Impact of Sex-Specific Preoperative Fat Mass Assessment on Long-Term Prognosis after Gastrectomy for Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Postoperative Treatment
2.3. Body Composition
2.4. Outcomes and Analyses
3. Results
3.1. Patient Characteristics
3.2. OS by VFI
3.3. OS by SFI
3.4. OS Stratified by VFI and SFI
3.5. Prognostic Factors for OS in Men
3.6. Prognostic Factors for OS in Women
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamarajah, S.K.; Bundred, J.; Tan, B.H.L. Body composition assessment and sarcopenia in patients with gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2019, 22, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, C.; de Heer, P.; Bjerre, E.D.; Suetta, C.; Hojman, P.; Pedersen, B.K.; Svendsen, L.B.; Christensen, J.F. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology: A meta-analysis. Ann. Surg. 2018, 268, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hao, Q.; Zhou, J.; Dong, B. The impact of frailty and sarcopenia on postoperative outcomes in older patients undergoing gastrectomy surgery: A systematic review and meta-analysis. BMC Geriatr. 2017, 17, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhou, X.; Ma, B.; Xing, Y.; Jiang, X.; Wang, Z. Predictive Value of Preoperative Sarcopenia in Patients with Gastric Cancer: A Meta-analysis and Systematic Review. J. Gastrointest. Surg. 2018, 22, 1890–1902. [Google Scholar] [CrossRef]
- Yang, S.-J.; Li, H.-R.; Zhang, W.-H.; Liu, K.; Zhang, D.-Y.; Sun, L.-F.; Chen, X.-L.; Zhao, L.-Y.; Chen, X.-Z.; Yang, K.; et al. Visceral Fat Area (VFA) Superior to BMI for Predicting Postoperative Complications After Radical Gastrectomy: A Prospective Cohort Study. J. Gastrointest. Surg. 2020, 24, 1298–1306. [Google Scholar] [CrossRef]
- Sugisawa, N.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Terashima, M. Intra-abdominal infectious complications following gastrectomy in patients with excessive visceral fat. Gastric Cancer 2012, 15, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Inokuchi, M.; Otsuki, S.; Fujimori, Y.; Kojima, K. Risk Factor of Pancreatic Fistula after Radical Gastrectomy from the Viewpoint of Fatty Pancreas. Dig. Surg. 2017, 34, 455–461. [Google Scholar] [CrossRef]
- Tokunaga, M.; Hiki, N.; Fukunaga, T.; Ogura, T.; Miyata, S.; Yamaguchi, T. Effect of individual fat areas on early surgical outcomes after open gastrectomy for gastric cancer. Br. J. Surg. 2009, 96, 496–500. [Google Scholar] [CrossRef]
- Kunisaki, C.; Makino, H.; Takagawa, R.; Sato, K.; Kawamata, M.; Kanazawa, A.; Yamamoto, N.; Nagano, Y.; Fujii, S.; Ono, H.A.; et al. Predictive factors for surgical complications of laparoscopy-assisted distal gastrectomy for gastric cancer. Surg. Endosc. 2009, 23, 2085–2093. [Google Scholar] [CrossRef]
- Miyaki, A.; Imamura, K.; Kobayashi, R.; Takami, M.; Matsumoto, J. Impact of visceral fat on laparoscopy-assisted distal gastrectomy. Surgeon 2013, 11, 76–81. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Shimada, M.; Kurita, N.; Iwata, T.; Nishioka, M.; Morimoto, S.; Miyatani, T.; Komatsu, M.; Mikami, C.; Kashihara, H. Visceral fat area is superior to body mass index as a predictive factor for risk with laparoscopy-assisted gastrectomy for gastric cancer. Surg. Endosc. 2011, 25, 3825–3830. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Ishii, K.; Seki, H.; Yasui, N.; Sakata, M.; Shimada, A.; Matsumoto, H. Excessive visceral fat area as a risk factor for early postoperative complications of total gastrectomy for gastric cancer: A retrospective cohort study. BMC Surg. 2016, 16, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoun, S.; Bayar, A.; Ileana, E.; Laplanche, A.; Fizazi, K.; di Palma, M.; Escudier, B.; Albiges, L.; Massard, C.; Loriot, Y. High subcutaneous adipose tissue predicts the prognosis in metastatic castration-resistant prostate cancer patients in post chemotherapy setting. Eur. J. Cancer 2015, 51, 2570–2577. [Google Scholar] [CrossRef]
- Iwase, T.; Sangai, T.; Fujimoto, H.; Sawabe, Y.; Matsushita, K.; Nagashima, K.; Sato, Y.; Nakagawa, A.; Masuda, T.; Nagashima, T.; et al. Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer. Breast Cancer Res. Treat. 2019, 179, 435–443. [Google Scholar] [CrossRef]
- Matsui, R.; Inaki, N.; Tsuji, T. Impact of visceral adipose tissue on long-term outcomes after gastrectomy for advanced gastric cancer. Nutrition 2022, 97, 111619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.P.; Wang, X.L.; Tian, H.; Gao, T.T.; Tang, L.M.; Tian, F.; Zheng, H.J.; Zhang, L.; Gao, X.J.; et al. Computed Tomography–Quantified Body Composition Predicts Short-Term Outcomes After Gastrectomy in Gastric Cancer. Curr. Oncol. 2018, 25, 411–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vagnildhaug, O.M.; Blum, D.; Wilcock, A.; Fayers, P.; Strasser, F.; Baracos, V.E.; Hjermstad, M.J.; Kaasa, S.; Laird, B.; Solheim, T.S.; et al. The applicability of a weight loss grading system in cancer cachexia: A longitudinal analysis. J. Cachexia Sarcopenia Muscle 2017, 8, 789–797. [Google Scholar] [CrossRef]
- Martin, L.; Senesse, P.; Gioulbasanis, I.; Antoun, S.; Bozzetti, F.; Deans, C.; Strasser, F.; Thoresen, L.; Jagoe, R.T.; Chasen, M.; et al. Diagnostic Criteria for the Classification of Cancer-Associated Weight Loss. J. Clin. Oncol. 2015, 33, 90–99. [Google Scholar] [CrossRef]
- Dewys, W.D.; Begg, C.; Lavin, P.T.; Band, P.R.; Bennett, J.M.; Bertino, J.R.; Cohen, M.H.; Douglass, H.O., Jr.; Engstrom, P.F.; Ezdinli, E.Z.; et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 1980, 69, 491–497. [Google Scholar] [CrossRef]
- Hynes, O.; Anandavadivelan, P.; Gossage, J.; Johar, A.; Lagergren, J. The impact of pre- and post-operative weight loss and body mass index on prognosis in patients with oesophageal cancer. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 1559–1565. [Google Scholar] [CrossRef] [Green Version]
- Abdiev, S.; Kodera, Y.; Fujiwara, M.; Koike, M.; Nakayama, G.; Ohashi, N.; Tanaka, C.; Sakamoto, J.; Nakao, A. Nutritional recovery after open and laparoscopic gastrectomies. Gastric Cancer 2011, 14, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyama, T.; Mizutani, T.; Okuda, T.; Fujita, I.; Tokunaga, A.; Tajiri, T.; Barbul, A. Postoperative Changes in Body Composition After Gastrectomy. J. Gastrointest. Surg. 2005, 9, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Yoshikawa, T.; Maezawa, Y.; Kano, K.; Hara, K.; Sato, T.; Hayashi, T.; Yamada, T.; Cho, H.; Ogata, T.; et al. A Comparison of the Body Composition Changes Between Laparoscopy-assisted and Open Total Gastrectomy for Gastric Cancer. In Vivo 2018, 32, 1513–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyama, T.; Kawabe, T.; Hirohito, F.; Hayashi, T.; Yamada, T.; Tsuchida, K.; Sato, T.; Oshima, T.; Rino, Y.; Masuda, M.; et al. Body composition analysis within 1 month after gastrectomy for gastric cancer. Gastric Cancer 2016, 19, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.Y.; Kim, H.K.; Kim, J.A.; Choi, C.S.; Yun, E.J.; Chang, S.K.; Park, C.H.; Lee, Y.-J. Changes in the abdominal fat distribution after gastrectomy: computed tomography assessment. ANZ J. Surg. 2007, 77, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Baba, Y.; Ishimoto, T.; Kosumi, K.; Tokunaga, R.; Izumi, D.; Ida, S.; Imamura, Y.; Iwagami, S.; Miyamoto, Y.; et al. Low Visceral Fat Content is Associated with Poor Prognosis in a Database of 507 Upper Gastrointestinal Cancers. Ann. Surg. Oncol. 2015, 22, 3946–3953. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, H.S.; Beom, S.-H.; Rha, S.Y.; Chung, H.; Kim, J.H.; Chun, Y.J.; Lee, S.W.; Choe, E.-A.; Heo, S.J.; et al. Marked Loss of Muscle, Visceral Fat, or Subcutaneous Fat After Gastrectomy Predicts Poor Survival in Advanced Gastric Cancer: Single-Center Study from the CLASSIC Trial. Ann. Surg. Oncol. 2018, 25, 3222–3230. [Google Scholar] [CrossRef]
- Dong, Q.-T.; Cai, H.-Y.; Zhang, Z.; Zou, H.-B.; Dong, W.-X.; Wang, W.-B.; Song, H.-N.; Luo, X.; Chen, X.-L.; Huang, D.-D. Influence of body composition, muscle strength, and physical performance on the postoperative complications and survival after radical gastrectomy for gastric cancer: A comprehensive analysis from a large-scale prospective study. Clin. Nutr. 2021, 40, 3360–3369. [Google Scholar] [CrossRef]
- Anderson, L.J.; Liu, H.; Garcia, J.M. Sex Differences in Muscle Wasting. Adv. Exp. Med. Biol. 2017, 1043, 153–197. [Google Scholar]
- Barone, B.; Napolitano, L.; Abate, M.; Cirillo, L.; Reccia, P.; Passaro, F.; Turco, C.; Morra, S.; Mastrangelo, F.; Scarpato, A.; et al. The Role of Testosterone in the Elderly: What Do We Know? Int. J. Mol. Sci. 2022, 23, 3535. [Google Scholar] [CrossRef]
- Alexander, S.E.; Pollock, A.C.; Lamon, S. The effect of sex hormones on skeletal muscle adaptation in females. Eur. J. Sport Sci. 2022, 22, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Bakker, C.J.; van der Kooy, K. Imaging techniques for measuring adipose-tissue distribution--a comparison between computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 1990, 51, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Tadokoro, N.; Watanabe, M.; Shinomiya, M. A novel method of measuring intra-abdominal fat volume using helical computed tomography. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 398–402. [Google Scholar] [CrossRef] [Green Version]
All Patients (n = 485) | Men (n = 323) | Women (n = 162) | p Value | |
---|---|---|---|---|
Age, mean ± SD | 67.89 ± 11.1 | 67.94 ± 10.48 | 67.78 ± 12.35 | 0.886 |
Body mass index, mean ± SD | 22.8 ± 3.52 | 23.28 ± 3.30 | 21.87 ± 3.77 | <0.001 |
Surgical approach, Laparoscopic Open | 248 (51.1%) 237 (48.9%) | 158 (48.9%) 165 (51.1%) | 90 (55.6%) 72 (44.4%) | 0.178 |
Surgical procedure, Distal gastrectomy Proximal gastrectomy Total gastrectomy | 265 (54.6%) 24 (4.9%) 196 (40.4%) | 170 (52.6%) 15 (4.6%) 138 (42.7%) | 95 (56.8%) 9 (5.6%) 58 (35.8%) | 0.321 |
Lymph node dissection, D1+ D2 | 224 (46.2%) 261 (53.8%) | 146 (45.2%) 177 (54.8%) | 78 (48.1%) 84 (51.9%) | 0.563 |
Pathological stage, I II III IV | 83 (17.1%) 168 (34.6%) 180 (37.1%) 54 (11.1%) | 59 (18.3%) 101 (31.3%) 129 (39.9%) 34 (10.5%) | 24 (14.8%) 67 (41.4%) 51 (31.5%) 20 (12.3%) | 0.060 |
Serosal invasion, Absent Present | 350 (72.2%) 135 (27.8%) | 240 (74.3%) 83 (25.7%) | 110 (67.9%) 52 (32.1%) | 0.162 |
Lymph node metastasis, Absent Present | 130 (26.8%) 355 (73.2%) | 76 (23.5%) 247 (76.5%) | 54 (33.3%) 108 (66.7%) | 0.023 |
Histological type, Differentiated Undifferentiated | 207 (42.7%) 278 (57.3%) | 154 (47.7%) 169 (52.3%) | 53 (32.7%) 109 (67.3%) | 0.002 |
Comorbidity, CKD COPD Diabetes CHF | 88 (18.1%) 100 (20.6%) 91 (18.8%) 26 (5.4%) | 64 (19.8%) 76 (23.5%) 68 (21.1%) 24 (7.4%) | 24 (14.8%) 24 (14.8%) 23 (14.2%) 2 (1.2%) | 0.212 0.032 0.084 0.003 |
VFI (cm2/m2), median (IQR) Low VFI | 32.46 (16.69–51.02) 243 (50.1%) | 35.42 (20.28–51.32) 162 (50.2%) | 26.81 (11.59–46.22) 81 (50.0%) | 0.010 1.000 |
SFI (cm2/m2), median (IQR) Low SFI | 36.32 (21.70–53.83) 242 (49.9%) | 33.90 (19.65–49.50) 161 (49.8%) | 41.70 (26.19–71.43) 81 (50.0%) | <0.001 1.000 |
SMI (cm2/m2), median (IQR) Low SMI | 39.08 (33.98–45.33) 242 (49.9%) | 41.87 (37.33–47.77) 161 (49.8%) | 34.04 (29.79–38.26) 81 (50.0%) | <0.001 1.000 |
Postoperative complication Clavien–Dindo grade ≥ 2 Clavien–Dindo grade ≥ 3 Infectious complications | 105 (21.6%) 49 (10.1%) 66 (13.6%) | 80 (24.8%) 41 (12.7%) 53 (16.4%) | 25 (15.4%) 8 (4.9%) 13 (8.0%) | 0.019 0.007 0.011 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age (years) <70 ≥70 | 1 2.213 | 1.515–3.231 | <0.001 | 1 2.229 | 1.495–3.322 | <0.001 |
Surgical procedure, Distal gastrectomy Total gastrectomy | 1 1.915 | 1.315–2.788 | <0.001 | 1 1.616 | 1.096–2.382 | 0.015 |
Surgical approach, Laparoscopic Open | 1 2.839 | 1.882–4.284 | <0.001 | 1 1.930 | 1.258–2.962 | 0.003 |
Lymph nodes dissection, D1+ D2 | 1 0.716 | 0.493–1.039 | 0.079 | |||
Serosal invasion, Absent Present | 1 3.031 | 2.075–4.428 | <0.001 | 1 1.973 | 1.289–3.020 | 0.002 |
Lymph node metastasis, Absent Present N2 N3 | 1 3.532 3.005 3.489 | 1.893–6.590 2.004–4.506 2.391–5.091 | <0.001 <0.001 <0.001 | 1 2.143 | 1.394–3.294 | <0.001 |
Adjuvant chemotherapy, Absent Present | 1 1.105 | 0.732–1.666 | 0.635 | |||
Histological type, Differentiated Undifferentiated | 1 1.443 | 0.988–2.110 | 0.058 | |||
Chronic kidney disease, Absent Present | 1 1.037 | 0.639–1.684 | 0.882 | |||
Diabetes, Absent Present | 1 1.423 | 0.916–2.211 | 0.116 | |||
COPD, Absent Present | 1 1.501 | 0.991–2.275 | 0.055 | |||
Chronic heart failure, Absent Present | 1 0.843 | 0.392–1.813 | 0.662 | |||
SMI (cm2/m2), High-SMI Low-SMI | 1 2.226 | 1.506–3.290 | <0.001 | 1 1.416 | 0.941–2.131 | 0.096 |
VFI (cm2/m2), High-VFI Low-VFI | 1 1.735 | 1.182–2.547 | 0.005 | 1 1.506 | 1.019–2.226 | 0.040 |
SFI (cm2/m2), High-SFI Low-SFI | 1 1.368 | 0.937–1.996 | 0.105 | |||
Infectious complication, Absent Present | 1 1.246 | 0.760–2.043 | 0.384 | |||
Postoperative complication, Absent Clavien–Dindo ≥ 2 Clavien–Dindo ≥ 3 | 1 0.994 1.563 | 0.640–1.542 0.944–2.590 | 0.977 0.083 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age (years) <70 ≥70 | 1 2.227 | 1.273–3.898 | 0.005 | 1 1.926 | 1.092–3.397 | 0.024 |
Surgical procedure, Distal gastrectomy Total gastrectomy | 1 1.618 | 0.943–2.775 | 0.081 | |||
Surgical approach, Laparoscopic surgery Open surgery | 1 2.863 | 1.620–5.059 | <0.001 | 1 2.088 | 1.107–3.938 | 0.023 |
Lymph nodes dissection, D1+ D2 | 1 0.569 | 0.329–0.983 | 0.043 | 1 0.359 | 0.196–0.658 | <0.001 |
Serosal invasion, Absent Present | 1 2.464 | 1.437–4.226 | 0.001 | 1 1.686 | 0.935–3.042 | 0.083 |
Lymph node metastasis, Absent Present N2 N3 | 1 1.654 1.963 3.408 | 0.895–3.055 1.126–3.424 1.956–5.940 | 0.108 0.017 <0.001 | 1 3.412 | 1.845–6.308 | <0.001 |
Adjuvant chemotherapy, Absent Present | 1 0.623 | 0.363–1.068 | 0.085 | |||
Histological type, Differentiated Undifferentiated | 1 0.656 | 0.378–1.139 | 0.134 | |||
Chronic kidney disease, Absent Present | 1 1.183 | 0.577–2.426 | 0.646 | |||
Diabetes, Absent Present | 1 0.795 | 0.358–1.763 | 0.572 | |||
COPD, Absent Present | 1 0.694 | 0.297–1.625 | 0.400 | |||
SMI (cm2/m2),High-SMI Low-SMI | 1 1.207 | 0.699–2.082 | 0.500 | |||
VFI (cm2/m2), High-VFI Low-VFI | 1 1.700 | 0.975–2.963 | 0.061 | |||
SFI (cm2/m2), High-SFI Low-SFI | 1 2.190 | 1.240–3.868 | 0.007 | 1 2.016 | 1.115–3.643 | 0.020 |
Infectious complication, Absent Present | 1 0.943 | 0.339–2.626 | 0.911 | |||
Postoperative complication, Absent Clavien–Dindo ≥ 2 Clavien–Dindo ≥ 3 | 1 1.022 1.968 | 0.459–2.275 0.702–5.521 | 0.957 0.198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, R.; Inaki, N.; Tsuji, T.; Fukunaga, T. Impact of Sex-Specific Preoperative Fat Mass Assessment on Long-Term Prognosis after Gastrectomy for Gastric Cancer. Cancers 2023, 15, 2100. https://doi.org/10.3390/cancers15072100
Matsui R, Inaki N, Tsuji T, Fukunaga T. Impact of Sex-Specific Preoperative Fat Mass Assessment on Long-Term Prognosis after Gastrectomy for Gastric Cancer. Cancers. 2023; 15(7):2100. https://doi.org/10.3390/cancers15072100
Chicago/Turabian StyleMatsui, Ryota, Noriyuki Inaki, Toshikatsu Tsuji, and Tetsu Fukunaga. 2023. "Impact of Sex-Specific Preoperative Fat Mass Assessment on Long-Term Prognosis after Gastrectomy for Gastric Cancer" Cancers 15, no. 7: 2100. https://doi.org/10.3390/cancers15072100
APA StyleMatsui, R., Inaki, N., Tsuji, T., & Fukunaga, T. (2023). Impact of Sex-Specific Preoperative Fat Mass Assessment on Long-Term Prognosis after Gastrectomy for Gastric Cancer. Cancers, 15(7), 2100. https://doi.org/10.3390/cancers15072100