Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI and Image Analysis
2.3. Statistical Analyses
3. Results
3.1. Hemorrhagic Versus Non-Hemorrhagic BMs from Lung Adenocarcinoma
3.2. Most Influential Variable Predicting BM Hemorrhage
3.3. Effect of BM Hemorrhage on Overall Survival after BM of Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavrilovic, I.T.; Posner, J.B. Brain metastases: Epidemiology and pathophysiology. J. Neuro-Oncol. 2005, 75, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of brain metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Villano, J.L.; Durbin, E.B.; Normandeau, C.; Thakkar, J.P.; Moirangthem, V.; Davis, F.G. Incidence of brain metastasis at initial presentation of lung cancer. Neuro-Oncology 2015, 17, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Hochstenbag, M.M.; Twijnstra, A.; Hofman, P.; Wouters, E.F.; ten Velde, G.P. Mr-imaging of the brain of neurologic asymptomatic patients with large cell or adenocarcinoma of the lung. Does it influence prognosis and treatment? Lung Cancer 2003, 42, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Moro-Sibilot, D.; Smit, E.; de Castro Carpeno, J.; Lesniewski-Kmak, K.; Aerts, J.G.; Villatoro, R.; Kraaij, K.; Nacerddine, K.; Dyachkova, Y.; Smith, K.T.; et al. Non-small cell lung cancer patients with brain metastases treated with first-line platinum-doublet chemotherapy: Analysis from the european frame study. Lung Cancer 2015, 90, 427–432. [Google Scholar] [CrossRef]
- Waqar, S.N.; Samson, P.P.; Robinson, C.G.; Bradley, J.; Devarakonda, S.; Du, L.; Govindan, R.; Gao, F.; Puri, V.; Morgensztern, D. Non-small-cell lung cancer with brain metastasis at presentation. Clin. Lung Cancer 2018, 19, e373–e379. [Google Scholar] [CrossRef]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
- Besse, B.; Le Moulec, S.; Mazieres, J.; Senellart, H.; Barlesi, F.; Chouaid, C.; Dansin, E.; Berard, H.; Falchero, L.; Gervais, R.; et al. Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (brain): A nonrandomized, phase ii study. Clin. Cancer Res. 2015, 21, 1896–1903. [Google Scholar] [CrossRef] [Green Version]
- Maiuri, F.; D'Andrea, F.; Gallicchio, B.; Carandente, M. Intracranial hemorrhages in metastatic brain tumors. J. Neurosurg. Sci. 1985, 29, 37–41. [Google Scholar]
- Kim, S.S.; Kim, S.M.; Park, M.; Suh, S.H.; Ahn, S.J. Clinico-radiological features of brain metastases from thyroid cancer. Medicine 2021, 100, e28069. [Google Scholar] [CrossRef] [PubMed]
- Zoga, E.; Wolff, R.; Ackermann, H.; Meissner, M.; Rodel, C.; Tselis, N.; Chatzikonstantinou, G. Factors associated with hemorrhage of melanoma brain metastases after stereotactic radiosurgery in the era of targeted/immune checkpoint inhibitor therapies. Cancers 2022, 14, 2391. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, J.W.; Chung, H.T.; Paek, S.H.; Kim, D.G.; Jung, H.W. Brain metastasis from renal cell carcinoma. Prog. Neurol. Surg. 2012, 25, 163–175. [Google Scholar]
- Ariesen, M.J.; Claus, S.P.; Rinkel, G.J.; Algra, A. Risk factors for intracerebral hemorrhage in the general population: A systematic review. Stroke 2003, 34, 2060–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Whelton, P.K.; Vu, B.; Klag, M.J. Aspirin and risk of hemorrhagic stroke: A meta-analysis of randomized controlled trials. JAMA 1998, 280, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Rajan, A.; Giaccone, G. Tyrosine kinase inhibitors in lung cancer. Hematol./Oncol. Clin. North Am. 2012, 26, 589–605. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, pd-l1-positive, advanced non-small-cell lung cancer (keynote-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Rangachari, D.; Yamaguchi, N.; VanderLaan, P.A.; Folch, E.; Mahadevan, A.; Floyd, S.R.; Uhlmann, E.J.; Wong, E.T.; Dahlberg, S.E.; Huberman, M.S.; et al. Brain metastases in patients with egfr-mutated or alk-rearranged non-small-cell lung cancers. Lung Cancer 2015, 88, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The eighth edition ajcc cancer staging manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Weng, C.L.; Jeng, Y.; Li, Y.T.; Chen, C.J.; Chen, D.Y. Black dipole or white dipole: Using susceptibility phase imaging to differentiate cerebral microbleeds from intracranial calcifications. AJNR Am. J. Neuroradiol. 2020, 41, 1405–1413. [Google Scholar] [CrossRef]
- Højsgaard, S.; Halekoh, U.; Yan, J. The r package geepack for generalized estimating equations. J. Stat. Softw. 2006, 15, 1–11. [Google Scholar]
- Guyon, J.; Chapouly, C.; Andrique, L.; Bikfalvi, A.; Daubon, T. The normal and brain tumor vasculature: Morphological and functional characteristics and therapeutic targeting. Front. Physiol. 2021, 12, 622615. [Google Scholar] [CrossRef] [PubMed]
- Suri, M.F.; Vazquez, G.; Ezzeddine, M.A.; Qureshi, A.I. A multicenter comparison of outcomes associated with intravenous nitroprusside and nicardipine treatment among patients with intracerebral hemorrhage. Neurocrit. Care 2009, 11, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Moon, K.S.; Jung, T.Y.; Kim, I.Y.; Lee, Y.H.; Rhu, H.H.; Sun, H.S.; Jeong, Y.I.; Kim, K.K.; Kang, S.S. Possible pathophysiological role of vascular endothelial growth factor (vegf) and matrix metalloproteinases (mmps) in metastatic brain tumor-associated intracerebral hemorrhage. J. Neuro-Oncol. 2006, 76, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.; Schafer, N.; Bode, C.; Borger, V.; Potthoff, A.L.; Eichhorn, L.; Giordano, F.A.; Guresir, E.; Heimann, M.; Ko, Y.D.; et al. Preoperative metastatic brain tumor-associated intracerebral hemorrhage is associated with dismal prognosis. Front. Oncol. 2021, 11, 699860. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Duda, D.G.; Xu, L.; Munn, L.L.; Boucher, Y.; Fukumura, D.; Jain, R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 2011, 91, 1071–1121. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Toyoda, S.; Muramatsu, M.; Shimizu, T.; Kojima, T.; Taki, W. Spontaneous haemorrhage into metastatic brain tumours after stereotactic radiosurgery using a linear accelerator. J. Neurol. Neurosurg. Psychiatry 2003, 74, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Omagari, J.; Nishio, S.; Nishiye, E.; Fukui, M. Gamma knife radiosurgery for simultaneous multiple metastatic brain tumors. J. Neurosurg. 2000, 93 (Suppl. S3), 30–31. [Google Scholar] [CrossRef]
- Kim, D.G.; Chung, H.T.; Gwak, H.S.; Paek, S.H.; Jung, H.W.; Han, D.H. Gamma knife radiosurgery for brain metastases: Prognostic factors for survival and local control. J. Neurosurg. 2000, 93 (Suppl. S3), 23–29. [Google Scholar] [CrossRef]
- Redmond, A.J.; Diluna, M.L.; Hebert, R.; Moliterno, J.A.; Desai, R.; Knisely, J.P.; Chiang, V.L. Gamma knife surgery for the treatment of melanoma metastases: The effect of intratumoral hemorrhage on survival. J. Neurosurg. 2008, 109, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, D.; Kondziolka, D.; Cooper, P.B.; Flickinger, J.C.; Niranjan, A.; Agarwala, S.; Kirkwood, J.; Lunsford, L.D. Gamma knife radiosurgery for malignant melanoma brain metastases. Clin. Neurosurg. 2007, 54, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Raben, D.; Helfrich, B. Angiogenesis inhibitors: A rational strategy for radiosensitization in the treatment of non-small-cell lung cancer? Clin. Lung Cancer 2004, 6, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Andres, M.L.; Timiryasova, T.M.; Fodor, I.; Slater, J.M.; Gridley, D.S. Radiation-enhanced endostatin gene expression and effects of combination treatment. Technol. Cancer Res. Treat. 2005, 4, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Rubin, P.; Gash, D.M.; Hansen, J.T.; Nelson, D.F.; Williams, J.P. Disruption of the blood-brain barrier as the primary effect of cns irradiation. Radiother. Oncol. 1994, 31, 51–60. [Google Scholar] [CrossRef]
- Park, C.-K.; Kim, D.G.; Gwak, H.-S.; Chung, H.-T.; Paek, S.H. Case report: Intracerebral hemorrhage after γ-knife surgery for metastatic brain tumor. J. Radiosurg. 2000, 3, 17–20. [Google Scholar] [CrossRef]
- Yan, D.F.; Yan, S.X.; Yang, J.S.; Wang, Y.X.; Sun, X.L.; Liao, X.B.; Liu, J.Q. Hemorrhage of brain metastasis from non-small cell lung cancer post gefitinib therapy: Two case reports and review of the literature. BMC Cancer 2010, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Ochs, J.S. Rationale and clinical basis for combining gefitinib (iressa, zd1839) with radiation therapy for solid tumors. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 941–949. [Google Scholar] [CrossRef]
- Bianco, C.; Tortora, G.; Bianco, R.; Caputo, R.; Veneziani, B.M.; Caputo, R.; Damiano, V.; Troiani, T.; Fontanini, G.; Raben, D.; et al. Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor zd1839 (iressa). Clin. Cancer Res. 2002, 8, 3250–3258. [Google Scholar]
- Colclough, N.; Chen, K.; Johnstrom, P.; Strittmatter, N.; Yan, Y.; Wrigley, G.L.; Schou, M.; Goodwin, R.; Varnas, K.; Adua, S.J.; et al. Preclinical comparison of the blood-brain barrier permeability of osimertinib with other egfr tkis. Clin. Cancer Res. 2021, 27, 189–201. [Google Scholar] [CrossRef]
- Liew, D.N.; Kano, H.; Kondziolka, D.; Mathieu, D.; Niranjan, A.; Flickinger, J.C.; Kirkwood, J.M.; Tarhini, A.; Moschos, S.; Lunsford, L.D. Outcome predictors of gamma knife surgery for melanoma brain metastases. Clinical article. J. Neurosurg. 2011, 114, 769–779. [Google Scholar] [CrossRef]
- Kidd, D.; Plant, G.T.; Scaravilli, F.; McCartney, A.C.; Stanford, M.; Graham, E.M. Metastatic choriocarcinoma presenting as multiple intracerebral haemorrhages: The role of imaging in the elucidation of the pathology. J. Neurol. Neurosurg. Psychiatry 1998, 65, 939–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, G.; Rana, V.; Wallace, S.; Taylor, S.; Debnam, M.; Feng, L.; Suki, D.; Karp, D.; Stewart, D.; Oh, Y. Risk of intracranial hemorrhage and cerebrovascular accidents in non-small cell lung cancer brain metastasis patients. J. Thorac. Oncol. 2009, 4, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Ma, X.X.; Ji, Y.M.; Kang, X.S.; Li, C.F. Haemorrhage detection in brain metastases of lung cancer patients using magnetic resonance imaging. J. Int. Med. Res. 2009, 37, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Preusser, M. Anti-angiogenic therapies in brain metastases. memo-Mag. Eur. Med. Oncol. 2018, 11, 14–17. [Google Scholar] [CrossRef]
- Martini, S.R.; Flaherty, M.L.; Brown, W.M.; Haverbusch, M.; Comeau, M.E.; Sauerbeck, L.R.; Kissela, B.M.; Deka, R.; Kleindorfer, D.O.; Moomaw, C.J.; et al. Risk factors for intracerebral hemorrhage differ according to hemorrhage location. Neurology 2012, 79, 2275–2282. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, M.L.; Tao, H.; Haverbusch, M.; Sekar, P.; Kleindorfer, D.; Kissela, B.; Khatri, P.; Stettler, B.; Adeoye, O.; Moomaw, C.J.; et al. Warfarin use leads to larger intracerebral hematomas. Neurology 2008, 71, 1084–1089. [Google Scholar] [CrossRef]
- Donato, J.; Campigotto, F.; Uhlmann, E.J.; Coletti, E.; Neuberg, D.; Weber, G.M.; Zwicker, J.I. Intracranial hemorrhage in patients with brain metastases treated with therapeutic enoxaparin: A matched cohort study. Blood 2015, 126, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, G.; Noor, R.; Bassett, R.; Papadopoulos, N.E.; Kim, K.B.; Hwu, W.J.; Bedikian, A.; Patel, S.; Hwu, P.; Davies, M.A. Risk of intracranial hemorrhage with anticoagulation therapy in melanoma patients with brain metastases. Melanoma Res. 2012, 22, 310–315. [Google Scholar] [CrossRef]
- Gerstner, E.R.; Fine, R.L. Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: Establishing a treatment paradigm. J. Clin. Oncol. 2007, 25, 2306–2312. [Google Scholar] [CrossRef]
Non-Hemorrhagic BMs (n= 63) | Hemorrhagic BMs (n = 96) | Total (n = 159) | p | |
---|---|---|---|---|
Age (years) | 67.7 ± 14.7 | 66.3 ± 12.2 | 66.8 ± 13.2 | 0.5 |
Sex | 0.75 | |||
Female | 35 (55.6%) | 44 (45.8%) | 79 (49.7%) | |
Male | 28 (44.4%) | 52 (54.2%) | 80 (50.3%) | |
Smoking | 0.93 | |||
Never smoker | 44 (69.8%) | 69 (71.9%) | 113 (71.1%) | |
Ever smoker | 19 (30.2%) | 27 (28.1%) | 46 (28.9%) | |
Hypertension | 0.46 | |||
No | 39 (61.9%) | 60 (62.5%) | 99 (62.3%) | |
Yes | 24 (38.1%) | 36 (37.5%) | 60 (37.7%) | |
Antithrombotic treatment | 0.2 | |||
No | 50 (79.4%) | 86 (89.6%) | 136 (85.5%) | |
Yes | 13 (20.6%) | 10 (10.4%) | 23 (14.5%) | |
Interval from initial diagnosis of lung cancer to BM surveillance (months) | 13.1 ± 14.7 | 19.0 ± 25.1 | 16.7 ± 21.8 | 0.09 |
BM size (mm) | 11.7 ± 9.7 | 16.1 ± 11.7 | 14.4 ± 11.1 | 0.03 * |
TNM stage | 0.13 | |||
Stage 1 | 8 (12.7%) | 5 (5.3%) | 13 (8.2%) | |
Stage 2 | 3 (4.8%) | 4 (4.2%) | 7 (4.4%) | |
Stage 3 | 15 (23.8%) | 13 (13.7%) | 28 (17.7%) | |
Stage 4 | 37 (58.7%) | 73 (76.8%) | 110 (69.6%) | |
EGFR | 0.25 | |||
Negative | 27 (45.8%) | 29 (31.9%) | 56 (37.3%) | |
Positive | 32 (54.2%) | 62 (68.1%) | 94 (62.7%) | |
ALK | 0.72 | |||
Negative | 48 (92.3%) | 66 (95.7%) | 114 (94.2%) | |
Positive | 4 (7.7%) | 3 (4.3%) | 7 (5.8%) | |
ROS1 | 1 | |||
Negative | 60 (100.0%) | 87 (98.9%) | 147 (99.3%) | |
Positive | 0 (0.0%) | 1 (1.1%) | 1 (0.7%) | |
TKI therapy | 0.06 | |||
No | 44 (69.8%) | 43 (44.8%) | 87 (54.7%) | |
Yes | 19 (30.2%) | 53 (55.2%) | 72 (45.3%) | |
TKI subtype | 0.08 | |||
1st generation | 9 (47.4%) | 18 (34.0%) | 27 (37.5%) | |
2nd generation | 10 (52.6%) | 22 (41.5%) | 32 (44.4%) | |
3rd generation | 0 (0.0%) | 13 (24.5%) | 13 (18.1%) | |
Radiation therapy for BM | 0.06 | |||
No | 34 (54.0%) | 35 (36.5%) | 69 (43.4%) | |
Yes | 29 (46.0%) | 61 (63.5%) | 90 (56.6%) | |
Subtype of radiation therapy | 0.26 | |||
SRS | 5 (17.2%) | 16 (26.2%) | 21 (23.3%) | |
WBRT | 24 (82.8%) | 45 (73.8%) | 69 (76.7%) | |
Immunotherapy | 0.34 | |||
No | 48 (96.0%) | 71 (92.2%) | 119 (93.7%) | |
Yes | 2 (4.0%) | 6 (7.8%) | 8 (6.3%) | |
Combination therapy | 0.03 * | |||
Neither TKI nor radiation therapy | 27 (42.9%) | 21 (21.9%) | 48 (30.2%) | |
TKI or radiation therapy | 24 (38.1%) | 36 (37.5%) | 60 (37.7%) | |
Both TKI and radiation therapy | 12 (19.0%) | 39 (40.6%) | 51 (32.1%) |
OR (95% CI) | p-Value | |
---|---|---|
BM size (mm) | 1.07 (1–1.13) | 0.03 * |
Combination therapy | 2.31 (1.13–4.71) | 0.02 * |
Age | 0.99 (0.96–1.01) | 0.26 |
Sex | 0.86 (0.3–2.48) | 0.78 |
EGFR | 1.22 (0.4–3.76) | 0.72 |
Variables | Relative Influence |
---|---|
BM size | 49.83 |
Age | 16.65 |
Combination therapy | 13.81 |
TKI therapy | 10.00 |
Radiation therapy | 5.35 |
Sex | 2.88 |
Time interval | 1.44 |
EGFR | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.S.; Lee, S.; Park, M.; Joo, B.; Suh, S.H.; Ahn, S.J. Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma. Cancers 2023, 15, 619. https://doi.org/10.3390/cancers15030619
Kim SS, Lee S, Park M, Joo B, Suh SH, Ahn SJ. Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma. Cancers. 2023; 15(3):619. https://doi.org/10.3390/cancers15030619
Chicago/Turabian StyleKim, Song Soo, Seoyoung Lee, Mina Park, Bio Joo, Sang Hyun Suh, and Sung Jun Ahn. 2023. "Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma" Cancers 15, no. 3: 619. https://doi.org/10.3390/cancers15030619
APA StyleKim, S. S., Lee, S., Park, M., Joo, B., Suh, S. H., & Ahn, S. J. (2023). Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma. Cancers, 15(3), 619. https://doi.org/10.3390/cancers15030619