Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient-Derived Organoids (PDOs)
3. Extracellular Matrix (ECM) and Tumor Microenvironment (TME)
4. Drug Screening
5. Clinical Implications and Future Prospective
5.1. Patient Derived Organoids (PDOs)
5.2. Tumor Microenvironment (TME) and Extracellular Matrix (ECM)
5.3. Drug Screening
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Ovarian Cancer Survival Statistics. 2018. Available online: https://www.cancerresearchuk.org/healthprofession-al/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/survival#heading-Three (accessed on 28 March 2021).
- Maru, Y.; Hippo, Y. Current Status of Patient-Derived Ovarian Cancer Models. Cells 2019, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II. BioMed Res. Int. 2014, 2014, 934261. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Hunter, S.M.; Anglesio, M.S.; Ryland, G.L.; Sharma, R.; Chiew, Y.-E.; Rowley, S.M.; Doyle, M.A.; Li, J.; Gilks, C.B.; Moss, P.; et al. Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget 2015, 6, 37663–37677. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, R.; Kommoss, S.; Winterhoff, B.J.; Kipp, B.R.; Garcia, J.J.; Voss, J.; Halling, K.; Karnezis, A.; Senz, J.; Yang, W.; et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer 2015, 15, 200. [Google Scholar] [CrossRef] [Green Version]
- McConechy, M.K.; Ding, J.; Senz, J.; Yang, W.; Melnyk, N.; A Tone, A.; Prentice, L.M.; Wiegand, K.C.; McAlpine, J.N.; Shah, S.P.; et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod. Pathol. 2013, 27, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, A.; Migliardi, G.; Galimi, F.; Sassi, F.; Torti, D.; Isella, C.; Corà, D.; Di Nicolantonio, F.; Buscarino, M.; Petti, C.; et al. A Molecularly Annotated Platform of Patient-Derived Xenografts (“Xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer Discov. 2011, 1, 508–523. [Google Scholar] [CrossRef] [Green Version]
- Byrne, A.T.; Alférez, D.G.; Amant, F.; Annibali, D.; Arribas, J.; Biankin, A.V.; Bruna, A.; Budinská, E.; Caldas, C.; Chang, D.K.; et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 2017, 17, 254–268. [Google Scholar] [CrossRef]
- Weiswald, L.-B.; Bellet, D.; Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. Neoplasia 2015, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ohata, H.; Ishiguro, T.; Aihara, Y.; Sato, A.; Sakai, H.; Sekine, S.; Taniguchi, H.; Akasu, T.; Fujita, S.; Nakagama, H.; et al. Induction of the Stem-like Cell Regulator CD44 by Rho Kinase Inhibition Contributes to the Maintenance of Colon Cancer–Initiating Cells. Cancer Res. 2012, 72, 5101–5110. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, T.; Sato, A.; Ohata, H.; Ikarashi, Y.; Takahashi, R.-U.; Ochiya, T.; Yoshida, M.; Tsuda, H.; Onda, T.; Kato, T.; et al. Establishment and Characterization of an In Vitro Model of Ovarian Cancer Stem-like Cells with an Enhanced Proliferative Capacity. Cancer Res. 2016, 76, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Sensi, F.; D’Angelo, E.; Piccoli, M.; Pavan, P.; Mastrotto, F.; Caliceti, P.; Biccari, A.; Corallo, D.; Urbani, L.; Fassan, M.; et al. Recellularized Colorectal Cancer Patient-Derived Scaffolds as In Vitro Pre-Clinical 3D Model for Drug Screening. Cancers 2020, 12, 681. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Weinstein, H.N.W.; Allegakoen, P.; Wadsworth, M.H., 2nd; Xie, J.; Yang, H.; Castro, E.A.; Lu, K.L.; Stohr, B.A.; Feng, F.Y.; et al. Single-cell analysis of human primary prostate cancer reveals the heter-ogeneity of tumor-associated epithelial cell states. Nat. Commun. 2022, 13, 141. [Google Scholar] [CrossRef]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [Green Version]
- Tuveson, D.A.; Clevers, H. Cancer modeling meets human organoid technology. Science 2019, 364, 952–955. [Google Scholar] [CrossRef]
- Boretto, M.; Maenhoudt, N.; Luo, X.; Hennes, A.; Boeckx, B.; Bui, B.; Heremans, R.; Perneel, L.; Kobayashi, H.; Van Zundert, I.; et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nature 2019, 21, 1041–1051. [Google Scholar] [CrossRef]
- Jacob, F.; Salinas, R.D.; Zhang, D.Y.; Nguyen, P.T.T.; Schnoll, J.G.; Wong, S.Z.H.; Thokala, R.; Sheikh, S.; Saxena, D.; Prokop, S.; et al. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell 2020, 180, 188–204.e22. [Google Scholar] [CrossRef]
- Onuma, K.; Ochiai, M.; Orihashi, K.; Takahashi, M.; Imai, T.; Nakagama, H.; Hippo, Y. Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc. Natl. Acad. Sci. USA 2013, 110, 11127–11132. [Google Scholar] [CrossRef] [Green Version]
- Maru, Y.; Onuma, K.; Ochiai, M.; Imai, T.; Hippo, Y. Shortcuts to intestinal carcinogenesis by genetic engineering in organoids. Cancer Sci. 2019, 110, 858–866. [Google Scholar] [CrossRef]
- Takahashi, T. Organoids for Drug Discovery and Personalized Medicine. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 447–462. [Google Scholar] [CrossRef]
- Bi, J.; Newtson, A.; Zhang, Y.; Devor, E.; Samuelson, M.; Thiel, K.; Leslie, K. Successful Patient-Derived Organoid Culture of Gynecologic Cancers for Disease Modeling and Drug Sensitivity Testing. Cancers 2021, 13, 2901. [Google Scholar] [CrossRef]
- Nero, C.; Vizzielli, G.; Lorusso, D.; Cesari, E.; Daniele, G.; Loverro, M.; Scambia, G.; Sette, C. Patient-derived organoids and high grade serous ovarian cancer: From disease modeling to personalized medicine. J. Exp. Clin. Cancer Res. 2021, 40, 116. [Google Scholar] [CrossRef]
- Yee, C.; Dickson, K.-A.; Muntasir, M.N.; Ma, Y.; Marsh, D.J. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front. Bioeng. Biotechnol. 2022, 10, 836984. [Google Scholar] [CrossRef]
- Watters, K.M.; Bajwa, P.; Kenny, H.A. Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment. Cancers 2018, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Tsang, S.I.; Hassan, A.A.; To, S.K.; Wong, A.S. Experimental models for ovarian cancer research. Exp. Cell Res. 2022, 416, 113150. [Google Scholar] [CrossRef]
- Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017, 7, 462–477. [Google Scholar] [CrossRef] [Green Version]
- Jabs, J.; Zickgraf, F.M.; Park, J.; Wagner, S.; Jiang, X.; Jechow, K.; Kleinheinz, K.; Toprak, U.H.; A Schneider, M.; Meister, M.; et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations. Mol. Syst. Biol. 2017, 13, 955. [Google Scholar] [CrossRef]
- Hill, S.J.; Decker, B.; Roberts, E.A.; Horowitz, N.S.; Muto, M.G.; Worley, M.J.; Feltmate, C.M.; Nucci, M.R.; Swisher, E.M.; Nguyen, H.; et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov. 2018, 8, 1404–1421. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.; Hong, J.J.; Tofig, B.; Mapua, M.; Elashoff, D.; Moatamed, N.A.; Huang, J.; Memarzadeh, S.; Damoiseaux, R.; Soragni, A. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. 2019, 2, 78. [Google Scholar] [CrossRef]
- Nanki, Y.; Chiyoda, T.; Hirasawa, A.; Ookubo, A.; Itoh, M.; Ueno, M.; Akahane, T.; Kameyama, K.; Yamagami, W.; Kataoka, F.; et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Sci. Rep. 2020, 10, 12581. [Google Scholar] [CrossRef]
- Kopper, O.; de Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019, 25, 838–849. [Google Scholar] [CrossRef]
- Maru, Y.; Tanaka, N.; Itami, M.; Hippo, Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol. Oncol. 2019, 154, 189–198. [Google Scholar] [CrossRef]
- Hoffmann, K.; Berger, H.; Kulbe, H.; Thillainadarasan, S.; Mollenkopf, H.; Zemojtel, T.; Taube, E.; Darb-Esfahani, S.; Mangler, M.; Sehouli, J.; et al. Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment. EMBO J. 2020, 39, e104013. [Google Scholar] [CrossRef]
- Sun, H.; Wang, H.; Wang, X.; Aoki, Y.; Wang, X.; Yang, Y.; Cheng, X.; Wang, Z.; Wang, X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics 2020, 10, 6928–6945. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Zuo, L.; Xu, M.; Wu, Y.; Huang, J.; Zhang, X.; Li, Y.; Wang, J.; Chen, J.; et al. The Fibrillin-1/VEGFR2/STAT2 signaling axis promotes chemoresistance via modulating glycolysis and angiogenesis in ovarian cancer organoids and cells. Cancer Commun. 2022, 42, 245–265. [Google Scholar] [CrossRef]
- Maenhoudt, N.; Defraye, C.; Boretto, M.; Jan, Z.; Heremans, R.; Boeckx, B.; Hermans, F.; Arijs, I.; Cox, B.; Van Nieuwenhuysen, E.; et al. Developing Organoids from Ovarian Cancer as Experi-mental and Preclinical Models. Stem. Cell Rep. 2020, 14, 717–729. [Google Scholar] [CrossRef]
- de Witte, C.J.; Espejo Valle-Inclan, J.; Hami, N.; Lõhmussaar, K.; Kopper, O.; Vreuls, C.P.H.; Jonges, G.N.; van Diest, P.; Nguyen, L.; Clevers, H.; et al. Patient-derived ovarian Cancer Organoids mimic clinical response and exhibit heterogeneous inter- and Intrapatient drug responses. Cell Rep. 2020, 31, 107762. [Google Scholar] [CrossRef]
- Chen, H.; Gotimer, K.; De Souza, C.; Tepper, C.G.; Karnezis, A.N.; Leiserowitz, G.S.; Chien, J.; Smith, L.H. Short-term organoid culture for drug sensitivity testing of high-grade serous carcinoma. Gynecol. Oncol. 2020, 157, 783–792. [Google Scholar] [CrossRef]
- Gorski, J.W.; Zhang, Z.; McCorkle, J.R.; DeJohn, J.M.; Wang, C.; Miller, R.W.; Gallion, H.H.; Dietrich, C.S.; Ueland, F.R.; Kolesar, J.M. Utilizing Patient-Derived Epithelial Ovarian Cancer Tumor Organoids to Predict Carboplatin Resistance. Biomedicines 2021, 9, 1021. [Google Scholar] [CrossRef]
- Tao, M.; Sun, F.; Wang, J.; Wang, Y.; Zhu, H.; Chen, M.; Liu, L.; Liu, L.; Lin, H.; Wu, X. Developing patient-derived organoids to predict PARP inhibitor response and explore resistance overcoming strategies in ovarian cancer. Pharmacol. Res. 2022, 179, 106232. [Google Scholar] [CrossRef]
- Wan, C.; Keany, M.P.; Dong, H.; Al-Alem, L.F.; Pandya, U.M.; Lazo, S.; Boehnke, K.; Lynch, K.N.; Xu, R.; Zarrella, D.T.; et al. Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Cancer Res. 2021, 81, 158–173. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, Y.; Meng, H.; Miao, H.; Jiang, Y.; Zhang, L.; Cheng, W. Bractoppin, a BRCA1 carboxy-terminal domain (BRCT) inhibitor, suppresses tumor progression in ovarian borderline tumor organoids. Biochem. Biophys. Res. Commun. 2023, 638, 76–83. [Google Scholar] [CrossRef]
- Orkin, R.W.; Gehron, P.; McGoodwin, E.B.; Martin, G.R.; Valentine, T.; Swarm, R. A murine tumor producing a matrix of basement membrane. J. Exp. Med. 1977, 145, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.S.; Postovit, L.M.; Lajoie, G.A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10, 1886–1890. [Google Scholar] [CrossRef]
- Kenny, H.A.; Kaur, S.; Coussens, L.M.; Lengyel, E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Investig. 2008, 118, 1367–1379. [Google Scholar] [CrossRef] [Green Version]
- Kenny, H.A.; Lal-Nag, M.; Shen, M.; Kara, B.; Nahotko, D.; Wroblewski, K.; Fazal, S.; Chen, S.; Chiang, C.; Chen, Y.; et al. Quantitative high-throughput screening using an organotypic model iden-tifies compounds that inhibit ovarian cancer metastasis. Mol. Cancer Therapeut. 2020, 19, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Brown, P.C.; Chow, E.C.; Ewart, L.; Ferguson, S.S.; Fitzpatrick, S.; Freedman, B.S.; Guo, G.L.; Hedrich, W.; Heyward, S.; et al. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin. Transl. Sci. 2021, 14, 1659–1680. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Gulieva, R.E.; Higgins, A.Z. Human induced pluripotent stem cell derived kidney organoids as a model system for studying cryopreservation. Cryobiology 2021, 103, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Longhin, E.M.; El Yamani, N.; Rundén-Pran, E.; Dusinska, M. The alamar blue assay in the context of safety testing of nanomaterials. Front. Toxicol. 2022, 4, 981701. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.W.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Prim. 2022, 2, 94. [Google Scholar] [CrossRef]
- Letai, A. Functional precision cancer medicine—Moving beyond pure genomics. Nat. Med. 2017, 23, 1028–1035. [Google Scholar] [CrossRef]
- Friedman, A.A.; Letai, A.; Fisher, D.E.; Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 2015, 15, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Ciucci, A.; Buttarelli, M.; Fagotti, A.; Scambia, G.; Gallo, D. Preclinical models of epithelial ovarian cancer: Practical considerations and chal-lenges for a meaningful application. Cell Mol. Life Sci. 2022, 79, 364. [Google Scholar] [CrossRef]
- Soice, E.; Johnston, J. Immortalizing Cells for Human Consumption. Int. J. Mol. Sci. 2021, 22, 11660. [Google Scholar] [CrossRef]
- Bose, S.; Clevers, H.; Shen, X. Promises and challenges of organoid-guided precision medicine. Medicine 2021, 2, 1011–1026. [Google Scholar] [CrossRef]
- Napoli, G.C.; Figg, W.D.; Chau, C.H. Functional Drug Screening in the Era of Precision Medicine. Front. Med. 2022, 9. [Google Scholar] [CrossRef]
- Nelson, L.; Tighe, A.; Golder, A.; Littler, S.; Bakker, B.; Moralli, D.; Baker, S.M.; Donaldson, I.J.; Spierings, D.C.J.; Wardenaar, R.; et al. A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nat. Commun. 2020, 11, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, M.; D’Angelo, E.; Crotti, S.; Sensi, F.; Urbani, L.; Maghin, E.; Burns, A.; De Coppi, P.; Fassan, M.; Rugge, M.; et al. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell Physiol. 2017, 233, 5937–5948. [Google Scholar] [CrossRef]
- Motohara, T.; Yoshida, G.J.; Katabuchi, H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin. Cancer Biol. 2021, 77, 182–193. [Google Scholar] [CrossRef]
- Er, E.E.; Tello-Lafoz, M.; Huse, M. Mechano regulation of Metastasis beyond the Matrix. Cancer Res. 2022, 82, 3409–3419. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Min, S.; Choi, Y.S.; Jo, S.-H.; Jung, J.H.; Han, K.; Kim, J.; An, S.; Ji, Y.W.; Kim, Y.-G.; et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat. Commun. 2022, 13, 1692. [Google Scholar] [CrossRef]
- Niedbala, M.J.; Crickard, K.; Bernacki, R.J. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix: An in vitro model system for studying tumor cell adhesion and invasion. Exp. Cell Res. 1985, 160, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards organoid culture without Matrigel. Commun. Biol. 2021, 4, 1387. [Google Scholar] [CrossRef]
- Rezakhani, S.; Gjorevski, N.; Lutolf, M. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials 2021, 276, 121020. [Google Scholar] [CrossRef]
- Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-Specific Decellu-larization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int. J. Mol. Sci. 2020, 21, 5447. [Google Scholar] [CrossRef]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [Green Version]
- Badylak, S.F.; Taylor, D.; Uygun, K. Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annu. Rev. Biomed. Eng. 2011, 13, 27–53. [Google Scholar] [CrossRef]
- Ott, H.C.; Matthiesen, T.S.; Goh, S.K.; Black, L.D.; Kren, S.M.; Netoff, T.I.; Taylor, D.A. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008, 14, 213–221. [Google Scholar] [CrossRef]
- Sensi, F.; D’angelo, E.; Biccari, A.; Marangio, A.; Battisti, G.; Crotti, S.; Fassan, M.; Laterza, C.; Giomo, M.; Elvassore, N.; et al. Establishment of a human 3D pancreatic adenocarcinoma model based on a patient-derived extracellular matrix scaffold. Transl. Res. 2023, 253, 57–67. [Google Scholar] [CrossRef]
- Maghin, E.; Carraro, E.; Boso, D.; Dedja, A.; Giagante, M.; Caccin, P.; Ana-Maria Barna, R.; Bresolin, S.; Cani, A.; Borile, G.; et al. Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen. Med. 2022, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Nikniaz, H.; Zandieh, Z.; Nouri, M.; Daei-Farshbaf, N.; Aflatoonian, R.; Gholipourmalekabadi, M.; Jameie, S.B. Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro. BMC Biotechnol. 2021, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Celli, J.; Rizvi, I.; Moon, S.; Hasan, T.; Demirci, U. A Three-Dimensional In VitroOvarian Cancer Coculture Model Using a High-Throughput Cell Patterning Platform. Biotechnol. J. 2011, 6, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Gao, Y.Y.; Su, J.; Tang, X.N.; Chen, Q.; Ma, L.W.; Zhang, J.J.; Wu, J.M.; Wang, S.X. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric 2021, 25, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.A.; Pilie, P.G.; Yap, T.A. Development of PARP and Immune-Checkpoint Inhibitor Combinations. Cancer Res. 2018, 78, 6717–6725. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.F.; Herold, C.; Gray, K.P.; Penson, R.T.; Horowitz, N.; Konstantinopoulos, P.A.; Castro, C.M.; Hill, S.J.; Curtis, J.; Luo, W.; et al. Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1731–1738. [Google Scholar] [CrossRef]
- Dose Dense Paclitaxel with Pembrolizumab (MK-3475) in Platinum Resistant Ovarian Cancer-Full Text View NCT02440425. Available online: https://clinicaltrials.gov/ct2/show/NCT02440425 (accessed on 1 March 2023).
Site of Origin | Histological Types | Number of Patients | Number of Organoids | Success Rate | Genomic Characterization | Concordance Rate | |
---|---|---|---|---|---|---|---|
Pauli 2017 [30] | Ovaries | Serous | 1 | 1 | 100% | WES | 86% concordance between organoids and native tumor tissues (based on the analysis of 1062 specific cancer genes). |
Jabs 2017 [31] | Ovaries Ascites Pleural effusion | HGSC | 9 | 9 (8 + 1) | 100% | WGS | n.s |
Hill 2018 [32] | Ovaries Omentum Pleural effusion Mesentery Diaphragm | HGSC LGSC | 22 | 33 | 80–90% | WES | 98.8% of mutations were identified both in the tumors and in the matched organoid line. |
Phan 2019 [33] | Ovaries Peritoneum | Peritoneal HGSC Carcinosarcoma | 4 | 4 | 100% | Not performed | n.s |
Kopper 2019 [35] | Ovaries Peritoneum Diaphragm Rectum Lymph nodes Ascites Pleural effusion | EC BOT HGSC LGSC MC CCC | 32 | 56 | 65% | WGS | High in S-SNVs and CNVs. |
Maru 2019 [36] | n.s | EC Brenner tumors HGSC MC CCC | 15 | 9 | 90% | 409 gene panel | High |
Hoffman 2020 [37] | Peritoneum Omentum | HGSC | 13 | 15 | 30% | 121 gene panel | High |
Sun 2020 [38] | n.s | Serous | 10 | 10 | n.s | RNA-seq | n.s |
Maenhoudt 2020 [40] | Ovaries Omentum Rectum | HGSC LGSC CCC MC MT | 27 | 12 | 44% | WGS | 98% of the genetic alterations (S-CNAs) similarly present in both primary tumor and resultant organoid line. |
Nanki 2020 [34] | Ovaries | HGSC CCC EC BOT non-serous OC | 35 | 28 | 80% | 1053-gene panel | Median concordance 59.1% (36.1–73.1%) of the genomic variants were shared among organoids and primary tumours |
de Witte 2020 [41] | Ascites Omentum Adnexa Peritoneum Lymph nodes Uterus | HGSC EC LGSC CCC BOT MC | 23 | 36 | n.s | WGS | 67% of single-nucleotide variants, comparable copy-number states |
Chen 2020 [42] | Ascites Pleural effusion | HGSC Peritoneal HGSC | 6 | 14 | n.s | RNA-seq | n.s |
Gorski 2021 [43] | n.s | HGSC | 6 | 6 | 100% | DNA-seq RNA-seq | High |
Tao 2022 [44] | Primary tumor and metastatic lesions | HGSC EC CC BOT | n.s | 7 | 85% | WES | 91.5% of SNVs and SVs present in the original tumor were maintained in the derived organoids. |
Wan 2021 [45] | n.s | HGSC | 13 | 12 | 92% | RNA-seq | n.s |
Wang 2022 [39] | n.s | HGSC | n.s | n.s | n.s | RNA-seq | n.s |
Wan 2022 [46] | Ovaries | BOT | 13 | 10 | 77% | RNA-seq | High |
Extracellular Matrix | Culturing Medium | Organoid Formation (Days) | |
---|---|---|---|
Pauli 2017 [30] | Matrigel | Glutamax, B27 (Gibco), 100 U/mL penicillin, 100 μg/mL streptomycin, Primocin 100 μg/mL, N-Acetylcysteine 1.25 mM, Mouse Recombinant EGF 50 ng/mL, Recombinant Human FGF-basic 1 ng/mL, Y-27632 10 μM, A-83-01 500 nM, SB202190 10 μM, Nicotinamide 10 mM, PGE2 1 μM, Noggin 50 mL, R-Spondin 25 mL | n.s |
Jabs 2017 [31] | 2% Matrigel | 50 lg/mL gentamicin, 0.5 lg/mL Fungizone, lM ROCK inhibitor Y27632, 5% CO2 | Up to 10 days |
Hill 2018 [32] | Matrigel | Advanced DMEM/F12, 1% penicillin streptomycin, Glutamax, 1% HEPES, 100 ng/mL R-spondin 1, 100 ng/mL Noggin, 50 ng/mL EGF, 10 ng/mL FGF-10, 10 ng/mL FGF2-1× B27, 10 mM Nicotinamide, 1.25 mM N-acetylcysteine, 1 μM Prostaglandin E2, 10 μM SB202190, 500 nm A83–01-Y-27632 | 7–14 days |
Phan 2019 [33] | Matrigel or Cultrex BME | PrEGM medium or Mammocult | n.s |
Kopper 2019 [35] | Cultrex BME | 25% conditioned human RSPO1 medium, 12 mM HEPES, 1% Glutamax, 2% B27, 10 ng mL−1 human EGF, 100 ng mL−1 human noggin, 100 ng mL−1 human FGF10, 1% N2 10 mM nicotinamide, 9 μM ROCK inhibitor, 0.5 μM, TGF, βR Kinase Inhibitor IV, hydrocortison, forskolin, heregulinβ-1 | 3–14 days |
Maru 2019 [36] | Matrigel | DMEM/F12 (Thermo Fisher Scientific, Watham, MA, USA), 50 ng/mL human EGF (Peprotech, Rocky Hill, NJ, USA), 250 ng/mL R-spondin1 (R&D, Minneapolis, MN, USA), 100 ng/mL Noggin (Peprotech), 10 μM Y27632 (Wako, Osaka, Japan), 1 μM Jagged-1 (AnaSpec, Fremont, CA, USA), L-glutamine solution (Wako), penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), amphotericin B suspension (Wako) | n.s |
Hoffman 2020 [37] | Matrigel | Wnt3a (mouse 25%), R-Spondin 1 (mouse 25%), FGF 10, human 100 ng·mL−1, Noggin, human 100 ng·mL−1, EGF, human 10 ng·mL−1,Y-27632 9 µM, SB431542 0.5 µM, B27 supplement 1x, N2 supplement 1x, Nicotinamide 1 mM, GlutaMax 100x 1x Hepes 10 mM, Penicillin/Streptomycin 100 U·mL−1/100 mg·mL−1, Advanced DMEM/F12 1x | n.s |
Sun 2020 [38] | Matrigel | n.s | n.s |
Maenhoudt 2020 [40] | Matrigel | DMEM/F12 (Thermo Fisher Scientific), 10% fetal bovine serum (FBS; Thermo Fisher Scientific), 2% Penicillin/streptomycin, 10% dimethyl sulfoxide, 1–5 mM Nicotinamide, 1.25 mM N-acetylcysteine, 10 nM 17-β Estradiol, 10−1 μM p38i (SB203580), 2 ng/mL bFGF (OCOM 1-2), 50 ng/mL NRG1 (OCOM4), 10 ng/mL FGF10 (OCOM1-2), 50 ng/mL RSPO1 (rec or CM), 20 ng/mL IGF1 (OCOM3-4) | n.s |
Nanki 2020 [34] | Matrigel | Advanced DMEM/F12, 2mMHEPES, 1 × GlutaMAX-I, 1X B27 supplement 10 nM Leu15-Gastrin, 1 mM N-acetylcystein, 100 ng/mL recombinant human IGF-1, 50 ng/mL recombinant human FGF-2, 20% Afamin/Wnt3a CM, 1 μg/mL humanR-spondin, 100 ng/mL Noggin, 500 nM A-83-01, 200 U/mL penicillin/ streptomycin 10 μM Y-27632 | 7–21 days |
de Witte 2020 [41] | Matrigel | 1% GlutaMAX, 2%B27, 1%N2, 10 ng mL−1 human EGF, 100 ng mL−1 human noggin, 100 ng mL−1 human FGF10, 1 mM nicotinamide, 9 μM ROCK inhibitor, 0.5 μMTGF-βR Kinase Inhibitor IV, Hydrocortisone, Forskolin, heregulinβ-1 | 20 days |
Chen 2020 [42] | Cultrex Reduced Growth Factor Basement Membrane Extract, Type 2 (BME) | DMEM/ F12, 10% R-spondin1 2% B27 Supplement, 10 mM HEPES, 1% Glutamax, 1.25 mM N-acetyl cysteine, 100 μg/mL Primocin, 1% Antibiotic-Antimycotic, 1 mM nicotinamide, 0.5 μM A 83–01, 5 nM Neuregulin 1, 5 ng/mL FGF-7, 20 ng/mL FGF-10, 100 ng/mL Noggin, 5 ng/mL EGF-0.5 μM, SB 202190 5 μM, Y-27632 | 3–4 days |
Gorski 2021 [43] | Matrigel | n.s | n.s |
Tao 2022 [44] | Matrigel | Oded Kopper’s Protocol, Advanced DMEM/F12, 1x Glutamax, 10 mM HEPES, Noggin, Rspo1, N-Acetylcysteine (500 mM), Primocin, A83-01 (5 mM), Fgf10 (100 μg/mL), Heregulinβ-1 (75 μg/mL), Y27632 (100 mM), EGF (500 μg/mL), Forskolin (10 mM), Hydrocortisone (250 μg/mL), β-Estradiol (100 μM) | n.s |
Wan 2021 [45] | 15% Matrigel | DMEM/10% FBS, 1% Pen/Strep, 30 ng/mL of IL-2 | n.s |
Wang 2022 [39] | Matrigel | DMEM, 1% penicillin-streptomycin, 10 mmol/L nicotinamide | 7 days |
Wan 2022 [46] | 70% Matrigel | Oded Kopper’s Protocol, Advanced DMEM/F12, 1x Glutamax, 10 mM HEPES, Noggin, Rspo1, N-Acetylcysteine (500 mM), Primocin, A83-01 (5 mM), Fgf10 (100 μg/mL), Heregulinβ-1 (75 μg/mL), Y27632 (100 mM), EGF (500 μg/mL), Forskolin (10 mM), Hydrocortisone (250 μg/mL), β-Estradiol (100 μM) | n.s |
Traditional Anticancer Drugs | PARPi/ICI | Others (Action Mechanism) | |
---|---|---|---|
Pauli 2017 [30] | Not performed | ||
Jabs 2017 [31] | Carboplatin, Paclitaxel, Doxorubicin | Olaparib | MK5108 (Aurora A kinase inhibitor), NSC23766 (inhibitor of Rac1 activation), Cyclopamine (inhibitor of the Hh pathway), AZD2014 (inhibitor of mTORC1 and mTORC2), AZD5363 (Akt inhibitor), BKM120 (PI3Ki), Decitabine, Azacytidine, Belinostat (HDACi), Dasatinib (TKI) |
Hill 2018 [32] | Carboplatin | Olaparib | Prexasertib (CHK1 inhibitor), VE-822 (ATR inhibitor) |
Phan 2019 [33] | 240 protein kinase inhibitor compounds FDA-approved or in clinical development at two various concentrations | ||
Kopper 2019 [35] | Carboplatin, Paclitaxel, Gemcitabine | Niraparib | Alpelisib, Pictilisib, MK2206, AZD8055 (PI3K/AKT/mTOR pathway inhibitors), Adavosertib (Wee1 inhibitors) |
Maru 2019 [36] | Paclitaxel, Cisplatin | ||
Hoffman 2020 [37] | Carboplatin | ||
Sun 2020 [38] | Cisplatin | ||
Maenhoudt 2020 [40] | Paclitaxel, Doxorubicin, Carboplatin, Gemcitabine | Nutlin-3 (MDM2 inhibitors) | |
Nanki 2020 [34] | Cisplatin, Carboplatin, Paclitaxel, Docetaxel, Vinorelbine, Doxorubicin, Gemcitabine, Tamoxifen, Trabectedin | Olaparib | Vorinostat (HDACi), Belinostat (HDACi), Cediranib (VEGFi), Pazopanib (VEGFi), Topotecan, Eribulin, SN-38, Etoposide |
de Witte 2020 [41] | Carboplatin, Paclitaxel, Gemcitabine | Olaparib Niraparib Rucaparib | Afatinib (EGFR inhibitor), Vemurafenib (B-Raf Inhibitor), Flavopiridol (CDK inhibitor), Adavosertib (Wee1 Inhibitors), Alpelisib (PISKi), AZD8055 (PISKi), Pictilisib (PISKi), Cobimetinib (MEKi) |
Chen 2020 [42] | Carboplatin, Taxol | Mocetinostat 8 (HDAC inhibitor), Trametinib (MEK inhibitor), LY294002 (PI3k inhibitor), AZD5363 (Akt Inhibitor), BBI503 (NANOG/CD133 Inhibitor), MK-1775 (Wee-1 Inhibitor), APR-246 (p53 reactivator), CB5083 (ATPase inhibitor), Napabucasin, (STAT3 Inhibitor), Sorafenib (VEGFi) | |
Gorski 2021 [43] | Carboplatin | ||
Tao 2022 [44] | Cisplatin, Paclitaxel, Gemcitabine | Niraparib Olaparib | AZD7762 (Chk1 inhibitor), SAHA (HDACi), deguelin, SN-38 (topoisomerase I inhibitor), |
Wan 2021 [45] | bispecific anti-PD-1/PD-L1 ICB antibodies to monospecific anti-PD-1 and anti-PD-L1 molecules | ||
Wang 2022 [39] | Not performed | ||
Wan 2022 [46] | Bractoppin (BRCA inhibitor) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spagnol, G.; Sensi, F.; De Tommasi, O.; Marchetti, M.; Bonaldo, G.; Xhindoli, L.; Noventa, M.; Agostini, M.; Tozzi, R.; Saccardi, C. Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine. Cancers 2023, 15, 2059. https://doi.org/10.3390/cancers15072059
Spagnol G, Sensi F, De Tommasi O, Marchetti M, Bonaldo G, Xhindoli L, Noventa M, Agostini M, Tozzi R, Saccardi C. Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine. Cancers. 2023; 15(7):2059. https://doi.org/10.3390/cancers15072059
Chicago/Turabian StyleSpagnol, Giulia, Francesca Sensi, Orazio De Tommasi, Matteo Marchetti, Giulio Bonaldo, Livia Xhindoli, Marco Noventa, Marco Agostini, Roberto Tozzi, and Carlo Saccardi. 2023. "Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine" Cancers 15, no. 7: 2059. https://doi.org/10.3390/cancers15072059
APA StyleSpagnol, G., Sensi, F., De Tommasi, O., Marchetti, M., Bonaldo, G., Xhindoli, L., Noventa, M., Agostini, M., Tozzi, R., & Saccardi, C. (2023). Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine. Cancers, 15(7), 2059. https://doi.org/10.3390/cancers15072059