 0.25 (0.06–1.08) | 0.063 | 0.51 (0.18–1.46) | 0.21 |
Clear cell | 2.59 (0.57–11.7) | 0.22 | 3.01 (0.83–10.9) | 0.092 |
Stage b | 2.82 (1.53–5.17) | <0.001 | 3.31 (1.85–5.93) | <0.001 |
Ascites IL-10 levels c | ||||
Low | Ref. | Ref. | ||
High | 1.93 (1.11–3.38) | 0.02 | 1.61 (0.99–2.63) | 0.057 |
(B) | ||||
Characteristic | Progression-Free Survival | Overall Survival | ||
HR (CI95) | p-value | HR (CI95) | p-value | |
Age | 1.01 (0.97–1.06) | 0.60 | 1.04 (1.00–1.08) | 0.084 |
Histology subtype d | ||||
Serous | Ref. | Ref. | ||
Endometrioid | 0.80 (0.16–3.96) | 0.78 | 0.67 (0.14–3.20) | 0.62 |
Stage e | 2.82 (1.39–5.72) | 0.004 | 2.41 (1.26–4.61) | 0.008 |
Serum IL-10 levels f | ||||
Low | Ref. | Ref. | ||
High | 1.55 (0.65–3.70) | 0.32 | 2.08 (0.93–4.63) | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guigue, P.A.; Brezinov, Y.; Yasmeen, A.; Mbarik, M.; Salvador, S.; Lau, S.; Gotlieb, W.H.; Brodeur, M.N. Ascites and Serum Interleukin-10 Levels as a Prognostic Tool for Ovarian Cancer Outcomes. Cancers 2024, 16, 2840. https://doi.org/10.3390/cancers16162840
Guigue PA, Brezinov Y, Yasmeen A, Mbarik M, Salvador S, Lau S, Gotlieb WH, Brodeur MN. Ascites and Serum Interleukin-10 Levels as a Prognostic Tool for Ovarian Cancer Outcomes. Cancers. 2024; 16(16):2840. https://doi.org/10.3390/cancers16162840
Chicago/Turabian StyleGuigue, Paul Adrien, Yoav Brezinov, Amber Yasmeen, Maroua Mbarik, Shannon Salvador, Susie Lau, Walter Henri Gotlieb, and Melica Nourmoussavi Brodeur. 2024. "Ascites and Serum Interleukin-10 Levels as a Prognostic Tool for Ovarian Cancer Outcomes" Cancers 16, no. 16: 2840. https://doi.org/10.3390/cancers16162840
APA StyleGuigue, P. A., Brezinov, Y., Yasmeen, A., Mbarik, M., Salvador, S., Lau, S., Gotlieb, W. H., & Brodeur, M. N. (2024). Ascites and Serum Interleukin-10 Levels as a Prognostic Tool for Ovarian Cancer Outcomes. Cancers, 16(16), 2840. https://doi.org/10.3390/cancers16162840