Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Antibodies, Reagents, siRNAs, and Plasmids
2.3. Western Blot
2.4. CRISPR/Cas9-Mediated Stable Knock-Out of CASP8 and Caspase-8 Downregulation by siRNA
2.5. Immunoprecipitation
2.6. Subcellular Fractionation
2.7. Analysis of Apoptosis
2.8. Phenotypic Analysis
2.9. Cell Proliferation Assay
2.10. Statistical Analysis
3. Results
3.1. Low Expression of Caspase-8 Correlates with Poor Prognosis
3.2. Alteration of Cellular Behaviors Due to the Knock-Out of Caspase-8
3.3. Knock-Out of Caspase-8 Expression Enhances the Phosphorylation of CDK9 at Thr187 and the Expression of BRD4 in Ovarian Cancer Cells
3.4. Loss of Caspase-8 Expression Imparts Resistance towards Chemotherapeutics and Small-Molecule CDK9 and BRD4 Inhibitors
3.5. Combinations of Chemotherapeutics with BRD4 Inhibitors’ Synergistically Sensitized HGSOC Cells Lacking Caspase-8 Expression
3.6. Simultaneous Inhibition of CDK9 and BRD4 Induces Increased Cell Death in Caspase-8 KO Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurnit, K.C.; Fleming, G.F.; Lengyel, E. Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment. Obstet. Gynecol. 2021, 137, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Trabert, B.; DeSantis, C.A.-O.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Sambasivan, S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun. 2022, 33, 100629. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2018, 81, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, Y.; Kim, S.I.; Kim, H.S.; Kim, S.J.; Song, Y.S. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis. Oncol. 2018, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Trope, C.G.; Amant, F.; Kristensen, G.B.; Ehlen, T.; Johnson, N.; Verheijen, R.H.; van der Burg, M.E.; Lacave, A.J.; Panici, P.B.; et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med. 2010, 363, 943–953. [Google Scholar] [CrossRef]
- Lukanović, D.; Kobal, B.; Černe, K. Ovarian Cancer: Treatment and Resistance to Pharmacotherapy. Reprod. Med. 2022, 3, 127–140. [Google Scholar] [CrossRef]
- McGuire, W.P., III; Markman, M. Primary ovarian cancer chemotherapy: Current standards of care. Br. J. Cancer 2003, 89 (Suppl. 3), S3–S8. [Google Scholar] [CrossRef]
- Jonkers, I.; Lis, J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015, 16, 167–177. [Google Scholar] [CrossRef]
- Altendorfer, E.; Mochalova, Y.; Mayer, A. BRD4: A general regulator of transcription elongation. Transcription 2022, 13, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Kotekar, A.; Singh, A.K.; Devaiah, B.N. BRD4 and MYC: Power couple in transcription and disease. FEBS J. 2023, 290, 4820–4842. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Becker, S.; Strebhardt, K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers 2021, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Page, V.; Fisher, R.P.; Tanny, J.C. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr. Genet. 2021, 67, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.X.; Smith, E.R.; Shilatifard, A. Born to run: Control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2018, 19, 464–478. [Google Scholar] [CrossRef]
- Fleischmann, M.; Mandal, R.; Kostova, I.; Raab, M.; Sanhaji, M.; Hehlgans, S.; Diefenhardt, M.; Rodel, C.; Fokas, E.; Strebhardt, K.; et al. Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers 2022, 14, 5500. [Google Scholar] [CrossRef]
- Mandal, R.; Raab, M.; Rodel, F.; Kramer, A.; Kostova, I.; Peña-Llopis, S.; Haupl, B.; Oellerich, T.; Gasimli, K.; Sanhaji, M.; et al. The non-apoptotic function of Caspase-8 in negatively regulating the CDK9-mediated Ser2 phosphorylation of RNA polymerase II in cervical cancer. Cell Mol. Life Sci. 2022, 79, 597. [Google Scholar] [CrossRef]
- Peña-Llopis, S.; Wan, Y.; Martinez, E.D. Unique epigenetic gene profiles define human breast cancers with poor prognosis. Oncotarget 2016, 7, 85819–85831. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef]
- Ovejero-Sanchez, M.; Gonzalez-Sarmiento, R.; Herrero, A.B. Synergistic effect of Chloroquine and Panobinostat in ovarian cancer through induction of DNA damage and inhibition of DNA repair. Neoplasia 2021, 23, 515–528. [Google Scholar] [CrossRef]
- Mitra, A.K.; Davis, D.A.; Tomar, S.; Roy, L.; Gurler, H.; Xie, J.; Lantvit, D.D.; Cardenas, H.; Fang, F.; Liu, Y.; et al. In vivo tumor growth of high-grade serous ovarian cancer cell lines. Gynecol. Oncol. 2015, 138, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Itzen, F.; Greifenberg, A.K.; Bosken, C.A.; Geyer, M. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res. 2014, 42, 7577–7590. [Google Scholar] [CrossRef] [PubMed]
- Toure, M.A.; Koehler, A.N. Addressing Transcriptional Dysregulation in Cancer through CDK9 Inhibition. Biochemistry 2023, 62, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Tontsch-Grunt, U.; Traexler, P.-E.; Baum, A.; Musa, H.; Marzin, K.; Wang, S.; Trapani, F.; Engelhardt, H.; Solca, F. Therapeutic impact of BET inhibitor BI 894999 treatment: Backtranslation from the clinic. Br. J. Cancer 2022, 127, 577–586. [Google Scholar] [CrossRef]
- Gerlach, D.; Tontsch-Grunt, U.; Baum, A.; Popow, J.; Scharn, D.; Hofmann, M.H.; Engelhardt, H.; Kaya, O.; Beck, J.; Schweifer, N.; et al. The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 2018, 37, 2687–2701. [Google Scholar] [CrossRef]
- Aftimos, P.G.; Bechter, O.; Awada, A.; Jungels, C.; Dumez, H.; Huyvaert, N.; Costermans, J.; Lee, C.; Meeus, M.-A.; Burkard, U.; et al. Phase I first-in-man trial of a novel bromodomain and extra-terminal domain (BET) inhibitor (BI 894999) in patients (Pts) with advanced solid tumors. J. Clin. Oncol. 2017, 35, 2504. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, T.; Lin, X.; Huang, X.; Bui, M.H.; Plotnik, J.P.; Bellin, R.J.; Faivre, E.J.; Kuruvilla, V.M.; Lam, L.T.; et al. Selective Inhibition of the Second Bromodomain of BET Family Proteins Results in Robust Antitumor Activity in Preclinical Models of Acute Myeloid Leukemia. Mol. Cancer Ther. 2021, 20, 1809–1819. [Google Scholar] [CrossRef]
- Cai, T.; Kuruvilla, V.M.; Lin, X.; Uziel, T.; Lu, X.; Zhang, L.; Huang, X.; Zhang, Q.; Cavazos, A.; Han, L.; et al. Selective Targeting BET Family Bdii Bromodomain with Abbv-744 and BCL-2 with Venetoclax (ABT-199) Is Synergistic in Primary Acute Myeloid Leukemia Models. Blood 2019, 134, 1369. [Google Scholar] [CrossRef]
- Lin, X.; Huang, X.; Bellin, R.; Faivre, E.; Hessler, P.; Lam, L.; Bui, M.H.; Wilcox, D.; Uziel, T.; Ferguson, D.C.; et al. Abstract 800: ABBV-744, a first-in-class and highly selective inhibitor of the second bromodomain of BET family proteins, displays robust activities in preclinical models of acute myelogenous leukemia. Cancer Res. 2018, 78, 800. [Google Scholar] [CrossRef]
- Lin, X.; Huang, X.; Uziel, T.; Hessler, P.; Albert, D.H.; Roberts-Rapp, L.A.; McDaniel, K.F.; Kati, W.M.; Shen, Y. HEXIM1 as a Robust Pharmacodynamic Marker for Monitoring Target Engagement of BET Family Bromodomain Inhibitors in Tumors and Surrogate Tissues. Mol. Cancer Ther. 2017, 16, 388–396. [Google Scholar] [CrossRef]
- Scagnoli, F.; Palma, A.; Favia, A.; Scuoppo, C.; Illi, B.; Nasi, S. A new insight into MYC action: Control of RNA polymerase II methylation and transcription termination. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.R.; Muggia, F.M. Carboplatin/Paclitaxel Induction in Ovarian Cancer: The Finer Points. Oncol. (08909091) 2018, 32, 418–424. [Google Scholar]
- Pokhriyal, R.; Hariprasad, R.; Kumar, L.; Hariprasad, G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. Biomark. Cancer 2019, 11, 1179299X19860815. [Google Scholar] [CrossRef] [PubMed]
- Markman, M.; Bundy, B.N.; Alberts, D.S.; Fowler, J.M.; Clark-Pearson, D.L.; Carson, L.F.; Wadler, S.; Sickel, J. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: An intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J. Clin. Oncol. 2001, 19, 1001–1007. [Google Scholar] [PubMed]
- Neijt, J.P.; Engelholm, S.A.; Tuxen, M.K.; Sørensen, P.G.; Hansen, M.; Sessa, C.; de Swart, C.A.M.; Hirsch, F.R.; Lund, B.; van Houwelingen, H.C. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol. 2000, 18, 3084–3092. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Kaye, S.B. Ovarian cancer: Strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 2003, 3, 502–516. [Google Scholar] [CrossRef]
- Davis, A.; Tinker, A.V.; Friedlander, M. “Platinum resistant” ovarian cancer: What is it, who to treat and how to measure benefit? Gynecol. Oncol. 2014, 133, 624–631. [Google Scholar] [CrossRef]
- Chen, F.-Q.; Zhang, J.-M.; Fang, X.-F.; Yu, H.; Liu, Y.-L.; Li, H.; Wang, Y.-T.; Chen, M.-W. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Acta Pharmacol. Sin. 2017, 38, 859–873. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, K.; Jung, K.J.; Cho, W.K.; Klase, Z.; Kashanchi, F.; Pise-Masison, C.A.; Brady, J.N. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. J. Virol. 2009, 83, 1036–1044. [Google Scholar] [CrossRef]
- Drumond-Bock, A.L.; Wang, L.; Wang, L.; Cybula, M.; Rostworowska, M.; Bieniasz, M. Abstract LB542: Overexpression of the short isoform of Brd4 in ovarian carcinoma leads to highly aggressive tumor phenotype. Cancer Res. 2022, 82, LB542. [Google Scholar] [CrossRef]
- Swisher, E.M.; Duska, L.R.; Hamilton, E.P.; Oza, A.M.; Fleming, G.; Yeku, O.O.; Spira, A.I.; Richardson, D.L.; Guo, R.; Walling, J.; et al. Abstract CT160: Phase 1b/2a clinical trial of the oral BET inhibitor PLX2853 as monotherapy for ARID1A mutated gynecologic cancers and in combination with carboplatin for platinum resistant ovarian cancer. Cancer Res. 2023, 83, CT160. [Google Scholar] [CrossRef]
- Rugang, Z. Overcoming Platinum Resistance in Ovarian Cancer through BET Inhibition; The Wistar Institute of Anatomy & Biology: Philadelphia, PA, USA, 2019. [Google Scholar]
- Zhou, X.; Sun, T.; Meng, Y.; Luo, J.; Chen, J.; Xia, B.; Zhang, Z.; Cheng, Z.; Wang, X. BET inhibitors combined with chemotherapy synergistically inhibit the growth of NSCLC cells. Oncol. Rep. 2021, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, R.; Civenni, G.; Kokanovic, A.; Shinde, D.; Cantergiani, J.; Marchetti, M.; Zoppi, G.; Ruggeri, B.; Liu, P.C.C.; Carbone, G.M.; et al. Efficacy of Novel Bromodomain and Extraterminal Inhibitors in Combination with Chemotherapy for Castration-Resistant Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Liontos, M.; Koutsoukos, K.; Dimopoulos, M.-A.; Zagouri, F. The emerging role of BET inhibitors in breast cancer. Breast 2020, 53, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Muzio, M.; Stockwell, B.R.; Stennicke, H.R.; Salvesen, G.S.; Dixit, V.M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 1998, 273, 2926–2930. [Google Scholar] [CrossRef] [PubMed]
- Stupack, D.G. Caspase-8 as a therapeutic target in cancer. Cancer Lett. 2013, 332, 133–140. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, S.; Pan, E.; Ma, Y.; Wu, X.; Yu, Z.; Jiang, K. An Effective Hormonal Therapy for a Patient with Estrogen Receptor 1 (ESR1)-Amplified Metastatic Ovarian Cancer: A Case Report. OncoTargets Ther. 2022, 15, 643–649. [Google Scholar] [CrossRef]
- Mor, G.; Sapi, E.; Abrahams, V.M.; Rutherford, T.; Song, J.; Hao, X.Y.; Muzaffar, S.; Kohen, F. Interaction of the estrogen receptors with the Fas ligand promoter in human monocytes. J. Immunol. 2003, 170, 114–122. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Ai, Y.; Gu, X.; Li, L.; Che, D.; Jiang, Z.; Li, L.; Chen, S.; Huang, H.; et al. Estrogen-Related Hormones Induce Apoptosis by Stabilizing Schlafen-12 Protein Turnover. Mol. Cell 2019, 75, 1103–1116.e1109. [Google Scholar] [CrossRef]
- Moreno, N.; Holsten, T.; Mertins, J.; Zhogbi, A.; Johann, P.; Kool, M.; Meisterernst, M.; Kerl, K. Combined BRD4 and CDK9 inhibition as a new therapeutic approach in malignant rhabdoid tumors. Oncotarget 2017, 8, 84986–84995. [Google Scholar] [CrossRef]
- Emran, A.A.; Tseng, H.-Y.; Gunatilake, D.; Cook, S.J.; Ahmed, F.; Wang, S.; Hersey, P.; Gallagher, S.J.; Tiffen, J.C. A Combination of Epigenetic BET and CDK9 Inhibitors for Treatment of Human Melanoma. J. Investig. Dermatol. 2021, 141, 2238–2249.e12. [Google Scholar] [CrossRef] [PubMed]
- McCalmont, H.; Li, K.L.; Jones, L.; Toubia, J.; Bray, S.C.; Casolari, D.A.; Mayoh, C.; Samaraweera, S.E.; Lewis, I.D.; Prinjha, R.K.; et al. Efficacy of combined CDK9/BET inhibition in preclinical models of MLL-rearranged acute leukemia. Blood Adv. 2020, 4, 296–300. [Google Scholar] [CrossRef] [PubMed]
CASP8 Expression | |||||
---|---|---|---|---|---|
Low | High | Total | p | ||
Age > 59 year | N | 64 | 71 | 135 | 0.37 |
Y | 58 | 50 | 108 | ||
Grade | 1 | 1 | 0 | 1 | 0.66 |
2 | 12 | 10 | 22 | ||
3 | 105 | 108 | 213 | ||
4 | 0 | 1 | 1 | ||
Stage | 1 | 1 | 5 | 6 | 0.007 |
2 | 5 | 17 | 22 | ||
3 | 96 | 87 | 183 | ||
4 | 20 | 12 | 32 | ||
High Stage | N | 6 | 22 | 28 | 0.0012 |
Y | 116 | 99 | 215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasimli, K.; Raab, M.; Mandal, R.; Krämer, A.; Peña-Llopis, S.; Tahmasbi Rad, M.; Becker, S.; Strebhardt, K.; Sanhaji, M. Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors. Cancers 2024, 16, 107. https://doi.org/10.3390/cancers16010107
Gasimli K, Raab M, Mandal R, Krämer A, Peña-Llopis S, Tahmasbi Rad M, Becker S, Strebhardt K, Sanhaji M. Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors. Cancers. 2024; 16(1):107. https://doi.org/10.3390/cancers16010107
Chicago/Turabian StyleGasimli, Khayal, Monika Raab, Ranadip Mandal, Andrea Krämer, Samuel Peña-Llopis, Morva Tahmasbi Rad, Sven Becker, Klaus Strebhardt, and Mourad Sanhaji. 2024. "Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors" Cancers 16, no. 1: 107. https://doi.org/10.3390/cancers16010107
APA StyleGasimli, K., Raab, M., Mandal, R., Krämer, A., Peña-Llopis, S., Tahmasbi Rad, M., Becker, S., Strebhardt, K., & Sanhaji, M. (2024). Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors. Cancers, 16(1), 107. https://doi.org/10.3390/cancers16010107