Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. Isolation and Purification of Myeloid and Lymphoid Cells from Peripheral Blood
2.3. Whole Exome Sequencing
2.4. Validation Analysis Using Sanger Sequencing
3. Results
3.1. Whole Exome Sequencing Revealed Novel as well as Previously Known SNVs and InDels
3.2. Comparison of Mutational Status of Lymphocytes and Granulocytes Suggests the Transformation to Occur before Lineage Division
3.3. Sanger Sequencing Fully Supported WES Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Beer, P.A.; Delhommeau, F.; LeCouédic, J.-P.; Dawson, M.A.; Chen, E.; Bareford, D.; Kušec, R.; McMullin, M.F.; Harrison, C.N.; Vannucchi, A.M.; et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2010, 115, 2891–2900. [Google Scholar] [CrossRef] [Green Version]
- Yogarajah, M.; Tefferi, A. Leukemic Transformation in Myeloproliferative Neoplasms: A Literature Review on Risk, Characteristics, and Outcome. Mayo Clin. Proc. 2017, 92, 1118–1128. [Google Scholar] [CrossRef] [Green Version]
- Hilal, T.; Conley, C.R. B-cell acute lymphoblastic leukemia with +der(1)t(1;19) (p13;p13.1) arising in the setting of CALR exon 9 mutated essential thrombocythemia. Cancer Genet. 2017, 218–219, 81–83. [Google Scholar] [CrossRef]
- Langabeer, S.E.; Haslam, K.; O’Brien, D.; Kelly, J.; Andrews, C.; Ryan, C.; Flavin, R.; Hayden, P.J.; Bacon, C.L. Acute Lymphoblastic Leukemia Arising in CALR Mutated Essential Thrombocythemia. Case Rep. Hematol. 2016, 2016, 6545861. [Google Scholar]
- Vannucchi, A.M.; Masala, G.; Antonioli, E.; Susini, M.C.; Guglielmelli, P.; Pieri, L.; Maggi, L.; Caini, S.; Palli, D.; Bogani, C.; et al. Increased risk of lymphoid neoplasms in patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2068–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhuraiji, A.; Naqvi, K.; Huh, Y.O.; Ho, C.; Verstovsek, S.; Bose, P. Acute lymphoblastic leukemia secondary to myeloproliferative neoplasms or after lenalidomide exposure. Clin. Case Rep. 2018, 6, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, S.P.; Talwalkar, S.S.; Simons, R.; Yam, L. Acute lymphoblastic leukemic transformation in a patient with chronic idiopathic myelofibrosis and paroxysmal nocturnal hemoglobinuria: A case report and review of the literature. Arch. Pathol. Lab. Med. 2005, 129, 96–99. [Google Scholar] [CrossRef]
- Sever, M.; Jorgensen, J.L.; Gurevich, I.; Pinheiro, M.; Verstovsek, S. Primary myelofibrosis with concurrent precursor T-cell lymphoblastic lymphoma of the spleen in a 26-year-old patient. Leuk. Res. 2009, 33, e186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurisic, V.; Colovic, N.; Terzic, T.; Djordjevic, V.; Colovic, M. Transformation of primary myelofibrosis with 20q- in Philadelphia-positive acute lymphoblastic leukemia: Case report and review of literature. Pathol. Res. Pract. 2012, 208, 420–423. [Google Scholar] [CrossRef]
- Miltiades, P.; Lamprianidou, E.; Kerzeli, I.K.; Nakou, E.; Papamichos, S.I.; Spanoudakis, E.; Kotsianidis, I. Three-fold higher frequency of circulating chronic lymphocytic leukemia-like B-cell clones in patients with Ph-Myeloproliferative neoplasms. Leuk. Res. 2015, 39, 1159–1165. [Google Scholar] [CrossRef]
- Tefferi, A. Pathogenesis of myelofibrosis with myeloid metaplasia. J. Clin. Oncol. 2005, 23, 8520–8530. [Google Scholar] [CrossRef] [PubMed]
- Rolles, B.; Mullally, A. Molecular Pathogenesis of Myeloproliferative Neoplasms. Curr. Hematol. Malig. Rep. 2022, 17, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N. Engl. J. Med. 2005, 352, 1779–1790. [Google Scholar] [CrossRef] [Green Version]
- Delhommeau, F.; Dupont, S.; Tonetti, C.; Massé, A.; Godin, I.; Le Couedic, J.-P.; Debili, N.; Saulnier, P.; Casadevall, N.; Vainchenker, W.; et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007, 109, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shantzer, L.; Berger, K.; Pu, J.J. Primary myelofibrosis and its targeted therapy. Ann. Hematol. 2017, 96, 531–535. [Google Scholar] [CrossRef]
- Vainchenker, W.; Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017, 129, 667–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, L.M.; Tong, W.; Levine, R.L.; Scott, M.A.; Beer, P.A.; Stratton, M.R.; Futreal, P.A.; Erber, W.N.; McMullin, M.F.; Harrison, C.N.; et al. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N. Engl. J. Med. 2007, 356, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005, 7, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gisbert, N.; Fernández-Ibarrondo, L.; Fernández-Rodríguez, C.; Gibert, J.; Andrade-Campos, M.; Arenillas, L.; Camacho, L.; Angona, A.; Longarón, R.; Salar, A.; et al. Circulating cell-free DNA improves the molecular characterisation of Ph-negative myeloproliferative neoplasms. Br. J. Haematol. 2020, 192, 300–309. [Google Scholar] [CrossRef]
- Larsen, T.S.; Christensen, J.H.; Hasselbalch, H.C.; Pallisgaard, N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br. J. Haematol. 2007, 136, 745–751. [Google Scholar] [CrossRef]
- Xu, M.; Bruno, E.; Chao, J.; Huang, S.; Finazzi, G.; Fruchtman, S.M.; Popat, U.; Prchal, J.T.; Barosi, G.; Hoffman, R.; et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 2005, 105, 4508–4515. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Bruno, E.; Chao, J.; Ni, H.; Lindgren, V.; Nunez, R.; Mahmud, N.; Finazzi, G.; Fruchtman, S.M.; Popat, U.; et al. The constitutive mobilization of bone marrow-repopulating cells into the peripheral blood in idiopathic myelofibrosis. Blood 2005, 105, 1699–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triviai, I.; Stübig, T.; Niebuhr, B.; Hussein, K.; Tsiftsoglou, A.; Fehse, B.; Stocking, C.; Kröger, N. CD133 marks a stem cell population that drives human primary myelofibrosis. Haematologica 2015, 100, 768–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, L.A.; Bowman, R.L.; Merlinsky, T.R.; Csete, I.S.; Ooi, A.T.; Durruthy-Durruthy, R.; Bowman, M.; Famulare, C.; Patel, M.A.; Mendez, P.; et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 2020, 587, 477–482. [Google Scholar] [CrossRef]
- Visani, G.; Sapienza, M.R.; Isidori, A.; Tripodo, C.; Laginestra, M.A.; Righi, S.; Sacchetti, C.A.S.; Gazzola, A.; Mannu, C.; Rossi, M.; et al. SNPs array karyotyping reveals a novel recurrent 20p13 amplification in primary myelofibrosis. PLoS ONE 2011, 6, e27560. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Vanburen, V.; Chen, H. Managing biological complexity across orthologs with a visual knowledgebase of documented biomolecular interactions. Sci. Rep. 2012, 2, 1011. [Google Scholar] [CrossRef]
- Mannu, C.; Gazzola, A.; Bacci, F.; Sabattini, E.; Sagramoso, C.; Roncolato, F.; Rossi, M.; Laginestra, M.A.; Sapienza, M.R.; Agostinelli, C.; et al. Use of IGK gene rearrangement analysis for clonality assessment of lymphoid malignancies: A single center experience. Am. J. Blood Res. 2011, 1, 167–174. [Google Scholar] [PubMed]
- Jen, J.; Wang, Y.-C. Zinc finger proteins in cancer progression. J. Biomed. Sci. 2016, 23, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccaluga, P.P.; Agostinelli, C.; Righi, S.; Ciccone, M.; Re, M.C.; Musumeci, G.; Diani, E.; Signoretto, C.; Bon, I.; Piccin, O.; et al. IFI16 reduced expression is correlated with unfavorable outcome in chronic lymphocytic leukemia. Apmis 2017, 125, 511–522. [Google Scholar] [CrossRef]
- Kataoka, H.; Ebi, M.; Shimura, T.; Hirata, Y.; Mizushima, T.; Mizoshita, T.; Tanaka, M.; Tsukamoto, H.; Ozeki, K.; Tanida, S.; et al. The role of neuregulin4 and HER4 in gastrointestinal malignant lymphoma. Mol. Med. Rep. 2011, 4, 1151–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akl, M.R.; Nagpal, P.; Ayoub, N.M.; Tai, B.; Prabhu, S.A.; Capac, C.M.; Gliksman, M.; Goy, A.; Suh, K.S. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget 2016, 7, 44735. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, L.; Wang, C.; Sheng, G.; Feng, L.; Yin, C. Autocrine motility factor receptor promotes the proliferation of human acute monocytic leukemia THP-1 cells. Int. J. Mol. Med. 2015, 36, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Sun, X.; He, P.; Liu, W.-Q.; Zou, Y.-B.; Wang, Q.; Meng, X.-W. Ubiquitin-like modifier activating enzyme 2 promotes cell migration and invasion through Wnt/β-catenin signaling in gastric cancer. World J. Gastroenterol. 2018, 24, 4773–4786. [Google Scholar] [CrossRef]
- Xu, S.; Ning, P. Predicting pathogenic genes for primary myelofibrosis based on a system-network approach. Mol. Med. Rep. 2018, 17, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Bose, P.; Verstovsek, S. Prognosis of Primary Myelofibrosis in the Genomic Era. Clin. Lymphoma Myeloma Leuk. 2016, 16, S105–S113. [Google Scholar] [CrossRef] [Green Version]
- Bogani, C.; Guglielmelli, P.; Antonioli, E.; Pancrazzi, A.; Bosi, A.; Vannucchi, A.M. B-, T-, and NK-cell lineage involvement in JAK2V617F-positive patients with idiopathic myelofibrosis. Haematologica 2007, 92, 258–259. [Google Scholar] [CrossRef] [Green Version]
- Farina, M.; Bernardi, S.; Polverelli, N.; D’Adda, M.; Malagola, M.; Bosio, K.; Re, F.; Almici, C.; Dunbar, A.; Levine, R.L.; et al. Comparative mutational profiling of hematopoietic progenitor cells and circulating endothelial cells (Cecs) in patients with primary myelofibrosis. Cells 2021, 10, 2764. [Google Scholar] [CrossRef] [PubMed]
- Găman, M.-A.; Cozma, M.-A.; Dobrică, E.-C.; Crețoiu, S.M.; Găman, A.M.; Diaconu, C.C. Liquid biopsy and potential liquid biopsy-based biomarkers in philadelphia-negative classical myeloproliferative neoplasms: A systematic review. Life 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Rumi, E.; Passamonti, F.; Elena, C.; Pietra, D.; Arcaini, L.; Astori, C.; Zibellini, S.; Boveri, E.; Pascutto, C.; Lazzarino, M. Increased risk of lymphoid neoplasm in patients with myeloproliferative neoplasm: A study of 1,915 patients. Haematologica 2011, 96, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masarova, L.; Newberry, K.J.; Pierce, S.A.; Estrov, Z.; Cortes, J.E.; Kantarjian, H.M.; Verstovsek, S. Association of lymphoid malignancies and Philadelphia-chromosome negative myeloproliferative neoplasms: Clinical characteristics, therapy and outcome. Leuk. Res. 2015, 39, 822–827. [Google Scholar] [CrossRef] [Green Version]
- Landtblom, A.R.; Bower, H.; Andersson, T.M.-L.; Dickman, P.W.; Samuelsson, J.; Björkholm, M.; Kristinsson, S.Y.; Hultcrantz, M. Second malignancies in patients with myeloproliferative neoplasms: A population-based cohort study of 9379 patients. Leukemia 2018, 32, 2203–2210. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, J.; Han, S.; Lee, J.; Park, K.; Pak, C.; Lim, J.-H.; Cha, H.J.; Kim, H.; Jo, J.-C. Coexistence of follicular lymphoma and an unclassifiable myeloproliferative neoplasm in a treatment-naïve patient: A case report. Oncol. Lett. 2016, 11, 1469–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porpaczy, E.; Tripolt, S.; Hoelbl-Kovacic, A.; Gisslinger, B.; Bago-Horvath, Z.; Casanova-Hevia, E.; Clappier, E.; Decker, T.; Fajmann, S.; Fux, D.A.; et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018, 132, 694–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todisco, G.; Manshouri, T.; Verstovsek, S.; Masarova, L.; Pierce, S.A.; Keating, M.J.; Estrov, Z. Chronic lymphocytic leukemia and myeloproliferative neoplasms concurrently diagnosed: Clinical and biological characteristics. Leuk Lymphoma. 2016, 57, 1054–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, G.; Jonigk, D.; Kreipe, H.; Hussein, K. Simultaneous and sequential concurrent myeloproliferative and lymphoproliferative neoplasms. Acta Haematol. 2013, 129, 187–196. [Google Scholar] [CrossRef]
- Hartmann, L.; Hecker, J.S.; Rothenberg-Thurley, M.; Rivière, J.; Jentzsch, M.; Ksienzyk, B.; Buck, M.C.; van der Garde, M.; Fischer, L.; Winter, S.; et al. Compartment-specific mutational landscape of clonal hematopoiesis. Leukemia 2022, 36, 2647–2655. [Google Scholar] [CrossRef] [PubMed]
Patient | Age (Years) | BM Fibrosis | Splenomegaly | Hb (g/dL) | WBC (×109/L) | PLTs (×109/L) |
---|---|---|---|---|---|---|
CC | 72 | I | Grade I | 10.1 | 2.93 | 176 |
GT | 80 | III | Grade II | 9.6 | 5.1 | 285 |
GB | 73 | I | Grade I | 13.8 | 12.4 | 725 |
SAMPLES | # TOTAL INDELS CALLED | # PASSED FILTER INDELS | # SOMATIC INDELS | # EXONIC/SPLICING INDELS * | # FRAMESHIT INDELS | # NOVEL INDELS * |
---|---|---|---|---|---|---|
GT_G_L | 14.780 | 14.230 | 7.366 | 113 | 51 | 16 (o 14?) |
GB_G_L | 9.199 | 8.989 | 3.090 | 64 | 29 | 7 (o 6?) |
CC_G_L | 8.134 | 7.993 | 2.243 | 43 | 21 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visani, G.; Etebari, M.; Fuligni, F.; Di Guardo, A.; Isidori, A.; Loscocco, F.; Paolini, S.; Navari, M.; Piccaluga, P.P. Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis. Cancers 2023, 15, 1785. https://doi.org/10.3390/cancers15061785
Visani G, Etebari M, Fuligni F, Di Guardo A, Isidori A, Loscocco F, Paolini S, Navari M, Piccaluga PP. Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis. Cancers. 2023; 15(6):1785. https://doi.org/10.3390/cancers15061785
Chicago/Turabian StyleVisani, Giuseppe, Maryam Etebari, Fabio Fuligni, Antonio Di Guardo, Alessandro Isidori, Federica Loscocco, Stefania Paolini, Mohsen Navari, and Pier Paolo Piccaluga. 2023. "Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis" Cancers 15, no. 6: 1785. https://doi.org/10.3390/cancers15061785
APA StyleVisani, G., Etebari, M., Fuligni, F., Di Guardo, A., Isidori, A., Loscocco, F., Paolini, S., Navari, M., & Piccaluga, P. P. (2023). Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis. Cancers, 15(6), 1785. https://doi.org/10.3390/cancers15061785