ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis
Abstract
:Simple Summary
Abstract
1. ACVR1 Structure and Biological Significance
2. ACVR1 in Human Diseases
3. ACVR1 Inhibition
4. Hepcidin
5. Myelofibrosis and Anemia
6. Concurrent ACVR1 and JAK Inhibition in Myelofibrosis
6.1. Pacritinib
6.2. Momelotinib
6.3. Jaktinib
Agent | Study Phase | Indication | Inhibitory Effects |
---|---|---|---|
Pacritinib | Approved by the FDA based on the phase 3 PERSIST-2 trial (NCT02055781) | Adults with intermediate- or high-risk MF and platelet counts <50 × 109/L | Mean IC50 (ACVR1) = 16.7 nM [28] Inhibitor of JAK2, ACVR1, IRAK1, and FLT3 |
Momelotinib | FDA-approved based on the phase 3 MOMENTUM (NCT04173494) and SIMPLIFY-1 (NCT01969838) trials | Adults with intermediate- or high-risk MF (primary or secondary) and anemia | Mean IC50 (ACVR1) = 52.5 nM [28] IC50 (ACVR1) = 8.4 nM [80] Inhibitor of JAK1/2 and ACVR1 |
Jaktinib | Evaluated in a phase 3 trial in comparison to hydroxyurea (NCT04617028) | In clinical development for MF treatment | IC50 (ACVR1) values were not determined. JAK1/2/3 and ACVR1 inhibitor [91] |
Zilurgisertib | Evaluated in a phase 1/2 trial as a monotherapy or in combination with ruxolitinib (NCT04455841) | In clinical development for MF treatment | IC50 (ACVR1) = 15 nM [94] ACVR1 inhibitor |
7. ACVR1 Inhibitor in Development for Myelofibrosis
8. TGF-β Ligand Traps as Treatments for Anemia
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bataller, A.; Montalban-Bravo, G.; Soltysiak, K.A.; Garcia Manero, G. The role of TGFβ in hematopoiesis and myeloid disorders. Leukemia 2019, 33, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Tsukamoto, S.; Kuratani, M. Accumulated Knowledge of Activin Receptor-Like Kinase 2 (ALK2)/Activin A Receptor, Type 1 (ACVR1) as a Target for Human Disorders. Biomedicines 2021, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Valer, J.A.; Sánchez-De-Diego, C.; Pimenta-Lopes, C.; Rosa, J.L.; Ventura, F. ACVR1 Function in Health and Disease. Cells 2019, 8, 1366. [Google Scholar] [CrossRef] [PubMed]
- Huse, M.; Muir, T.W.; Xu, L.; Chen, Y.G.; Kuriyan, J.; Massagué, J. The TGF Beta Receptor Activation Process: An Inhibitor- to Substrate-Binding Switch. Mol. Cell 2001, 8, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Huse, M.; Chen, Y.G.; Massagué, J.; Kuriyan, J. Crystal Structure of the Cytoplasmic Domain of the Type I TGF Beta Receptor in Complex with FKBP12. Cell 1999, 96, 425–436. [Google Scholar] [CrossRef]
- Yadin, D.; Knaus, P.; Mueller, T.D. Structural Insights into BMP Receptors: Specificity, Activation and Inhibition. Cytokine Growth Factor. Rev. 2016, 27, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Goto, D.; Hamamoto, T.; Takenoshita, S.; Kato, M.; Miyazono, K. Alternatively Spliced Variant of Smad2 Lacking Exon 3. Comparison with Wild-Type Smad2 and Smad3. J. Biol. Chem. 1999, 274, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, X.; Chen, X. Comparative Effects of TGF-b2/Smad2 and TGF-Β2/Smad3 Signaling Pathways on Proliferation, Migration, and Extracellular Matrix Production in a Human Lens Cell Line. Exp. Eye Res. 2011, 92, 173–179. [Google Scholar] [CrossRef]
- Feng, X.H.; Derynck, R. Specificity and Versatility in TGF-beta Signaling through SMADs. Annu. Rev. Cell Dev. Biol. 2005, 21, 659–693. [Google Scholar] [CrossRef]
- Ross, S.; Cheung, E.; Petrakis, T.G.; Howell, M.; Kraus, W.L.; Hill, C.S. Smads Orchestrate Specific Histone Modifications and Chromatin Remodeling to Activate Transcription. EMBO J. 2006, 25, 4490–4502. [Google Scholar] [CrossRef]
- Schmierer, B.; Hill, C.S. TGFbeta-SMAD Signal Transduction: Molecular Specificity and Functional Flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in the TGF-β family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Luan, J.; Zhou, X.; Cui, Y.; Han, J. Fibrodysplasia Ossificans Progressiva: Basic Understanding and Experimental Models. Intractable Rare Dis. Res. 2017, 6, 242. [Google Scholar] [CrossRef] [PubMed]
- Pignolo, R.J.; Shore, E.M.; Kaplan, F.S. Fibrodysplasia Ossificans Progressiva: Clinical and Genetic Aspects. Orphanet J. Rare Dis. 2011, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Barruet, E.; Morales, B.M.; Lwin, W.; White, M.P.; Theodoris, C.V.; Kim, H.; Urrutia, A.; Wong, S.A.; Srivastava, D.; Hsiao, E.C. The ACVR1 R206H Mutation Found in Fibrodysplasia Ossificans Progressiva Increases Human Induced Pluripotent Stem Cell-Derived Endothelial Cell Formation and Collagen Production through BMP-Mediated SMAD1/5/8 Signaling. Stem Cell Res. Ther. 2016, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Fontebasso, A.M.; Papillon-Cavanagh, S.; Schwartzentruber, J.; Nikbakht, H.; Gerges, N.; Fiset, P.O.; Bechet, D.; Faury, D.; De Jay, N.; Ramkissoon, L.A.; et al. Recurrent Somatic Mutations in ACVR1 in Pediatric Midline High-Grade Astrocytoma. Nat. Genet. 2014, 46, 462–466. [Google Scholar] [CrossRef]
- Shahid, M.; Spagnolli, E.; Ernande, L.; Thoonen, R.; Kolodziej, S.A.; Leyton, P.A.; Cheng, J.; Tainsh, R.E.T.; Mayeur, C.; Rhee, D.K.; et al. BMP Type I Receptor ALK2 Is Required for Angiotensin II-Induced Cardiac Hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H984–H994. [Google Scholar] [CrossRef]
- Thomas, P.S.; Rajderkar, S.; Lane, J.; Mishina, Y.; Kaartinen, V. AcvR1-Mediated BMP Signaling in Second Heart Field Is Required for Arterial Pole Development: Implications for Myocardial Differentiation and Regional Identity. Dev. Biol. 2014, 390, 191–207. [Google Scholar] [CrossRef]
- Zhang, D.; Schwarz, E.M.; Rosier, R.N.; Zuscik, M.J.; Puzas, J.E.; O’Keefe, R.J. ALK2 Functions as a BMP Type I Receptor and Induces Indian Hedgehog in Chondrocytes during Skeletal Development. J. Bone Miner. Res. 2003, 18, 1593–1604. [Google Scholar] [CrossRef]
- Rahman, M.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 2015, 3, 15005. [Google Scholar] [CrossRef]
- Longhitano, L.; Tibullo, D.; Vicario, N.; Giallongo, C.; Spina, E.L.; Romano, A.; Lombardo, S.; Moretti, M.; Masia, F.; Coda, A.R.D.; et al. IGFBP-6/Sonic Hedgehog/TLR4 Signalling Axis Drives Bone Marrow Fibrotic Transformation in Primary Myelofibrosis. Aging 2021, 13, 25055–25071. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, G.; Murdoch, B.; Wu, D.; Baker, D.P.; Williams, K.P.; Chadwick, K.; Ling, L.E.; Karanu, F.N.; Bhatia, M. Sonic Hedgehog Induces the Proliferation of Primitive Human Hematopoietic Cells via BMP Regulation. Nat. Immunol. 2001, 2, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Gerds, A.T.; Gotlib, J.; Palmer, J.M.; Pemmaraju, N.; Bose, P.; Ginzburg, Y.; Valone, F.; Modi, N.B.; Khanna, S.; O′Connor, P.G.; et al. Rusfertide for Polycythemia Vera: Similar Dosing in Patients Receiving Therapeutic Phlebotomy Alone or in Combination with Cytoreductive Treatment. Blood 2022, 140 (Suppl. 1), 12241–12243. [Google Scholar] [CrossRef]
- De Falco, L.; Sanchez, M.; Silvestri, L.; Kannengiesser, C.; Muckenthaler, M.U.; Iolascon, A.; Gouya, L.; Camaschella, C.; Beaumont, C. Iron refractory iron deficiency anemia. Haematologica 2013, 98, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Rooney, L.; Jones, C. Recent Advances in ALK2 Inhibitors. ACS Omega 2021, 6, 20729–20734. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Pantopoulos, K. Hepcidin Therapeutics. Pharmaceuticals 2018, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Harrison, C.N.; Mesa, R.A.; Kiladjian, J.-J.; Vannucchi, A.; Verstovsek, S. Anemia in myelofibrosis: Current and emerging treatment options. Critical Reviews Hematol. 2022, 180, 103862. [Google Scholar] [CrossRef]
- Chifotides, H.T.; Bose, P.; Verstovsek, S. Momelotinib: An Emerging Treatment for Myelofibrosis Patients with Anemia. J. Hematol. Oncol. 2022, 15, 1–17. [Google Scholar] [CrossRef]
- Oh, S.T.; Mesa, R.A.; Harrison, C.N.; Bose, P.; Gerds, A.T.; Gupta, V.; Scott, B.L.; Kiladjian, J.-J.; Lucchesi, A.; Kong, T.; et al. Pacritinib Is a Potent ACVR1 Inhibitor with Significant Anemia Benefit in Patients with Myelofibrosis. Blood Adv. 2023, 7, 5835–5842. [Google Scholar] [CrossRef]
- Valore, E.V.; Ganz, T. Posttranslational Processing of Hepcidin in Human Hepatocytes Is Mediated by the Prohormone Convertase Furin. Blood Cells Mol. Dis. 2008, 40, 132–138. [Google Scholar] [CrossRef]
- Peslova, G.; Petrak, J.; Kuzelova, K.; Hrdy, I.; Halada, P.; Kuchel, P.W.; Soe-Lin, S.; Ponka, P.; Sutak, R.; Becker, E.; et al. Hepcidin, the Hormone of Iron Metabolism, Is Bound Specifically to Alpha-2-Macroglobulin in Blood. Blood 2009, 113, 6225–6236. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Systemic iron homeostasis. Physiol Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.; Nemeth, E.; Gabayan, V.; Lopez, M.A.; Farshidi, D.; Ganz, T. Synthetic Hepcidin Causes Rapid Dose-Dependent Hypoferremia and Is Concentrated in Ferroportin-Containing Organs. Blood 2005, 106, 2196–2199. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.; Lima, C.A.; Pinkus, J.L.; Pinkus, G.S.; Zon, L.I.; Robine, S.; Andrews, N.C. The Iron Exporter Ferroportin/Slc40a1 Is Essential for Iron Homeostasis. Cell Metab. 2005, 1, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Hughes, R.M.; Ollivierre-Wilson, H.; Ghosh, M.C.; Rouault, T.A. A Ferroportin Transcript That Lacks an Iron-Responsive Element Enables Duodenal and Erythroid Precursor Cells to Evade Translational Repression. Cell Metab. 2009, 9, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. The Role of Hepcidin in Iron Metabolism. Acta Haematol. 2009, 122, 78–86. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron Homeostasis in Host Defence and Inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef]
- Birgegard, G.; Samuelsson, J.; Ahlstrand, E.; Ejerblad, E.; Enevold, C.; Ghanima, W.; Hasselbalch, H.; Nielsen, C.H.; Knutsen, H.; Pedersen, O.B.; et al. Inflammatory Functional Iron Deficiency Common in Myelofibrosis, Contributes to Anaemia and Impairs Quality of Life. From the Nordic MPN Study Group. Eur. J. Haematol. 2019, 102, 235–240. [Google Scholar] [CrossRef]
- Bose, P.; Masarova, L.; Amin, H.M.; Verstovsek, S. Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. In The MD Anderson Manual of Medical Oncology, 4th ed.; Kantarjian, H.M., Wolff, R.A., Rieber, A.G., Eds.; McGraw Hill: Beijing, China, 2022; Chapter 6; pp. 119–162. [Google Scholar]
- Tefferi, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Vannucchi, A.M.; Rodeghiero, F.; Randi, M.L.; Vaidya, R.; Cazzola, M.; Rambaldi, A.; et al. Survival and Prognosis among 1545 Patients with Contemporary Polycythemia Vera: An International Study. Leukemia 2013, 27, 1874–1881. [Google Scholar] [CrossRef]
- Cervantes, F.; Dupriez, B.; Passamonti, F.; Vannucchi, A.M.; Morra, E.; Reilly, J.T.; Demory, J.L.; Rumi, E.; Guglielmelli, P.; Roncoroni, E.; et al. Improving Survival Trends in Primary Myelofibrosis: An International Study. J. Clin. Oncol. 2012, 30, 2981–2987. [Google Scholar] [CrossRef]
- Duminuco, A.; Nardo, A.; Giuffrida, G.; Leotta, S.; Markovic, U.; Giallongo, C.; Tibullo, D.; Romano, A.; Di Raimondo, F.; Palumbo, G.A. Myelofibrosis and Survival Prognostic Models: A Journey between Past and Future. J. Clin. Med. 2023, 12, 2188. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Vetro, C.; Giallongo, C.; Palumbo, G.A. The Pharmacotherapeutic Management of Patients with Myelofibrosis: Looking beyond JAK Inhibitors. Expert. Opin. Pharmacother. 2023, 24, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Chifotides, H.T.; Bose, P.; Masarova, L.; Pemmaraju, N.; Verstovsek, S. SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis. Clin. Lymphoma Myeloma Leuk. 2022, 22, 210–223. [Google Scholar] [CrossRef]
- Konopleva, M.; Martinelli, G.; Daver, N.; Papayannidis, C.; Wei, A.; Higgins, B.; Ott, M.; Mascarenhas, J.; Andreeff, M. MDM2 inhibition: An important step forward in cancer therapy. Leukemia 2020, 34, 2858–2874. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Al-Ali, H.K.; Mascarenhas, J.; Perkins, A.; Vannucchi, A.M.; Mohan, S.R.; Scott, B.L.; Woszczyk, D.; Koschmieder, S.; García-Delgado, R.; et al. BOREAS: A Global, Phase III Study of the MDM2 Inhibitor Navtemadlin (KRT-232) in Relapsed/Refractory Myelofibrosis. Future Oncol. 2022, 18, 4059–4069. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, G.A.; Duminuco, A. Myelofibrosis: In Search for BETter Targeted Therapies. J. Clin. Oncol. 2023, 41, 5044–5048. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Kremyanskaya, M.; Patriarca, A.; Palandri, F.; Devos, T.; Passamonti, F.; Rampal, R.K.; Mead, A.J.; Hobbs, G.; Scandura, J.M.; et al. MANIFEST: Pelabresib in Combination with Ruxolitinib for Janus Kinase Inhibitor Treatment-Naïve Myelofibrosis. J. Clin. Oncol. 2023, 41, 4993–5004. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.N.; Garcia, J.S.; Somervaille, T.C.P.; Foran, J.M.; Verstovsek, S.; Jamieson, C.; Mesa, R.; Ritchie, E.K.; Tantravahi, S.K.; Vachhani, P.; et al. Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients with Myelofibrosis with Progression or Suboptimal Response: Phase II Safety and Efficacy. J. Clin. Oncol. 2022, 40, 1671–1680. [Google Scholar] [CrossRef]
- Pasca, S.; Chifotides, H.T.; Verstovsek, S.; Bose, P. Mutational landscape of blast phase myeloproliferative neoplasms (BP-MPN) and antecedent MPN. Inter. Rev. Cell Mol. Biol. 2022, 366, 83–124. [Google Scholar] [CrossRef]
- Naymagon, L.; Mascarenhas, J. Myelofibrosis-Related Anemia: Current and Emerging Therapeutic Strategies. Hemasphere 2017, 1, e1. [Google Scholar] [CrossRef]
- Maffioli, M.; Mora, B.; Ball, S.; Iurlo, A.; Elli, E.M.; Finazzi, M.C.; Polverelli, N.; Rumi, E.; Caramella, M.; Carraro, M.C.; et al. A Prognostic Model to Predict Survival after 6 Months of Ruxolitinib in Patients with Myelofibrosis. Blood Adv. 2022, 6, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Nardo, A.; Garibaldi, B.; Vetro, C.; Longo, A.; Giallongo, C.; Di Raimondo, F.; Palumbo, G.A. Prediction of Survival and Prognosis Migration from Gold-Standard Scores in Myelofibrosis Patients Treated with Ruxolitinib Applying the RR6 Prognostic Model in a Monocentric Real-Life Setting. J. Clin. Med. 2022, 11, 7418. [Google Scholar] [CrossRef] [PubMed]
- Rasel, M.; Mahboobi, S.K. Transfusion Iron Overload. In StatPearls[Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562146/ (accessed on 20 December 2023).
- Carreau, N.; Tremblay, D.; Savona, M.; Kremyanskaya, M.; Mascarenhas, J. Ironing out the Details of Iron Overload in Myelofibrosis: Lessons from Myelodysplastic Syndromes. Blood Rev. 2016, 30, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Caocci, G.; Simula, M.P.; Ghiani, S.; Mulas, O.; Mainas, G.; Atzeni, S.; Pettinau, M.; Usala, E.; La Nasa, G. Increased Incidence of Infection in Patients with Myelofibrosis and Transfusion-Associated Iron Overload in the Clinical Setting. Int. J. Hematol. 2020, 111, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Elli, E.M.; Iurlo, A.; Aroldi, A.; Caramella, M.; Malato, S.; Casartelli, E.; Maffioli, M.; Gardellini, A.; Carraro, M.C.; D’Adda, M.; et al. Deferasirox in the Management of Iron-Overload in Patients with Myelofibrosis: A Multicentre Study from the Rete Ematologica Lombarda (IRON-M Study). Br. J. Haematol. 2019, 186, e123–e126. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Gotlib, J.; Mesa, R.A.; Vannucchi, A.M.; Kiladjian, J.J.; Cervantes, F.; Harrison, C.N.; Paquette, R.; Sun, W.; Naim, A.; et al. Long-Term Survival in Patients Treated with Ruxolitinib for Myelofibrosis: COMFORT-I and -II Pooled Analyses. J. Hematol. Oncol. 2017, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.N.; Vannucchi, A.M.; Kiladjian, J.J.; Al-Ali, H.K.; Gisslinger, H.; Knoops, L.; Cervantes, F.; Jones, M.M.; Sun, K.; McQuitty, M.; et al. Long-Term Findings from COMFORT-II, a Phase 3 Study of Ruxolitinib vs Best Available Therapy for Myelofibrosis. Leukemia 2016, 30, 1701. [Google Scholar] [CrossRef]
- Verstovsek, S.; Kiladjian, J.J.; Vannucchi, A.M.; Mesa, R.A.; Squier, P.; Hamer-Maansson, J.E.; Harrison, C. Early Intervention in Myelofibrosis and Impact on Outcomes: A Pooled Analysis of the COMFORT-I and COMFORT-II Studies. Cancer 2023, 129, 1681–1690. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Livingston, R.A.; Hu, W.; Mascarenhas, J. Ten Years of Treatment with Ruxolitinib for Myelofibrosis: A Review of Safety. J. Hematol. Oncol. 2023, 16, 82. [Google Scholar] [CrossRef]
- Coltro, G.; Sant’Antonio, E.; Palumbo, G.A.; Mannelli, F.; De Stefano, V.; Ruggeri, M.; Elli, E.M.; Zanotti, R.; Borsani, O.; Bertozzi, I.; et al. Assessment of the Efficacy and Tolerability of Ruxolitinib for the Treatment of Myelofibrosis Patients in a Real-Life Setting: An Italian MYNERVA Project. Cancer Med. 2023, 12, 8166–8171. [Google Scholar] [CrossRef]
- Verstovsek, S.; Parasuraman, S.; Yu, J.; Shah, A.; Kumar, S.; Xi, A.; Harrison, C. Real-World Survival of US Patients with Intermediate- to High-Risk Myelofibrosis: Impact of Ruxolitinib Approval. Ann. Hematol. 2022, 101, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Ghirardi, A.; Carobbio, A.; Masciulli, A.; Maccari, C.; Mora, B.; Rumi, E.; Triguero, A.; Finazzi, M.C.; Pettersson, H.; et al. Impact of Ruxolitinib on Survival of Patients with Myelofibrosis in the Real World: Update of the ERNEST Study. Blood Adv. 2022, 6, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Lussana, F.; Cattaneo, M.; Rambaldi, A.; Squizzato, A. Ruxolitinib-Associated Infections: A Systematic Review and Meta-Analysis. Am. J. Hematol. 2018, 93, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Scarso, S.; Cupri, A.; Parrinello, N.L.; Villari, L.; Scuderi, G.; Giunta, G.; Leotta, S.; Milone, G.A.; Giuffrida, G.; et al. Leishmania Infection during Ruxolitinib Treatment: The Cytokines-Based Immune Response in the Setting of Immunocompromised Patients. J. Clin. Med. 2023, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Elli, E.M.; Baratè, C.; Mendicino, F.; Palandri, F.; Palumbo, G.A. Mechanisms Underlying the Anti-Inflammatory and Immunosuppressive Activity of Ruxolitinib. Front. Oncol. 2019, 9, 1186. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, G.A.; Cambria, D.; La Spina, E.; Duminuco, A.; Laneri, A.; Longo, A.; Vetro, C.; Giallongo, S.; Romano, A.; Di Raimondo, F.; et al. Ruxolitinib treatment in myelofibrosis and polycythemia vera causes suboptimal humoral immune response following standard and booster vaccination with BNT162b2 mRNA COVID-19 vaccine. Front. Oncol. 2023, 13, 1117815. [Google Scholar] [CrossRef]
- Duminuco, A.; Nardo, A.; Orofino, A.; Giunta, G.; Conticello, C.; Del Fabro, V.; Chiarenza, A.; Parisi, M.S.; Figuera, A.; Leotta, S.; et al. Efficacy and safety of tixagevimab-cilgavimab versus SARS-CoV-2 breakthrough infection in the hematological conditions. Cancer 2023. [Google Scholar] [CrossRef] [PubMed]
- Pemmaraju, N.; Bose, P.; Rampal, R.; Gerds, A.T.; Fleischman, A.; Verstovsek, S. Ten Years after Ruxolitinib Approval for Myelofibrosis: A Review of Clinical Efficacy. Leuk. Lymphoma 2023, 64, 1063–1081. [Google Scholar] [CrossRef]
- Cervantes, F.; Ross, D.M.; Radinoff, A.; Palandri, F.; Myasnikov, A.; Vannucchi, A.M.; Zachee, P.; Gisslinger, H.; Komatsu, N.; Foltz, L.; et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: The REALISE phase 2 study. Leukemia 2021, 35, 3455–3465. [Google Scholar] [CrossRef]
- Gupta, V.; Guglielmelli, P.; Hamer-Maansson, J.E.; Braunstein, E.M.; Al-Ali, H.K. Effect of new or worsening anemia on clinical outcomes in 2233 patients with myelofibrosis treated with ruxolitinib in the expanded-access JUMP study. Blood 2023, 142 (Suppl. 1), 5174. [Google Scholar] [CrossRef]
- Duminuco, A.; Torre, E.; Palumbo, G.A.; Harrison, C. A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases. Curr. Hematol. Malig. Rep. 2023, 18, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Harrison, C.; Schuler, T.A.; Liassou, D.; Garretson, M.; Miller, T.A.; Mahadevan, S.; McBride, A.; Tang, D.; DeGutis, I.S.; et al. Real-world use of fedratinib for myelofibrosis following prior ruxolitinib failure: Patient characteristics, treatment patterns, and clinical outcomes. Clin. Lymphoma Myeloma Leuk. 2023. [Google Scholar] [CrossRef] [PubMed]
- Chifotides, H.T.; Verstovsek, S.; Bose, P. Association of Myelofibrosis Phenotypes with Clinical Manifestations, Molecular Profiles, and Treatments. Cancers 2023, 15, 3331. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Verstovsek, S. JAK Inhibition for the Treatment of Myelofibrosis: Limitations and Future Perspectives. Hemasphere 2020, 4, e424. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.N.; Schaap, N.; Vannucchi, A.M.; Kiladjian, J.J.; Passamonti, F.; Zweegman, S.; Talpaz, M.; Verstovsek, S.; Rose, S.; Zhang, J.; et al. Safety and Efficacy of Fedratinib, a Selective Oral Inhibitor of Janus Kinase-2 (JAK2), in Patients with Myelofibrosis and Low Pretreatment Platelet Counts. Br. J. Haematol. 2022, 198, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Bose, P.; Mesa, R.; Gerds, A.; Oh, S.; Kiladijan, J.J.; Garcia-Gutierrez, V.; Vannucchi, A.; Scheid, C.; Sobas, M.; et al. MPN-141 Retrospective Comparison of Patient Outcomes on Pacritinib versus Ruxolitinib in Patients with Myelofibrosis and Thrombocytopenia. Clin. Lymphoma Myeloma Leuk. 2022, 22, S326–S327. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Hoffman, R.; Talpaz, M.; Gerds, A.T.; Stein, B.; Gupta, V.; Szoke, A.; Drummond, M.; Pristupa, A.; Granston, T.; et al. Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients with Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Asshoff, M.; Petzer, V.; Warr, M.R.; Haschka, D.; Tymoszuk, P.; Demetz, E.; Seifert, M.; Posch, W.; Nairz, M.; Maciejewski, P.; et al. Momelotinib Inhibits ACVR1/ALK2, Decreases Hepcidin Production, and Ameliorates Anemia of Chronic Disease in Rodents. Blood 2017, 129, 1823–1830. [Google Scholar] [CrossRef]
- Oh, S.T.; Talpaz, M.; Gerds, A.T.; Gupta, V.; Verstovsek, S.; Mesa, R.; Miller, C.B.; Rivera, C.E.; Fleischman, A.G.; Goel, S.; et al. ACVR1/JAK1/JAK2 Inhibitor Momelotinib Reverses Transfusion Dependency and Suppresses Hepcidin in Myelofibrosis Phase 2 Trial. Blood Adv. 2020, 4, 4282–4291. [Google Scholar] [CrossRef]
- Mesa, R.A.; Kiladjian, J.J.; Catalano, J.V.; Devos, T.; Egyed, M.; Hellmann, A.; McLornan, D.; Shimoda, K.; Winton, E.F.; Deng, W.; et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naïve Patients with Myelofibrosis. J. Clin. Oncol. 2017, 35, 3844–3850. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Platzbecker, U.; Mayer, J.; Illés, Á.; Prejzner, W.; Woźny, T.; Tzvetkov, N.; Vannucchi, A.; Kirgner, I.; Nagy, Z.; et al. Improved transfusion independence rates for momelotinib vs. ruxolitinib in anemic JAKi naïve myelofibrosis patients independent of baseline platelet or transfusion status. Hemasphere 2021, 5 (Suppl. S2), 515. [Google Scholar]
- Harrison, C.N.; Vannucchi, A.M.; Platzbecker, U.; Cervantes, F.; Gupta, V.; Lavie, D.; Passamonti, F.; Winton, E.F.; Dong, H.; Kawashima, J.; et al. Momelotinib versus Best Available Therapy in Patients with Myelofibrosis Previously Treated with Ruxolitinib (SIMPLIFY 2): A Randomised, Open-Label, Phase 3 Trial. Lancet Haematol. 2018, 5, e73–e81. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Gerds, A.T.; Vannucchi, A.M.; Vannucchi, A.M.; Al-Ali, H.K.; Lavie, D.; Kuykendall, A.T.; Grosicki, S.; Iurlo, A.; Goh, Y.T.; et al. Momelotinib versus Danazol in Symptomatic Patients with Anaemia and Myelofibrosis (MOMENTUM): Results from an International, Double-Blind, Randomised, Controlled, Phase 3 Study. Lancet 2023, 401, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Gerds, A.T.; Verstovsek, S.; Vannucchi, A.M.; Al-Ali, H.K.; Lavie, D.; Kuykendall, A.T.; Grosicki, S.; Iurlo, A.; Goh, Y.T.; Lazaroiu, M.C.; et al. Momelotinib versus Danazol in Symptomatic Patients with Anaemia and Myelofibrosis Previously Treated with a JAK Inhibitor (MOMENTUM): An Updated Analysis of an International, Double-Blind, Randomised Phase 3 Study. Lancet Haematol. 2023, 10, e735–e746. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.A.; Harrison, C.; Palmer, J.M.; Gupta, V.; McLornan, D.P.; McMullin, M.F.; Kiladjian, J.J.; Foltz, L.; Platzbecker, U.; Fox, M.L.; et al. Patient-Reported Outcomes and Quality of Life in Anemic and Symptomatic Patients with Myelofibrosis: Results from the MOMENTUM Study. Hemasphere 2023, 7, E966. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Harrison, C.N.; Gorsh, B.; Patel, B.; Wang, Z.; Purser, M.; Ellis, C.; Strouse, B.; Patnaik, D.; Kawashima, J.; et al. Red blood cell transfusion independence status is an independent predictor of survival: A post-hoc time-dependent analysis of the phase 3 SIMPLIFY-1, SIMPLIFY-2 and MOMENTUM trials. Blood 2023, 142 (Suppl. 1), 3188. [Google Scholar] [CrossRef]
- Mesa, R.; Perkins, A.C.; Gogh, Y.; Fox, M.L.; McLornan, D.P.; Palmer, J.; Foltz, L.; Vannucchi, A.M.; Koschmieder, S.; Passamonti, F.; et al. Longitudinal Assessment of Transfusion Intensity in Patients with JAK Inhibitor-Naive or -Experienced Myelofibrosis Treated with Momelotinib in the Phase 3 SIMPLIFY-1 and MOMENTUM Trials. Blood 2023, 142 (Suppl. 1), 3182. [Google Scholar] [CrossRef]
- Liu, J.; Lv, B.; Yin, H.; Zhu, X.; Wei, H.; Ding, Y. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Ascending Dose and Food Effect Study to Evaluate the Tolerance, Pharmacokinetics of Jaktinib, a New Selective Janus Kinase Inhibitor in Healthy Chinese Volunteers. Front. Pharmacol. 2020, 11, 604314. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Jiang, Z.; Wu, D.; Zhuang, J.; Li, W.; Jiang, Q.; Wang, X.; Huang, J.; Zhu, H.; et al. Safety and efficacy of jaktinib in the treatment of Janus kinase inhibitor-naïve patients with myelofibrosis: Results of a phase II trial. Am. J. Hematol. 2022, 97, 1510–1519. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Duan, M.; Gao, S.; He, G.; Jing, H.; Li, J.; Ma, L.; Zhu, H.; Chang, C.; et al. Safety and Efficacy of Jaktinib (a Novel JAK Inhibitor) in Patients with Myelofibrosis Who Are Intolerant to Ruxolitinib: A Single-Arm, Open-Label, Phase 2, Multicenter Study. Am. J. Hematol. 2023, 98, 1588–1597. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Zhuang, J.; He, A.; LI, Y.; Yang, L.; Du, X.; Gao, S.; He, G.; Hong, M.; et al. S212: A randomized double-blind phase 3 study of jaktinib versus hydroxyurea in patients with intermediate-2 or high-risk myelofibrosis. Hemasphere 2023, 7, e7077553. [Google Scholar] [CrossRef]
- Stubbs, M.C.; Pusey, M.; Wen, X.; Drake, K.; Zolotarjova, N.; Smith, A.; Covington, M.; Zhang, G.; Macarrón, R.; Kim, S. ALK2 and JAK2 inhibition for improved treatment of anemia in myelofibrosis patients: Preclinical profile of an ALK2 inhibitor Zilurgisertib in combination with Ruxolitinib. Blood 2023, 142 (Suppl. 1), 1789. [Google Scholar] [CrossRef]
- Bose, P.; Mohan, S.; Oh, S.; Gotlib, J.R.; Ritchie, E.K.; Shimomura, T.; Ali, H.; Boyer, F.; Guglielmelli, P.; Hunter, A.; et al. Phase 1/2 Study of the Activin Receptor-like Kinase (ALK)-2 Inhibitor Zilurgisertib (INCB000928, LIMBER-104) as Monotherapy or with Ruxolitinib (RUX) in Patients (Pts) with Anemia Due to Myelofibrosis (MF). J. Clin. Oncol. 2023, 41, 7017. [Google Scholar] [CrossRef]
- Mohan, S.; Oh, S.; Kiladjian, J.-J.; Takeuchi, M.; Gotlib, J.; Ritchie, E.K.; Shimomura, T.; Guglielmelli, P.; Hunter, A.M.; Palandri, F.; et al. Phase 1/2 Study of the Activin Receptor-like Kinase-2 Inhibitor Zilurgisertib (INCB000928, LIMBER-104) as Monotherapy or with Ruxolitinib in Patients with Anemia due to Myelofibrosis. Blood 2023, 142 (Suppl. 1), 624. [Google Scholar] [CrossRef]
- Bose, P.; Masarova, L.; Pemmaraju, N.; Bledsoe, S.D.; Daver, N.; Jabbour, E.J.; Kadia, T.M.; Estrov, Z.E.; Kornblau, S.M.; Andreeff, M.; et al. Final Results of a Phase 2 Study of Sotatercept (ACE-011) for Anemia of MPN-Associated Myelofibrosis. Blood 2021, 138, 144. [Google Scholar] [CrossRef]
- Fenaux, P.; Kiladjian, J.J.; Platzbecker, U. Luspatercept for the Treatment of Anemia in Myelodysplastic Syndromes and Primary Myelofibrosis. Blood 2019, 133, 790–794. [Google Scholar] [CrossRef]
- Hatzimichael, E.; Timotheatou, D.; Koumpis, E.; Benetatos, L.; Makis, A. Luspatercept: A New Tool for the Treatment of Anemia Related to β-Thalassemia, Myelodysplastic Syndromes and Primary Myelofibrosis. Diseases 2022, 10, 85. [Google Scholar] [CrossRef]
- Yun, N.K.; Alrifai, T.; Miller, I.J.; Shammo, J.M. Transfusion Independence Achieved with Combination Fedratinib and Luspatercept in an Elderly Man with Heavily Pretreated Intermediate-2 Risk Primary Myelofibrosis. Case Rep. Oncol. 2022, 15, 126–132. [Google Scholar] [CrossRef]
- Gerds, A.T.; Harrison, C.; Kiladjian, J.-J.; Mesa, R.A.; Vannucchi, A.M.; Komrokji, R.S.; Bose, P.; Kremyanskaya, M.; Mead, A.J.; Gotlib, J.R.; et al. Safety and Efficacy of Luspatercept for the Treatment of Anemia in Patients with Myelofibrosis: Results from the ACE-536-MF-001 Study. J. Clin. Oncol. 2023, 41, 7016. [Google Scholar] [CrossRef]
- Novikov, N.; Yang, H.; Nguyen, S.; Buch, A.; Tuller, S.; Andruk, M.; Chan, K.; Wu, M.; Rodriguez, R.; Panwar, R.; et al. P1559: DISC-0974, a first-in-human anti-hemojuvelin monoclonal antibody, reduces serum hepcidin levels and mobilizes iron in healthy participants. Hemasphere 2022, 6, 1440–1441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duminuco, A.; Chifotides, H.T.; Giallongo, S.; Giallongo, C.; Tibullo, D.; Palumbo, G.A. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers 2024, 16, 154. https://doi.org/10.3390/cancers16010154
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers. 2024; 16(1):154. https://doi.org/10.3390/cancers16010154
Chicago/Turabian StyleDuminuco, Andrea, Helen T. Chifotides, Sebastiano Giallongo, Cesarina Giallongo, Daniele Tibullo, and Giuseppe A. Palumbo. 2024. "ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis" Cancers 16, no. 1: 154. https://doi.org/10.3390/cancers16010154
APA StyleDuminuco, A., Chifotides, H. T., Giallongo, S., Giallongo, C., Tibullo, D., & Palumbo, G. A. (2024). ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers, 16(1), 154. https://doi.org/10.3390/cancers16010154