Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit
Abstract
:Simple Summary
Abstract
1. Introduction
- -
- Build prognostic models, including clinical data and blood-derived biomarkers (e.g., NLR), to assess their role in combination with already known patient- and tumor-related parameters.
- -
- Build prognostic models to test the association between computed tomography (CT)-based radiomic features and clinical outcomes of interest (namely, OS and LRPFS).
- -
- Build unified prognostic models integrating clinical data, blood-derived biomarkers, and CT-based radiomic features to explore their association with the above-mentioned clinical outcomes of interest.
2. Patients and Methods
2.1. Participants and Clinical Outcomes of Interest
2.2. Computed Tomography Characteristics
2.3. Tumor Delineation and Feature Extraction
2.4. Statistical Analysis
2.4.1. Feature Selection and Radiomic Score Calculation
2.4.2. Comparison of Prognostic Models
3. Results
3.1. Patients Characteristics
3.2. Overall Survival
3.2.1. Whole Population
3.2.2. HPV+ Subgroup
3.3. Locoregional Progression-Free Survival
3.3.1. Whole Population
3.3.2. HPV+ Subgroup
3.4. Distant Metastasis Free Survival
3.4.1. Whole Population
3.4.2. HPV+ Subgroup
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence Interval |
CT | Computed Tomography |
CV | Cross Validation |
DMFS | Distant Metastasis Free-Survival |
GTV | Gross Tumor Volume |
HB | Hemoglobin |
HNCs | Head and Neck Cancers |
HPV | Human Papilloma Virus |
HR | Hazard Ratio |
IBSI | Biomarker Standardization Initiative |
IO | Immunotherapy |
IQR | Interquartile Range |
LASSO | Least Absolute Shrinkage and Selection Operator |
LMR | Lymphocyte-to-Monocyte Ratio |
LRT | Likelihood Ratio Test |
LRPFS | Locoregional Progression-Free Survival |
NLR | Neutrophil-to-Lymphocyte Ratio |
OPSCC | Oropharyngeal Squamous Cell Cancer |
OS | Overall Survival |
PFS | Progression Free Survival |
PLR | Platelet-to-Lymphocyte Ratio |
PLT | Platelets |
ROI | Region of Interest |
RT | Radiotherapy |
SII | Systemic Immune Inflammatory Index |
TNM | Tumor Node Metastasis |
References
- Matuszak, M.M.; Fuller, C.D.; Yock, T.I.; Hess, C.B.; McNutt, T.; Jolly, S.; Gabriel, P.; Mayo, C.S.; Thor, M.; Caissie, A.; et al. Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology. Med. Phys. 2018, 45, e811–e819. [Google Scholar] [CrossRef]
- Cheng, G.; Dong, H.; Yang, C.; Liu, Y.; Wu, Y.; Zhu, L.; Tong, X.; Wang, S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int. 2021, 21, 1–18. [Google Scholar] [CrossRef]
- NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Head and Neck Cancers [Internet]. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 24 January 2023).
- Huang, Y.; Lan, Y.; Zhang, Z.; Xiao, X.; Huang, T. An Update on the Immunotherapy for Oropharyngeal Squamous Cell Carcinoma. Front. Oncol. 2022, 12, 800315. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.; Licitra, L.; Ahn, M.-J.; Soria, A.; Machiels, J.-P.; Mach, N.; Mehra, R.; et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.J.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018, 81, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Li, S.H.; Shi, D.B.; Jiang, W.M.; Song, M.; Yang, A.K.; Li, Y.D.; Bei, J.X.; Chen, W.K.; Zhang, Q. Expression of PD-1/PD-L1 in head and neck squamous cell carcinoma and its clinical significance. Int. J. Biol. Markers 2019, 34, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Valero, C.; Lee, M.; Hoen, D.; Weiss, K.; Kelly, D.W.; Adusumilli, P.S.; Paik, P.K.; Plitas, G.; Ladanyi, M.; Postow, M.A.; et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kreinbrink, P.; Li, J.; Parajuli, S.; Wise-Draper, T.; Choi, D.; Tang, A.; Takiar, V. Pre-treatment absolute lymphocyte count predicts for improved survival in human papillomavirus (HPV)-driven oropharyngeal squamous cell carcinoma. Oral Oncol. 2021, 116, 105245. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Tian, Q.; Shui, Y.; Li, J.; Wei, Q. The impact of radiation induced lymphopenia in the prognosis of head and neck cancer: A systematic review and meta-analysis. Radiother. Oncol. 2022, 168, 28–36. [Google Scholar] [CrossRef]
- Tham, T.; Ba, Y.B.; Herman, S.W.; Costantino, P.D. Neutrophil-to-lymphocyte ratio as a prognostic indicator in head and neck cancer: A systematic review and meta-analysis. Head Neck 2018, 40, 2546–2557. [Google Scholar] [CrossRef]
- Aerts, H.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Sanduleanu, S.; Woodruff, H.C.; de Jong, E.E.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [Google Scholar] [CrossRef]
- Wu, J.; Mayer, A.T.; Li, R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin. Cancer Biol. 2022, 84, 310–328. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cheng, S.; Zhu, L.; Wang, Q.; Deng, W.; Sun, Z.; Wang, S.; Xue, H. A systematic review of prognosis predictive role of radiomics in pancreatic cancer: Heterogeneity markers or statistical tricks? Eur. Radiol. 2022, 32, 8443–8652. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Lin, K.-R.; Jin, Y.-B.; Li, H.-J.; Quan, Q.; Su, J.-C.; Chen, K.; Zhang, J.; Han, C.; Zhang, G.-Y. MRI-based radiomics models can improve prognosis prediction for nasopharyngeal carcinoma with neoadjuvant chemotherapy. Magn. Reson. Imaging 2022, 88, 108–115. [Google Scholar] [CrossRef]
- Wu, L.; Lou, X.; Kong, N.; Xu, M.; Gao, C. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur. Radiol. 2022, 33, 2105–2117. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, C.; Lancia, A.; Stelitano, C.; Montesano, M.; Merizzoli, E.; Agustoni, F.; Stella, G.; Preda, L.; Filippi, A.R. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev. Anticancer. Ther. 2020, 21, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, C.S.; Welch, M.L.; Jacobs, M.A.; Kurland, B.F.; Simpson, A.L. Radiomic Analysis: Study Design, Statistical Analysis, and Other Bias Mitigation Strategies. Radiology 2022, 304, 265–273. [Google Scholar] [CrossRef]
- Bicci, E.; Nardi, C.; Calamandrei, L.; Pietragalla, M.; Cavigli, E.; Mungai, F.; Bonasera, L.; Miele, V. Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers 2022, 14, 2445. [Google Scholar] [CrossRef]
- Zorzi, S.F.; Agostini, G.; Chu, F.; Tagliabue, M.; Pietrobon, G.; Corrao, G.; Volpe, S.; Marvaso, G.; Colombo, F.; Rocca, M.C.; et al. Upfront transoral robotic surgery (TORS) versus intensity-modulated radiation therapy (IMRT) in HPV-positive oropharyngeal cancer: Real-world data from a tertiary comprehensive cancer centre. ACTA Otorhinolaryngol. Ital. Organo Uff. Della Soc. Ital. Otorinolaringol. Chir. Cervico-Facciale 2022, 42, 334–347. [Google Scholar] [CrossRef]
- Volpe, S.; Isaksson, L.J.; Zaffaroni, M.; Pepa, M.; Raimondi, S.; Botta, F.; Presti, G.L.; Vincini, M.G.; Rampinelli, C.; Cremonesi, M.; et al. Impact of image filtering and assessment of volume-confounding effects on CT radiomic features and derived survival models in non-small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 2452–2463. [Google Scholar] [CrossRef] [PubMed]
- Leontovich, A.A.; Dronca, R.S.; Nevala, W.K.; Thompson, M.A.; Kottschade, L.A.; Ivanov, L.V.; Markovic, S.N. Effect of the lymphocyte-to-monocyte ratio on the clinical outcome of chemotherapy administration in advanced melanoma patients. Melanoma Res. 2017, 27, 32–42. [Google Scholar] [CrossRef]
- Liu, N.; Mao, J.; Tao, P.; Chi, H.; Jia, W.; Dong, C. The relationship between NLR/PLR/LMR levels and survival prognosis in patients with non-small cell lung carcinoma treated with immune checkpoint inhibitors. Medicine 2022, 101, e28617. [Google Scholar] [CrossRef]
- Tiainen, S.; Rilla, K.; Hämäläinen, K.; Oikari, S.; Auvinen, P. The prognostic and predictive role of the neutrophil-to-lymphocyte ratio and the monocyte-to-lymphocyte ratio in early breast cancer, especially in the HER2+ subtype. Breast Cancer Res. Treat. 2021, 185, 63–72. [Google Scholar] [CrossRef]
- Kiss, M.; Caro, A.A.; Raes, G.; Laoui, D. Systemic Reprogramming of Monocytes in Cancer. Front. Oncol. 2020, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-C.; Sun, H.-W.; Chen, H.-T.; Liang, J.; Yu, X.-J.; Wu, C.; Wang, Z.; Zheng, L. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc. Natl. Acad. Sci. USA 2014, 111, 4221–4226. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Ning, H.; Liu, M.; Lin, J.; Luo, S.; Zhu, W.; Xu, J.; Wu, W.-C.; Liang, J.; Shao, C.-K.; et al. Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J. Clin. Investig. 2018, 128, 3425–3438. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Junca, A.; Driscoll, K.E.; Pellicciotta, I.; Du, S.; Lo, C.H.; Roy, R.; Parry, R.; Tenvooren, I.; Marquez, D.M.; Spitzer, M.H.; et al. Autocrine TGFβ Is a Survival Factor for Monocytes and Drives Immunosuppressive Lineage Commitment. Cancer Immunol. Res. 2019, 7, 306–320. [Google Scholar] [CrossRef]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef] [Green Version]
- Ménétrier-Caux, C.; Ray-Coquard, I.; Blay, J.Y.; Caux, C. Lymphopenia in Cancer Patients and its Effects on Response to Immunotherapy: An opportunity for combination with Cytokines? J. Immunother. Cancer 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Kawasaki, G.; Naruse, T.; Umeda, M. Prognostic Significance of Pretreatment Lymphocyte–to–Monocyte Ratio in Patients with Tongue Cancer. Anticancer. Res. 2018, 39, 405–412. [Google Scholar] [CrossRef]
- Kano, S.; Homma, A.; Hatakeyama, H.; Mizumachi, T.; Sakashita, T.; Kakizaki, T.; Fukuda, S. Pretreatment lymphocyte-to-monocyte ratio as an independent prognostic factor for head and neck cancer. Head Neck 2017, 39, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-H.; Huang, T.-L.; Chuang, H.-C.; Lin, Y.-T.; Fang, F.-M.; Lu, H.; Chien, C.-Y. Clinical significance of pretreatment prognostic nutritional index and lymphocyte-to-monocyte ratio in patients with advanced p16-negative oropharyngeal cancer—A retrospective study. PeerJ 2020, 8, e10465. [Google Scholar] [CrossRef]
- Kumarasamy, C.; Tiwary, V.; Sunil, K.; Suresh, D.; Shetty, S.; Muthukaliannan, G.K.; Baxi, S.; Jayaraj, R. Prognostic Utility of Platelet–Lymphocyte Ratio, Neutrophil–Lymphocyte Ratio and Monocyte–Lymphocyte Ratio in Head and Neck Cancers: A Detailed PRISMA Compliant Systematic Review and Meta-Analysis. Cancers 2021, 13, 4166. [Google Scholar] [CrossRef] [PubMed]
- Césaire, M.; Rambeau, A.; Clatot, F.; Johnson, A.; Heutte, N.; Thariat, J. Impact of lymphopenia on efficacy of nivolumab in head and neck cancer patients. Eur. Arch. Oto-Rhino-Laryngol. 2022, 1–9, online ahead of print. [Google Scholar] [CrossRef]
- Lee, W.; Berkey, B.; Marcial, V.; Fu, K.; Cooper, J.; Vikram, B.; Coia, L.; Rotman, M.; Ortiz, H. Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: A secondary analysis of RTOG 85-27. Int. J. Radiat. Oncol. 1998, 42, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Stadler, P.; Lavey, R.S.; Hänsgen, G.; Kuhnt, T.; Lautenschläger, C.; Feldmann, H.J.; Molls, M.; Dunst, J. Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int. J. Radiat. Oncol. 2000, 46, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Gorphe, P.; Idrissi, Y.C.; Tao, Y.; Schernberg, A.; Ou, D.; Temam, S.; Casiraghi, O.; Blanchard, P.; Mirghani, H. Anemia and neutrophil-to-lymphocyte ratio are prognostic in p16-positive oropharyngeal carcinoma treated with concurrent chemoradiation. Papillomavirus Res. 2017, 5, 32–37. [Google Scholar] [CrossRef]
- Lassen, P.; Eriksen, J.G.; Hamilton-Dutoit, S.; Tramm, T.; Alsner, J.; Overgaard, J. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother. Oncol. 2010, 94, 30–35. [Google Scholar] [CrossRef]
- So, Y.K.; Lee, G.; Oh, D.; Byeon, S.; Park, W.; Chung, M.K. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Patients with Human Papillomavirus–Positive Oropharyngeal Cancer. Otolaryngol. Neck Surg. 2018, 159, 303–309. [Google Scholar] [CrossRef]
- Fanetti, G.; Alterio, D.; Marvaso, G.; Gandini, S.; Rojas, D.P.; Gobitti, C.; Minatel, E.; Revelant, A.; Caroli, A.; Francia, C.M.; et al. Prognostic significance of neutrophil-to-lymphocyte ratio in HPV status era for oropharyngeal cancer. Oral Dis. 2020, 26, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.; Tombolini, M.; Abate, G.; Salerno, F.; Bulzonetti, N.; Tombolini, V.; Musio, D. Prognostic Significance of the Neutrophil/Lymphocyte Ratio in Patients with Non-Human Papilloma Virus-Related Oropharyngeal Cancer: A Retrospective Cohort Study. Oncology 2019, 96, 8–13. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Kuo, L.-T.; Weng, H.-H.; Hsu, C.-M.; Tsai, M.-S.; Chang, G.-H.; Lee, Y.-C.; Huang, E.I.; Tsai, Y.-T. Systemic Immun e–Inflammation Index as a Predictor for Head and Neck Cancer Prognosis: A Meta-Analysis. Front. Oncol. 2022, 12, 899518. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image biomarker standardisation initiative. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traverso, A.; Kazmierski, M.; Zhovannik, I.; Welch, M.; Wee, L.; Jaffray, D.; Dekker, A.; Hope, A. Machine learning helps identifying volume-confounding effects in radiomics. Phys. Medica 2020, 71, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Zamani, M.; Grønhøj, C.; Jensen, D.H.; Carlander, A.F.; Agander, T.; Kiss, K.; Olsen, C.; Baandrup, L.; Nielsen, F.C.; Andersen, E.; et al. The current epidemic of HPV-associated oropharyngeal cancer: An 18-year Danish population-based study with 2,169 patients. Eur. J. Cancer 2020, 134, 52–59. [Google Scholar] [CrossRef]
- Volpe, S.; Pepa, M.; Zaffaroni, M.; Bellerba, F.; Santamaria, R.; Marvaso, G.; Isaksson, L.J.; Gandini, S.; Starzyńska, A.; Leonardi, M.C.; et al. Machine Learning for Head and Neck Cancer: A Safe Bet?—A Clinically Oriented Systematic Review for the Radiation Oncologist. Front. Oncol. 2021, 11, 772663. [Google Scholar] [CrossRef]
- Rajgor, A.D.; Patel, S.; McCulloch, D.; Obara, B.; Bacardit, J.; McQueen, A.; Aboagye, E.; Ali, T.; O’Hara, J.; Hamilton, D.W. The application of radiomics in laryngeal cancer. Br. J. Radiol. 2021, 94, 20210499. [Google Scholar] [CrossRef]
- Guha, A.; Connor, S.; Anjari, M.; Naik, H.; Siddiqui, M.; Cook, G.; Goh, V. Radiomic analysis for response assessment in advanced head and neck cancers, a distant dream or an inevitable reality? A systematic review of the current level of evidence. Br. J. Radiol. 2020, 93, 20190496. [Google Scholar] [CrossRef]
Patients Characteristics | ||
---|---|---|
n (%) | ||
Gender | ||
Male | 74 (70.5) | |
Female | 31 (29.5) | |
Tumor subsite | ||
Tonsil | 54 (51.4) | |
Base of the tongue | 38 (36.2) | |
Glosso-epiglottic vallecula | 1 (0.9) | |
Soft palate | 7 (6.7) | |
Palatine pillar | 2 (1.9) | |
Lateral wall | 3 (2.9) | |
Smoking habits | ||
Never-smoker | 29 (27.6) | |
Smokers | 29 (27.6) | |
Former-smokers | 27 (25.7) | |
NA | 20 (18.9) | |
Grading | ||
1 | 2 (1.9) | |
2 | 15 (14.3) | |
3 | 46 (43.8) | |
NA | 42 (40.0) | |
Clinical T | ||
cT1 | 25 (23.8) | |
cT2 | 40 (38.1) | |
cT3 | 10 (9.5) | |
cT4 | 27 (25.7) | |
NA | 3 (2.9) | |
Clinical N | ||
cN0 | 8 (7.6) | |
cN1 | 14 (13.4) | |
cN2 | 65 (61.9) | |
cN3 | 10 (9.5) | |
NA | 8 (7.6) | |
Stage (7th ed, 2010) | ||
I | 2 (1.9) | |
II | 4 (3.8) | |
III | 9 (8.6) | |
III/IVa | 3 (2.9) | |
IVa | 73 (69.5) | |
IVb | 14 (13.3) | |
HPV status | ||
HPV+ | 63 (60.0) | |
HPV− | 7 (6.7) | |
NA | 35 (33.3) | |
Stage (7th ed, 2010) of HPV+ patients | ||
I | 32 (50.8) | |
II | 11 (17.5) | |
III | 20 (31.7) | |
Site of recurrence | ||
Local recurrence | 5 (0.05) | |
Regional recurrence | 3 (0.03) | |
Locoregional recurrence | 9 (0.09) | |
Distant progression | 14 (0.13) | |
Chemotherapy | ||
Induction + concomitant | 13 (12.4) | |
Concomitant | 79 (75.2) | |
None | 13 (12.4) | |
Median (IQR) | ||
BMI | ||
Baseline | 26.37 (23.74–29.41) | |
End of RT | 24.03 (21.80–26.20) | |
Weight (Kg) | ||
Baseline | 79 (67–85) | |
End of RT | 73 (60–79) |
Median | IQR | |
---|---|---|
Hemoglobin (g/dL) | 13.85 | 12.53–15.20 |
Neutrophil (cells/μL) | 4560 | 3660–6030 |
Lymphocites (cells/μL) | 1640 | 1195–1995 |
Monocites (cells/μL) | 580 | 445–760 |
Platelets (103 cells/μL) | 233 | 199–297.5 |
Neutrophil/Lymphocites | 2.98 | 2.12–4.00 |
Lymphocites/Monocites | 2.64 | 2.13–3.56 |
Platelets/Lymphocites | 153.85 | 123.73–190.41 |
OS | 10-Fold Cross-Validation | ||||
---|---|---|---|---|---|
Repeated 500 Times | |||||
C-Index Train | C-Index Test | Median C-Index Test | IQR C-Index Test | ||
Radiomic model | 0.75 | 0.74 | 0.77 | 0.75 | 0.8 |
Clinical model | 0.8 | 0.77 | 0.78 | 0.76 | 0.81 |
Clinical radiomic model | 0.84 | 0.79 | 0.82 | 0.8 | 0.84 |
LRPFS | 5-Fold Cross-Validation | ||||
C-Index Train | C-Index Test | Median C-Index Test | IQR C-Index Test | ||
Radiomic model | 0.77 | 0.76 | 0.8 | 0.79 | 0.82 |
Clinical model | 0.75 | 0.66 | 0.72 | 0.7 | 0.73 |
Clinical Radiomic model | 0.81 | 0.66 | 0.77 | 0.75 | 0.79 |
DMFS | 5-Fold Cross-Validation | ||||
C-Index Train | C-Index Test | Median C-Index Test | IQR C-Index Test | ||
Radiomic model | 0.73 | 0.72 | 0.72 | 0.72 | 0.72 |
Clinical model | 0.77 | 0.68 | 0.75 | 0.73 | 0.77 |
Clinical radiomic model | 0.81 | 0.82 | 0.80 | 0.78 | 0.81 |
3-Folds Cross-Validation | |||||
---|---|---|---|---|---|
Repeated 500 Times | |||||
HPV+ OS | C-Index Train | C-Index Test | Median C-Index Test | IQR C-Index Test | |
Radiomic model | 0.8 | 0.84 | 0.83 | 0.8 | 0.87 |
Clinical model | 0.79 | 0.76 | 0.79 | 0.76 | 0.83 |
Clinical Radiomic model | 0.9 | 0.88 | 0.86 | 0.82 | 0.89 |
LRPFS | C-Index Train | C-Index Test | Median C-index test * | IQR C-index test * | |
Radiomic Model | 0.74 | 0.77 | |||
Clinical Model | 0.91 | 0.66 | |||
Clinical Radiomic Model | 0.91 | 0.65 | |||
DMFS | C-Index Train | C-Index Test | Median C-index test | IQR C-index test | |
Radiomic Model | 0.95 | 0.94 | 0.96 | 0.94 | 0.97 |
Clinical Model | 0.68 | 0.66 | 0.70 | 0.67 | 0.73 |
Clinical Radiomic Model | 0.95 | 0.94 | 0.96 | 0.94 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpe, S.; Gaeta, A.; Colombo, F.; Zaffaroni, M.; Mastroleo, F.; Vincini, M.G.; Pepa, M.; Isaksson, L.J.; Turturici, I.; Marvaso, G.; et al. Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit. Cancers 2023, 15, 2022. https://doi.org/10.3390/cancers15072022
Volpe S, Gaeta A, Colombo F, Zaffaroni M, Mastroleo F, Vincini MG, Pepa M, Isaksson LJ, Turturici I, Marvaso G, et al. Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit. Cancers. 2023; 15(7):2022. https://doi.org/10.3390/cancers15072022
Chicago/Turabian StyleVolpe, Stefania, Aurora Gaeta, Francesca Colombo, Mattia Zaffaroni, Federico Mastroleo, Maria Giulia Vincini, Matteo Pepa, Lars Johannes Isaksson, Irene Turturici, Giulia Marvaso, and et al. 2023. "Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit" Cancers 15, no. 7: 2022. https://doi.org/10.3390/cancers15072022
APA StyleVolpe, S., Gaeta, A., Colombo, F., Zaffaroni, M., Mastroleo, F., Vincini, M. G., Pepa, M., Isaksson, L. J., Turturici, I., Marvaso, G., Ferrari, A., Cammarata, G., Santamaria, R., Franzetti, J., Raimondi, S., Botta, F., Ansarin, M., Gandini, S., Cremonesi, M., ... Jereczek-Fossa, B. A. (2023). Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit. Cancers, 15(7), 2022. https://doi.org/10.3390/cancers15072022