Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1
Abstract
:Simple Summary
Abstract
1. Introduction
2. PFK Protein Structure and Composition
2.1. PFK1 Isoforms
2.2. PFK1 Expression, Activity and Genetic Mutations
2.3. PFKFB Isoforms
2.4. PFKFB Expression and Activity
3. PFK1 Regulation
3.1. Metabolites
3.2. Post-Translational Modifications
4. PFK1 Spatiotemporal Regulation
4.1. Plasma Membrane
4.2. Cytoskeleton
4.3. Cytosolic Phase Condensates
4.4. Cytosolic Filaments
4.5. Glucosome
4.6. Mechanosensation
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef]
- Lunt, S.Y.; Vander Heiden, M.G. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27, 441–464. [Google Scholar] [CrossRef]
- Al Tameemi, W.; Dale, T.P.; Al-Jumaily, R.M.K.; Forsyth, N.R. Hypoxia-Modified Cancer Cell Metabolism. Front. Cell Dev. Biol. 2019, 7, 4. [Google Scholar] [CrossRef]
- Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Syst. 2018, 7, 49–62. [Google Scholar] [CrossRef]
- Voronkova, M.A.; Hansen, H.L.; Cooper, M.P.; Miller, J.; Sukumar, N.; Geldenhuys, W.J.; Robart, A.R.; Webb, B.A. Cancer-Associated Somatic Mutations in Human Phosphofructokinase-1 Reveal a Critical Electrostatic Interaction for Allosteric Regulation of Enzyme Activity. Biochem. J. 2023, 480, 1411–1427. [Google Scholar] [CrossRef]
- Guglielmi, G.; Falk, H.J.; Renzis, S.D. Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Trends Cell Biol. 2016, 26, 864–874. [Google Scholar] [CrossRef]
- Karunarathne, W.K.A.; O’Neill, P.R.; Gautam, N. Subcellular Optogenetics—Controlling Signaling and Single-Cell Behavior. J. Cell Sci. 2015, 128, 15–25. [Google Scholar] [CrossRef]
- Toettcher, J.E.; Voigt, C.A.; Weiner, O.D.; Lim, W.A. The Promise of Optogenetics in Cell Biology: Interrogating Molecular Circuits in Space and Time. Nat. Methods 2011, 8, 35–38. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Kinkead, J.; McNae, I.; Michels, P.A.M.; Walkinshaw, M.D. Biochemical and Transcript Level Differences between the Three Human Phosphofructokinases Show Optimisation of Each Isoform for Specific Metabolic Niches. Biochem. J. 2020, 477, 4425–4441. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Phan, L.M.; Yeung, S.-C.J.; Lee, M.-H. Cancer Metabolic Reprogramming: Importance, Main Features, and Potentials for Precise Targeted Anti-Cancer Therapies. Cancer Biol. Med. 2014, 11, 1–19. [Google Scholar] [CrossRef]
- Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic Reprogramming and Cancer Progression. Science 2020, 368, eaaw5473. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Li, W.; Chen, T.; Zou, B.; Zhao, L.; Wang, H.; Wang, X.; Xu, L.; Liu, X.; et al. TAp73-Induced Phosphofructokinase-1 Transcription Promotes the Warburg Effect and Enhances Cell Proliferation. Nat. Commun. 2018, 9, 4683. [Google Scholar] [CrossRef]
- Lim, J.S.; Shi, Y.; Park, S.H.; Jeon, S.M.; Zhang, C.; Park, Y.-Y.; Liu, R.; Li, J.; Cho, W.-S.; Du, L.; et al. Mutual Regulation between Phosphofructokinase 1 Platelet Isoform and VEGF Promotes Glioblastoma Tumor Growth. Cell Death Dis. 2022, 13, 1002. [Google Scholar] [CrossRef]
- Zancan, P.; Sola-Penna, M.; Furtado, C.M.; Da Silva, D. Differential Expression of Phosphofructokinase-1 Isoforms Correlates with the Glycolytic Efficiency of Breast Cancer Cells. Mol. Genet. Metab. 2010, 100, 372–378. [Google Scholar] [CrossRef]
- Sun, C.; Xiong, D.; Yan, Y.; Geng, J.; Liu, M.; Yao, X. Genetic Alteration in Phosphofructokinase Family Promotes Growth of Muscle-Invasive Bladder Cancer. Int. J. Biol. Markers 2016, 31, 286–293. [Google Scholar] [CrossRef]
- Shen, J.; Jin, Z.; Lv, H.; Jin, K.; Jonas, K.; Zhu, C.; Chen, B. PFKP Is Highly Expressed in Lung Cancer and Regulates Glucose Metabolism. Cell Oncol. 2020, 43, 617–629. [Google Scholar] [CrossRef]
- Lu, T.-J.; Yang, Y.-F.; Cheng, C.-F.; Tu, Y.-T.; Chen, Y.-R.; Lee, M.-C.; Tsai, K.-W. Phosphofructokinase Platelet Overexpression Accelerated Colorectal Cancer Cell Growth and Motility. J. Cancer 2023, 14, 943–951. [Google Scholar] [CrossRef]
- Rankin, E.B.; Giaccia, A.J. The Role of Hypoxia-Inducible Factors in Tumorigenesis. Cell Death Differ. 2008, 15, 678–685. [Google Scholar] [CrossRef]
- Golinska, M.; Troy, H.; Chung, Y.-L.; McSheehy, P.M.; Mayr, M.; Yin, X.; Ly, L.; Williams, K.J.; Airley, R.E.; Harris, A.L.; et al. Adaptation to HIF-1 Deficiency by Upregulation of the AMP/ATP Ratio and Phosphofructokinase Activation in Hepatomas. BMC Cancer 2011, 11, 198. [Google Scholar] [CrossRef]
- Bartrons, R.; Caro, J. Hypoxia, Glucose Metabolism and the Warburg’s Effect. J. Bioenerg. Biomembr. 2007, 39, 223–229. [Google Scholar] [CrossRef]
- Mor, I.; Cheung, E.C.; Vousden, K.H. Control of Glycolysis through Regulation of PFK1: Old Friends and Recent Additions. Cold Spring Harb. Symp. Quant. Biol. 2011, 76, 211–216. [Google Scholar] [CrossRef]
- Webb, B.A.; Forouhar, F.; Szu, F.-E.; Seetharaman, J.; Tong, L.; Barber, D.L. Structures of Human Phosphofructokinase-1 and Atomic Basis of Cancer-Associated Mutations. Nature 2015, 523, 111–114. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Y.; Gao, Y.; Wu, C.; Wang, Y.; Hou, C.; Ren, M.; Zhang, S.; Zhu, Q.; Zhang, J.; et al. Allosterically Inhibited PFKL via Prostaglandin E2 Withholds Glucose Metabolism and Ovarian Cancer Invasiveness. Cell Rep. 2023, 42, 113246. [Google Scholar] [CrossRef]
- Tarui, S.; Giichi, O.; Ikura, Y.; Tanaka, T.; Suda, M.; Nishikawa, M. Phosphofructokinase Deficiency in Skeletal Muscle. A New Type Glycogenosis. Biochem. Biophys. Res. Commun. 1965, 19, 517–523. [Google Scholar] [CrossRef]
- Okar, D.A.; Lange, A.J.; Manzano, À.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R. PFK-2/FBPase-2: Maker and Breaker of the Essential Biofactor Fructose-2,6-Bisphosphate. Trends Biochem. Sci. 2001, 26, 30–35. [Google Scholar] [CrossRef]
- Van Schaftingen, E.; Hue, L.; Hers, H.G. Fructose 2,6-Bisphosphate, the Probably Structure of the Glucose- and Glucagon-Sensitive Stimulator of Phosphofructokinase. Biochem. J. 1980, 192, 897–901. [Google Scholar] [CrossRef]
- Pilkis, S.J.; Claus, T.H.; Kurland, I.J.; Lange, A.J. 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase: A Metabolic Signaling Enzyme. Annu. Rev. Biochem. 1995, 64, 799–835. [Google Scholar] [CrossRef]
- El-Maghrabi, M.R.; Pilkis, S.J. Rat Liver 6-Phosphofructo 2-Kinase/Fructose 2,6-Bisphosphatase: A Review of Relationships between the Two Activities of the Enzyme. J. Cell. Biochem. 1984, 26, 1–17. [Google Scholar] [CrossRef]
- Hu, K.-F.; Shu, C.-W.; Lee, C.-H.; Tseng, C.-J.; Chou, Y.-H.; Liu, P.-F. Comparative Clinical Significance and Biological Roles of PFKFB Family Members in Oral Squamous Cell Carcinoma. Cancer Cell Int. 2023, 23, 257. [Google Scholar] [CrossRef]
- Kotowski, K.; Rosik, J.; Machaj, F.; Supplitt, S.; Wiczew, D.; Jabłońska, K.; Wiechec, E.; Ghavami, S.; Dzięgiel, P. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. Cancers 2021, 13, 909. [Google Scholar] [CrossRef]
- Minchenko, O.; Opentanova, I.; Caro, J. Hypoxic Regulation of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase Gene Family (PFKFB-1–4) Expression in Vivo. FEBS Lett. 2003, 554, 264–270. [Google Scholar] [CrossRef]
- Yi, M.; Ban, Y.; Tan, Y.; Xiong, W.; Li, G.; Xiang, B. 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 and 4: A Pair of Valves for Fine-Tuning of Glucose Metabolism in Human Cancer. Mol. Metab. 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Ros, S.; Schulze, A. Balancing Glycolytic Flux: The Role of 6-Phosphofructo-2-Kinase/Fructose 2,6-Bisphosphatases in Cancer Metabolism. Cancer Metab. 2013, 1, 8. [Google Scholar] [CrossRef]
- Bartrons, R.; Simon-Molas, H.; Rodríguez-García, A.; Castaño, E.; Navarro-Sabaté, À.; Manzano, A.; Martinez-Outschoorn, U.E. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front. Oncol. 2018, 8, 331. [Google Scholar] [CrossRef]
- Ozcan, S.C.; Sarioglu, A.; Altunok, T.H.; Akkoc, A.; Guzel, S.; Guler, S.; Imbert-Fernandez, Y.; Muchut, R.J.; Iglesias, A.A.; Gurpinar, Y.; et al. PFKFB2 Regulates Glycolysis and Proliferation in Pancreatic Cancer Cells. Mol. Cell Biochem. 2020, 470, 115–129. [Google Scholar] [CrossRef]
- Sha, L.; Lv, Z.; Liu, Y.; Zhang, Y.; Sui, X.; Wang, T.; Zhang, H. Shikonin Inhibits the Warburg Effect, Cell Proliferation, Invasion and Migration by Downregulating PFKFB2 Expression in Lung Cancer. Mol. Med. Rep. 2021, 24, 560. [Google Scholar] [CrossRef]
- Moon, J.-S.; Jin, W.-J.; Kwak, J.-H.; Kim, H.-J.; Yun, M.-J.; KIM, J.-W.; Park, S.W.; Kim, K.-S. Androgen Stimulates Glycolysis for de Novo Lipid Synthesis by Increasing the Activities of Hexokinase 2 and 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 2 in Prostate Cancer Cells. Biochem. J. 2010, 433, 225–233. [Google Scholar] [CrossRef]
- Liu, F.; Wei, X.; Chen, Z.; Chen, Y.; Hu, P.; Jin, Y. PFKFB2 Is a Favorable Prognostic Biomarker for Colorectal Cancer by Suppressing Metastasis and Tumor Glycolysis. J. Cancer Res. Clin. Oncol. 2023, 149, 10737–10752. [Google Scholar] [CrossRef]
- Da, Q.; Huang, L.; Huang, C.; Chen, Z.; Jiang, Z.; Huang, F.; Shen, T.; Sun, L.; Yan, Z.; Ye, X.; et al. Glycolytic Regulatory Enzyme PFKFB3 as a Prognostic and Tumor Microenvironment Biomarker in Human Cancers. Aging 2023, 15, 4533–4559. [Google Scholar] [CrossRef]
- Trojan, S.E.; Markiewicz, M.J.; Leśkiewicz, K.; Kocemba-Pilarczyk, K.A. The Influence of PFK-II Overexpression on Neuroblastoma Patients’ Survival May Be Dependent on the Particular Isoenzyme Expressed, PFKFB3 or PFKFB4. Cancer Cell Int. 2019, 19, 292. [Google Scholar] [CrossRef]
- Kessler, R.; Fleischer, M.; Springsguth, C.; Bigl, M.; Warnke, J.-P.; Eschrich, K. Prognostic Value of PFKFB3 to PFKFB4 mRNA Ratio in Patients with Primary Glioblastoma (IDH-Wildtype). J. Neuropathol. Exp. Neurol. 2019, 78, 865–870. [Google Scholar] [CrossRef]
- Sakakibara, R.; Kato, M.; Okamura, N.; Nakagawa, T.; Komada, Y.; Tominaga, N.; Shimojo, M.; Fukasawa, M. Characterization of a Human Placental Fructose-6-Phosphate, 2-Kinase/Fructose- 2,6—Bisphosphatase1. J. Biochem. 1997, 122, 122–128. [Google Scholar] [CrossRef]
- Shi, L.; Pan, H.; Liu, Z.; Xie, J.; Han, W. Roles of PFKFB3 in Cancer. Signal Transduct. Target. Ther. 2017, 2, 17044. [Google Scholar] [CrossRef]
- Minchenko, O.H.; Tsuchihara, K.; Minchenko, D.O.; Bikfalvi, A.; Esumi, H. Mechanisms of Regulation of PFKFB Expression in Pancreatic and Gastric Cancer Cells. World J. Gastroenterol. 2014, 20, 13705–13717. [Google Scholar] [CrossRef]
- Le Bras, G.; Auzat, I.; Garel, J.R. Tetramer-Dimer Equilibrium of Phosphofructokinase and Formation of Hybrid Tetramers. Biochemistry 1995, 34, 13203–13210. [Google Scholar] [CrossRef]
- Schöneberg, T.; Kloos, M.; Brüser, A.; Kirchberger, J.; Sträter, N. Structure and Allosteric Regulation of Eukaryotic 6-Phosphofructokinases. Biol. Chem. 2013, 394, 977–993. [Google Scholar] [CrossRef]
- Van Schaftingen, E.; Jett, M.F.; Hue, L.; Hers, H.G. Control of Liver 6-Phosphofructokinase by Fructose 2,6-Bisphosphate and Other Effectors. Proc. Natl. Acad. Sci. USA 1981, 78, 3483–3486. [Google Scholar] [CrossRef]
- Clem, B.F.; O’Neal, J.; Tapolsky, G.; Clem, A.L.; Imbert-Fernandez, Y.; Kerr, D.A., II; Klarer, A.C.; Redman, R.; Miller, D.M.; Trent, J.O.; et al. Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a Therapeutic Strategy against Cancer. Mol. Cancer Ther. 2013, 12, 1461–1470. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Marín-Hernández, A.; Gallardo-Pérez, J.C.; Quezada, H.; Encalada, R.; Rodríguez-Enríquez, S.; Saavedra, E. Phosphofructokinase Type 1 Kinetics, Isoform Expression, and Gene Polymorphisms in Cancer Cells. J. Cell. Biochem. 2012, 113, 1692–1703. [Google Scholar] [CrossRef]
- Brand, I.A.; Söling, H.D. Activation and Inactivation of Rat Liver Phosphofructokinase by Phosphorylation—Dephosphorylation. FEBS Lett. 1975, 57, 163–168. [Google Scholar] [CrossRef]
- Roberts, S.J.; Somero, G.N. Binding of Phosphofructokinase to Filamentous Actin. Biochemistry 1987, 26, 3437–3442. [Google Scholar] [CrossRef]
- Lee, J.-H.; Liu, R.; Li, J.; Zhang, C.; Wang, Y.; Cai, Q.; Qian, X.; Xia, Y.; Zheng, Y.; Piao, Y.; et al. Stabilization of Phosphofructokinase 1 Platelet Isoform by AKT Promotes Tumorigenesis. Nat. Commun. 2017, 8, 949. [Google Scholar] [CrossRef]
- Kohnhorst, C.L.; Kyoung, M.; Jeon, M.; Schmitt, D.L.; Kennedy, E.L.; Ramirez, J.; Bracey, S.M.; Luu, B.T.; Russell, S.J.; An, S. Identification of a Multienzyme Complex for Glucose Metabolism in Living Cells. J. Biol. Chem. 2017, 292, 9191–9203. [Google Scholar] [CrossRef]
- Gao, W.; Huang, M.; Chen, X.; Chen, J.; Zou, Z.; Li, L.; Ji, K.; Nie, Z.; Yang, B.; Wei, Z.; et al. The Role of S-Nitrosylation of PFKM in Regulation of Glycolysis in Ovarian Cancer Cells. Cell Death Dis. 2021, 12, 408. [Google Scholar] [CrossRef]
- Yi, W.; Clark, P.M.; Mason, D.E.; Keenan, M.C.; Hill, C.; Goddard, W.A.; Peters, E.C.; Driggers, E.M.; Hsieh-Wilson, L.C. PFK1 Glycosylation Is a Key Regulator of Cancer Cell Growth and Central Metabolic Pathways. Science 2012, 337, 975–980. [Google Scholar] [CrossRef]
- Tong, X.; Zhao, F.; Thompson, C.B. The Molecular Determinants of de Novo Nucleotide Biosynthesis in Cancer Cells. Curr. Opin. Genet. Dev. 2009, 19, 32–37. [Google Scholar] [CrossRef]
- Anastasiou, D.; Poulogiannis, G.; Asara, J.M.; Boxer, M.B.; Jiang, J.; Shen, M.; Bellinger, G.; Sasaki, A.T.; Locasale, J.W.; Auld, D.S.; et al. Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses. Science 2011, 334, 1278–1283. [Google Scholar] [CrossRef]
- Craven, P.A.; Basford, R.E. ADP-Induced Binding of Phosphofructokinase to the Brain Mitochondrial Membrane. Biochim. Biophys. Acta General. Subj. 1974, 354, 49–56. [Google Scholar] [CrossRef]
- Miyazawa, H.; Yamaguchi, Y.; Sugiura, Y.; Honda, K.; Kondo, K.; Matsuda, F.; Yamamoto, T.; Suematsu, M.; Miura, M. Rewiring of Embryonic Glucose Metabolism via Suppression of PFK-1 and Aldolase during Mouse Chorioallantoic Branching. Development 2017, 144, 63–73. [Google Scholar] [CrossRef]
- Bulusu, V.; Prior, N.; Snaebjornsson, M.T.; Kuehne, A.; Sonnen, K.F.; Kress, J.; Stein, F.; Schultz, C.; Sauer, U.; Aulehla, A. Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development. Dev. Cell 2017, 40, 331–341.e4. [Google Scholar] [CrossRef]
- Miyazawa, H.; Snaebjornsson, M.T.; Prior, N.; Kafkia, E.; Hammarén, H.M.; Tsuchida-Straeten, N.; Patil, K.R.; Beck, M.; Aulehla, A. Glycolytic Flux-Signaling Controls Mouse Embryo Mesoderm Development. eLife 2022, 11, e83299. [Google Scholar] [CrossRef]
- Fernandes-Silva, H.; Alves, M.G.; Araújo-Silva, H.; Silva, A.M.; Correia-Pinto, J.; Oliveira, P.F.; Moura, R.S. Lung Branching Morphogenesis Is Accompanied by Temporal Metabolic Changes towards a Glycolytic Preference. Cell Biosci. 2021, 11, 134. [Google Scholar] [CrossRef]
- Pegoraro, C.; Maczkowiak, F.; Monsoro-Burq, A.H. Pfkfb (6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase) Isoforms Display a Tissue-Specific and Dynamic Expression during Xenopus Laevis Development. Gene Expr. Patterns 2013, 13, 203–211. [Google Scholar] [CrossRef]
- Cheung, R.A.; Kraft, A.M.; Petty, H.R. Relocation of Phosphofructokinases within Epithelial Cells Is a Novel Event Preceding Breast Cancer Recurrence That Accurately Predicts Patient Outcomes. Am. J. Physiol.-Cell Physiol. 2021, 321, C654–C670. [Google Scholar] [CrossRef]
- Pragallapati, S.; Manyam, R. Glucose Transporter 1 in Health and Disease. J. Oral. Maxillofac. Pathol. 2019, 23, 443–449. [Google Scholar] [CrossRef]
- Razani, B.; Lisanti, M.P. Caveolin-Deficient Mice: Insights into Caveolar Function Human Disease. J. Clin. Invest. 2001, 108, 1553–1561. [Google Scholar] [CrossRef]
- Vallejo, J.; Hardin, C.D. Metabolic Organization in Vascular Smooth Muscle: Distribution and Localization of Caveolin-1 and Phosphofructokinase. Am. J. Physiol.-Cell Physiol. 2004, 286, C43–C54. [Google Scholar] [CrossRef]
- Sotgia, F.; Bonuccelli, G.; Minetti, C.; Woodman, S.E.; Capozza, F.; Kemp, R.G.; Scherer, P.E.; Lisanti, M.P. Phosphofructokinase Muscle-Specific Isoform Requires Caveolin-3 Expression for Plasma Membrane Recruitment and Caveolar Targeting. Am. J. Pathol. 2003, 163, 2619–2634. [Google Scholar] [CrossRef]
- Scherer, P.E.; Lisanti, M.P. Association of Phosphofructokinase-M with Caveolin-3 in Differentiated Skeletal Myotubes: Dynamic Regulation by Extracellular Glucose and Intracellular Metabolites. J. Biol. Chem. 1997, 272, 20698–20705. [Google Scholar] [CrossRef]
- Dominguez, R.; Holmes, K.C. Actin Structure and Function. Annu. Rev. Biophys. 2011, 40, 169–186. [Google Scholar] [CrossRef]
- Liou, R.-S.; Anderson, S. Activation of Rabbit Muscle Phosphofructokinase by F-Actin and Reconstituted Thin Filaments. Biochemistry 1980, 19, 2684–2688. [Google Scholar] [CrossRef]
- Roberts, S.J.; Somero, G.N. Properties of the Interaction between Phosphofructokinase and Actin. Arch. Biochem. Biophys. 1989, 269, 284–294. [Google Scholar] [CrossRef]
- Silva, A.P.P.; Alves, G.G.; Araújo, A.H.B.; Sola-Penna, M. Effects of Insulin and Actin on Phosphofructokinase Activity and Cellular Distribution in Skeletal Muscle. An. Acad. Bras. Ciênc. 2004, 76, 541–548. [Google Scholar] [CrossRef]
- Rossi, M.; Altea-Manzano, P.; Demicco, M.; Doglioni, G.; Bornes, L.; Fukano, M.; Vandekeere, A.; Cuadros, A.M.; Fernández-García, J.; Riera-Domingo, C.; et al. PHGDH Heterogeneity Potentiates Cancer Cell Dissemination and Metastasis. Nature 2022, 605, 747–753. [Google Scholar] [CrossRef]
- Glass-Marmor, L.; Beitner, R. Taxol (Paclitaxel) Induces a Detachment of Phosphofructokinase from Cytoskeleton of Melanoma Cells and Decreases the Levels of Glucose 1,6-Bisphosphate, Fructose 1,6-Bisphosphate and ATP. Eur. J. Pharmacol. 1999, 370, 195–199. [Google Scholar] [CrossRef]
- Park, J.S.; Burckhardt, C.J.; Lazcano, R.; Solis, L.M.; Isogai, T.; Li, L.; Chen, C.S.; Gao, B.; Minna, J.D.; Bachoo, R.; et al. Mechanical Regulation of Glycolysis via Cytoskeleton Architecture. Nature 2020, 578, 621–626. [Google Scholar] [CrossRef]
- Lehotzky, A.; Telegdi, M.; Liliom, K.; Ovádi, J. Interaction of Phosphofructokinase with Tubulin and Microtubules. Quantitative evaluation of the mutual effects. J. Biol. Chem. 1993, 268, 10888–10894. [Google Scholar] [CrossRef]
- Vértessy, B.G.; Orosz, F.; Kovács, J.; Ovádi, J. Alternative Binding of Two Sequential Glycolytic Enzymes to Microtubules: Molecular Studies in the Phosphofructokinase/Aldolase/Microtubule System. J. Biol. Chem. 1997, 272, 25542–25546. [Google Scholar] [CrossRef]
- Lehotzky, A.; Palfia, Z.; Kovacs, J.; Molnar, A.; Ovadi, J. Ligand-Modulated Cross-Bridging of Microtubules by Phosphofructokinase. Biochem. Biophys. Res. Commun. 1994, 204, 585–591. [Google Scholar] [CrossRef]
- Vértessy, B.G.; Kovács, J.; Löw, P.; Lehotzky, A.; Molnár, A.; Orosz, F.; Ovádi, J. Characterization of Microtubule−Phosphofructokinase Complex: Specific Effects of MgATP and Vinblastine. Biochemistry 1997, 36, 2051–2062. [Google Scholar] [CrossRef]
- Jang, S.; Xuan, Z.; Lagoy, R.C.; Jawerth, L.M.; Gonzalez, I.J.; Singh, M.; Prashad, S.; Kim, H.S.; Patel, A.; Albrecht, D.R.; et al. Phosphofructokinase Relocalizes into Subcellular Compartments with Liquid-like Properties in Vivo. Biophys. J. 2021, 120, 1170–1186. [Google Scholar] [CrossRef]
- Webb, B.A.; Dosey, A.M.; Wittmann, T.; Kollman, J.M.; Barber, D.L. The Glycolytic Enzyme Phosphofructokinase-1 Assembles into Filaments. J. Cell Biol. 2017, 216, 2305–2313. [Google Scholar] [CrossRef]
- Zhang, Y.; Fernie, A.R. Metabolons, Enzyme–Enzyme Assemblies That Mediate Substrate Channeling, and Their Roles in Plant Metabolism. Plant Commun. 2021, 2, 100081. [Google Scholar] [CrossRef]
- Kurganov, B.I.; Sugrobova, N.P.; Mil’man, L.S. Supramolecular Organization of Glycolytic Enzymes. J. Theor. Biol. 1985, 116, 509–526. [Google Scholar] [CrossRef]
- Menard, L.; Maughan, D.; Vigoreaux, J. The Structural and Functional Coordination of Glycolytic Enzymes in Muscle: Evidence of a Metabolon? Biology 2014, 3, 623–644. [Google Scholar] [CrossRef]
- Jaeger, M.G.; Winter, G.E. Fast-Acting Chemical Tools to Delineate Causality in Transcriptional Control. Mol. Cell 2021, 81, 1617–1630. [Google Scholar] [CrossRef]
- Schmitt, D.L.; Dranchak, P.; Parajuli, P.; Blivis, D.; Voss, T.; Kohnhorst, C.L.; Kyoung, M.; Inglese, J.; An, S. High-Throughput Screening Identifies Cell Cycle-Associated Signaling Cascades That Regulate a Multienzyme Glucosome Assembly in Human Cells. PLoS ONE 2023, 18, e0289707. [Google Scholar] [CrossRef]
- Jeon, M.; Schmitt, D.L.; Kyoung, M.; An, S. Size-Specific Modulation of a Multienzyme Glucosome Assembly during the Cell Cycle. ACS Bio Med Chem Au 2023, 3, 461–470. [Google Scholar] [CrossRef]
- Schmitt, D.L.; An, S. Spatial Organization of Metabolic Enzyme Complexes in Cells. Biochemistry 2017, 56, 3184–3196. [Google Scholar] [CrossRef]
- Coelho, R.G.; Calaça, I.C.; Celestrini, D.M.; Correia-Carneiro, A.H.P.; Costa, M.M.; Zancan, P.; Sola-Penna, M. Hexokinase and Phosphofructokinase Activity and Intracellular Distribution Correlate with Aggressiveness and Invasiveness of Human Breast Carcinoma. Oncotarget 2015, 6, 29375–29387. [Google Scholar] [CrossRef]
- Moon, J.-S.; Kim, H.E.; Koh, E.; Park, S.H.; Jin, W.-J.; Park, B.-W.; Park, S.W.; Kim, K.-S. Krüppel-like Factor 4 (KLF4) Activates the Transcription of the Gene for the Platelet Isoform of Phosphofructokinase (PFKP) in Breast Cancer. J. Biol. Chem. 2011, 286, 23808–23816. [Google Scholar] [CrossRef]
- Yeerken, D.; Hong, R.; Wang, Y.; Gong, Y.; Liu, R.; Yang, D.; Li, J.; Fan, J.; Chen, J.; Zhang, W.; et al. PFKP Is Transcriptionally Repressed by BRCA1/ZBRK1 and Predicts Prognosis in Breast Cancer. PLoS ONE 2020, 15, e0233750. [Google Scholar] [CrossRef]
- Inaishi, T.; Shibata, M.; Ichikawa, T.; Kanda, M.; Hayashi, M.; Soeda, I.; Takeuchi, D.; Takano, Y.; Tsunoda, N.; Kodera, Y.; et al. Platelet Isoform of Phosphofructokinase Accelerates Malignant Features in Breast Cancer. Oncol. Rep. 2022, 47, 9. [Google Scholar] [CrossRef]
- Umar, S.M.; Kashyap, A.; Kahol, S.; Mathur, S.R.; Gogia, A.; Deo, S.V.S.; Prasad, C.P. Prognostic and Therapeutic Relevance of Phosphofructokinase Platelet-Type (PFKP) in Breast Cancer. Exp. Cell Res. 2020, 396, 112282. [Google Scholar] [CrossRef]
- El-Bacha, T.; de Freitas, M.S.; Sola-Penna, M. Cellular Distribution of Phosphofructokinase Activity and Implications to Metabolic Regulation in Human Breast Cancer. Mol. Genet. Metab. 2003, 79, 294–299. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Cai, Y.; Liu, R.; Lu, M.; Li, T.; Fu, Y.; Guo, M.; Huang, H.; Ou, Y.; et al. A20 Targets PFKL and Glycolysis to Inhibit the Progression of Hepatocellular Carcinoma. Cell Death Dis. 2020, 11, 89. [Google Scholar] [CrossRef]
- Kreuzaler, P.; Panina, Y.; Segal, J.; Yuneva, M. Adapt and Conquer: Metabolic Flexibility in Cancer Growth, Invasion and Evasion. Mol. Metab. 2020, 33, 83–101. [Google Scholar] [CrossRef]
- Kohnhorst, C.L.; Schmitt, D.L.; Sundaram, A.; An, S. Subcellular Functions of Proteins under Fluorescence Single-Cell Microscopy. Biochim. Biophys. Acta 2016, 1864, 77–84. [Google Scholar] [CrossRef]
PFK | Mutation | Residue Location | Mutation Effect on PFK1 | References |
---|---|---|---|---|
PFK-L | D→N K→A | 553 727 | Decrease Activity Increase Activity | [23] |
PFK-P | N→S D→N | 426 564 | Increase Activity Increase Activity | [5,24] |
Isoform | PTM Type | Residue Location | Modification Effect on PFK1 | References |
---|---|---|---|---|
PFK-P | Phosphorylation | S386 | Increase activity | [53] |
PFK-L | Acetylation | K689 | Formation of glycolytic clusters | [54] |
PFK-M | S-nitrosylation | Cys351 | Increase activity | [55] |
PFK-M PFK-L PFK-P | O-GlcNAcylation | S530 S529 S540 | Inhibit activity | [9,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, M.; Albrecht, L.V. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers 2024, 16, 16. https://doi.org/10.3390/cancers16010016
Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2024; 16(1):16. https://doi.org/10.3390/cancers16010016
Chicago/Turabian StyleCampos, Melissa, and Lauren V. Albrecht. 2024. "Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1" Cancers 16, no. 1: 16. https://doi.org/10.3390/cancers16010016
APA StyleCampos, M., & Albrecht, L. V. (2024). Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers, 16(1), 16. https://doi.org/10.3390/cancers16010016