Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Bone SPECT/CT Acquisition
2.3. Image Analysis
2.3.1. SPECT Image Evaluation
2.3.2. CT Image Evaluation
2.4. Statistical Analyses
3. Results
3.1. Relationship of SUVmax with Radiodensity in HU Measurements
3.2. Association of SUVmax and CT Features between Benign and Malignant Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACT | Atypical cartilaginous tumor |
BMD | Bone mineral density |
CS1 | Chondrosarcoma grade 1 |
CS2 | Chondrosarcoma grade 2 |
CT | Computed tomography |
HDP | Hydroxymethylene diphosphonate |
HU | Hounsfield units |
ICC | Intraclass correlation coefficients |
MRI | Magnetic resonance imaging |
SD | Standard deviation |
SPECT | Single photon emission computed tomography |
SUVmax | Maximum standardized uptake value |
PACS | Picture archiving and communication system |
ROI | Region of interest |
VOI | Volume of interest |
References
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Soft Tissue and Bone Tumours; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Kim, J.H.; Lee, S.K. Classification of Chondrosarcoma: From Characteristic to Challenging Imaging Findings. Cancers 2023, 15, 1703. [Google Scholar] [CrossRef]
- Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J. Bone Jt. Surg. Am. 2007, 89, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Scheitza, P.; Uhl, M.; Hauschild, O.; Zwingmann, J.; Bannasch, H.; Kayser, C.; Südkamp, N.P.; Herget, G.W. Interobserver Variability in the Differential Diagnosis of Benign Bone Tumors and Tumor-like Lesions. Rofo 2016, 188, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Donthineni, R.; Ofluoglu, O. Solitary enchondromas of long bones: Pattern of referral and outcome. Acta Orthop. Traumatol. Turc. 2010, 44, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Santacreu, E.M.; Ortiz-Cruz, E.J.; González-López, J.M.; Pérez Fernández, E. Enchondroma versus low-grade chondrosarcoma in appendicular skeleton: Clinical and radiological criteria. J. Oncol. 2012, 2012, 437958. [Google Scholar] [CrossRef] [PubMed]
- Dierselhuis, E.F.; Gerbers, J.G.; Ploegmakers, J.J.W.; Stevens, M.; Suurmeijer, A.J.H.; Jutte, P.C. Local Treatment with Adjuvant Therapy for Central Atypical Cartilaginous Tumors in the Long Bones: Analysis of Outcome and Complications in One Hundred and Eight Patients with a Minimum Follow-up of Two Years. JBJS 2016, 98, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Gassert, F.G.; Breden, S.; Neumann, J.; Gassert, F.T.; Bollwein, C.; Knebel, C.; Lenze, U.; von Eisenhart-Rothe, R.; Mogler, C.; Makowski, M.R.; et al. Differentiating Enchondromas and Atypical Cartilaginous Tumors in Long Bones with Computed Tomography and Magnetic Resonance Imaging. Diagnostics 2022, 12, 2186. [Google Scholar] [CrossRef]
- Hudson, T.M.; Chew, F.S.; Manaster, B.J. Radionuclide bone scanning of medullary chondrosarcoma. AJR Am. J. Roentgenol. 1982, 139, 1071–1076. [Google Scholar] [CrossRef]
- Choi, W.H.; Han, E.J.; Chang, K.B.; Joo, M.W. Quantitative SPECT/CT for differentiating between enchondroma and grade I chondrosarcoma. Sci. Rep. 2020, 10, 10587. [Google Scholar] [CrossRef]
- Bailey, D.L.; Willowson, K.P. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 17–25. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, M.A. Assessment of central cartilaginous tumor of the appendicular bone: Inter-observer and intermodality agreement and comparison of diagnostic performance of CT and MRI. Acta Radiol 2022, 63, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tada, K.; Yonezawa, H.; Morinaga, S.; Araki, Y.; Asano, Y.; et al. A Radiological Scoring System for Differentiation between Enchondroma and Chondrosarcoma. Cancers 2021, 13, 3558. [Google Scholar] [CrossRef] [PubMed]
- Douis, H.; Parry, M.; Vaiyapuri, S.; Davies, A.M. What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas? Eur. Radiol. 2018, 28, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Balta, O.; Altinayak, H.; Zengin, E.C.; Eren, M.B.; Demir, O.; Aytekin, K. Incidental Enchondromas of the Lower Extremity Long Bones and Atypical Chondroid Tumors Differentiation Based on Hounsfield Units. Eurasian J. Med. Investig. 2022, 6, 245–258. [Google Scholar] [CrossRef]
- Huang, K.; Feng, Y.; Liu, D.; Liang, W.; Li, L. Quantification evaluation of 99mTc-MDP concentration in the lumbar spine with SPECT/CT: Compare with bone mineral density. Ann. Nucl. Med. 2020, 34, 136–143. [Google Scholar] [CrossRef]
- Murphey, M.D.; Flemming, D.J.; Boyea, S.R.; Bojescul, J.A.; Sweet, D.E.; Temple, H.T. Enchondroma versus chondrosarcoma in the appendicular skeleton: Differentiating features. Radiographics 1998, 18, 1213–1237; quiz 1244–1215. [Google Scholar] [CrossRef] [PubMed]
- Suster, D.; Hung, Y.P.; Nielsen, G.P. Differential Diagnosis of Cartilaginous Lesions of Bone. Arch. Pathol. Lab. Med. 2020, 144, 71–82. [Google Scholar] [CrossRef]
- Cachovan, M.; Vija, A.H.; Hornegger, J.; Kuwert, T. Quantification of 99m Tc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 2013, 3, 45. [Google Scholar] [CrossRef]
- Kitajima, K.; Futani, H.; Tsuchitani, T.; Takahashi, Y.; Tachibana, T.; Yamakado, K. Quantitative bone SPECT/CT applications for cartilaginous bone neoplasms. Hell. J. Nucl. Med. 2020, 23, 133–137. [Google Scholar]
- Murphey, M.D.; Walker, E.A.; Wilson, A.J.; Kransdorf, M.J.; Temple, H.T.; Gannon, F.H. From the archives of the AFIP: Imaging of primary chondrosarcoma: Radiologic-pathologic correlation. Radiographics 2003, 23, 1245–1278. [Google Scholar] [CrossRef]
- Engel, H.; Herget, G.W.; Füllgraf, H.; Sutter, R.; Benndorf, M.; Bamberg, F.; Jungmann, P.M. Chondrogenic bone tumors: The importance of imaging characteristics. Rofo 2021, 193, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Mayes, G.B.; Wallace, S.; Bernardino, M.E. Computed tomography of chondrosarcoma. J. Comput. Tomogr. 1981, 5, 345–348. [Google Scholar] [CrossRef]
- Christensen, D.L.; Nappo, K.E.; Wolfe, J.A.; Wade, S.M.; Brooks, D.I.; Potter, B.K.; Forsberg, J.A.; Tintle, S.M. Proximal femur hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry. Clin. Orthop. Relat. Res. 2019, 477, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.J.; Anderson, P.A.; Rosas, H.G.; Buchholz, A.L.; Au, A.G. Hounsfield units for assessing bone mineral density and strength: A tool for osteoporosis management. JBJS 2011, 93, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Jung, J.-Y.; Jo, A.; Nam, Y.; Pak, S.; Lee, S.-Y.; Park, H.; Lee, S.E.; Kim, S. Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology 2021, 299, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Ulano, A.; Bredella, M.A.; Burke, P.; Chebib, I.; Simeone, F.J.; Huang, A.J.; Torriani, M.; Chang, C.Y. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. Am. J. Roentgenol. 2016, 207, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Dapoto, A.; Morzenti, C.; Firetto, M.C.; Valle, C.; Tomasoni, A.; Sironi, S. Bone islands incidentally detected on computed tomography: Frequency of enostosis and differentiation from untreated osteoblastic metastases based on CT attenuation value. Br. J. Radiol. 2019, 92, 20190249. [Google Scholar] [CrossRef] [PubMed]
- Mhuircheartaigh, J.N.; McMahon, C.; Lin, Y.-C.; Wu, J. Diagnostic yield of percutaneous biopsy for sclerotic bone lesions: Influence of mean Hounsfield units. Clin. Imaging 2017, 46, 53–56. [Google Scholar] [CrossRef]
- Yoon, H.; Choi, W.H.; Joo, M.W.; Ha, S.; Chung, Y.-A. SPECT/CT Radiomics for Differentiating between Enchondroma and Grade I Chondrosarcoma. Tomography 2023, 9, 1868–1875. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; Annovazzi, A.; Anelli, V.; Acquasanta, M.; Cincotta, A.; Albano, D.; Chianca, V.; Ferraresi, V.; Messina, C. CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine 2021, 68, 103407. [Google Scholar] [CrossRef]
- Deng, X.-Y.; Chen, H.-Y.; Yu, J.-N.; Zhu, X.-L.; Chen, J.-Y.; Shao, G.-L.; Yu, R.-S. Diagnostic value of CT-and MRI-based texture analysis and imaging findings for grading cartilaginous tumors in long bones. Front. Oncol. 2021, 11, 700204. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Cuocolo, R.; Emili, I.; Tofanelli, L.; Chianca, V.; Albano, D.; Messina, C.; Imbriaco, M.; Sconfienza, L.M. Effects of interobserver variability on 2D and 3D CT-and MRI-based texture feature reproducibility of cartilaginous bone tumors. J. Digit. Imaging 2021, 34, 820–832. [Google Scholar] [CrossRef] [PubMed]
Benign, Enchondroma | Malignant, ACT/CS1 + CS2 | p Value | |
---|---|---|---|
(n = 45) | (n = 20) | ||
Deep endosteal scalloping | <0.001 | ||
<1/3 of normal cortical thickness | 40 (88.9%) | 8 (40.0%) | |
≥2/3 of normal cortical thickness | 5 (11.1%) | 12 (60.0%) | |
Extensive endosteal scalloping | <0.001 | ||
<1/3 of the lesion length | 33 (73.3%) | 4 (20.0%) | |
≥2/3 of the lesion length | 12 (26.7%) | 16 (80.0%) | |
Expansile cortical remodeling | 0.001 | ||
Absent | 44 (97.8%) | 13 (65.0%) | |
Present | 1 (2.2%) | 7 (35.0%) | |
Cortical destruction | 0.169 | ||
Absent | 45 (100.0%) | 18 (90.0%) | |
Present | 0 (0.0%) | 2 (10.0%) |
Benign, Enchondroma | Malignant, ACT/CS1 + CS2 | p Value | |
---|---|---|---|
(n = 45) | (n = 20) | ||
SUVmax | 11.8 ± 5.9 | 22.3 ± 13.2 | 0.003 |
HUmax | 1748.8 ± 480.9 | 1522.6 ± 623.4 | 0.116 |
HUmin | −244.2 ± 113.1 | −223.0 ± 137.2 | 0.515 |
HUmean | 412.8 ± 197.9 | 381.5 ± 193.3 | 0.556 |
HUSD | 405.1 ± 140.3 | 322.5 ± 149.1 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.; Lee, S.K.; Kim, J.-Y.; Joo, M.W. Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit. Cancers 2024, 16, 1968. https://doi.org/10.3390/cancers16111968
Yoon H, Lee SK, Kim J-Y, Joo MW. Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit. Cancers. 2024; 16(11):1968. https://doi.org/10.3390/cancers16111968
Chicago/Turabian StyleYoon, Hyukjin, Seul Ki Lee, Jee-Young Kim, and Min Wook Joo. 2024. "Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit" Cancers 16, no. 11: 1968. https://doi.org/10.3390/cancers16111968
APA StyleYoon, H., Lee, S. K., Kim, J. -Y., & Joo, M. W. (2024). Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit. Cancers, 16(11), 1968. https://doi.org/10.3390/cancers16111968