Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Patient Selection
2.2. Dose Prescription and Fractionation
2.3. Patient Set-Up and Simulation
2.4. Treatment Planning
2.5. Dosimetric Evaluation
2.6. Statistical Analysis
3. Results
3.1. Comparative Evaluation of the Physical Dosimetric Parameters
3.2. Comparative Evaluation of PTV and OAR Dosimetry
3.3. Toxicities and Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet Oncol. 2004, 363, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Gondi, V.; Ahluwalia, M.S.; Brastianos, P.K.; Mehta, M.P. Recent advances in managing brain metastasis. F1000Research 2018, 7, 1772. [Google Scholar] [CrossRef] [Green Version]
- Boire, A.; Brastianos, P.K.; Garzia, L.; Valiente, M. Brain metastases. Nat. Rev. Cancer 2020, 20, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Lamba, N.; Muskens, I.S.; DiRisio, A.C.; Meijer, L.; Briceno, V.; Edrees, H.; Aslam, B.; Minhas, S.; Verhoeff, J.J.C.; Kleynen, C.E.; et al. Stereotactic radiosurgery versus whole-brain radiotherapy after intracranial metastasis resection: A systematic review and meta-analysis. Radiat. Oncol. 2017, 12, 106. [Google Scholar] [CrossRef]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Balagamwala, E.; Murphy, E.; Angelov, L.; Suh, J.; Lo, S.; Chao, S. Postoperative stereotactic radiosurgery for resected brain metastasis. CNS Oncol. 2014, 3, 199–207. [Google Scholar] [CrossRef]
- Jagannathan, J.; Sherman, J.H.; Mehta, G.U.; Chin, L.S. Radiobiology of brain metastasis: Applications in stereotactic radiosurgery. Neurosurg. Focus. 2007, 22, E4. [Google Scholar] [CrossRef]
- Ghemiş, D.M.; Marcu, L.G. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit. Rev. Oncol. Hematol. 2021, 163, 103396. [Google Scholar] [CrossRef]
- Shaw, E.; Kline, R.; Gillin, M.; Souhami, L.; Hirschfeld, A.; Dinapoli, R.; Martin, L. Radiation Therapy Oncology Group: Radiosurgery quality assurance guidelines. Int. J. Radiat. Oncol. Biol. Phys. 1993, 27, 1231–1239. [Google Scholar] [CrossRef]
- Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J. Neurosurg. 2000, 93, 219–222. [Google Scholar] [CrossRef]
- Stanley, J.; Breitman, K.; Dunscombe, P.; Spencer, D.P.; Lau, H. Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases. J. Appl. Clin. Med. Phys. 2011, 12, 3449. [Google Scholar] [CrossRef] [PubMed]
- Elekta, IMPAC Medical System Inc. Monaco Training Guide; Document number LTGMON0510; Elekta, IMPAC Medical System Inc.: Sunnyvale, CA, USA, 2015; p. 854. [Google Scholar]
- Reynolds, T.A.; Jensen, A.R.; Bellairs, E.E.; Ozer, M. Dose Gradient Index for Stereotactic Radiosurgery/Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Chin, L.S.; Ma, L.; DiBiase, S. Radiation necrosis following gamma knife surgery: A case-controlled comparison of treatment parameters and long-term clinical follow up. J. Neurosurg. 2001, 94, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Andruska, N.; Kennedy, W.R.; Bonestroo, L.; Anderson, R.; Huang, Y.; Robinson, C.G.; Abraham, C.; Tsein, C.; Knutson, N.; Rich, K.M.; et al. Dosimetric predictors of symptomatic radiation necrosis after five-fraction radiosurgery for brain metastases. Radiother. Oncol. 2021, 156, 181–187. [Google Scholar] [CrossRef]
- Rogers, S.; Stauffer, A.; Lomax, N.; Alonso, S.; Eberle, E.; Gomez Orgonez, S.; Lazeroms, T.; Kessler, E.; Brendel, M.; Schwyzer, L.; et al. Five fraction stereotactic radiotherapy after brain metastasectomy: A single-institution experience and literature review. J. Neurooncol. 2021, 155, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Al-Omair, A.; Soliman, H.; Xu, W.; Karotki, A.; Mainprize, T.; Phan, N.; Das, S.; Keith, J.; Yeoung, R.; Perry, J.; et al. Hypofractionated stereotactic radiotherapy in five daily fractions for post-operative surgical cavities in brain metastases patients with and without prior whole brain radiation. Technol. Cancer Res. Treat. 2013, 12, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Cho, K.H.; Kim, J.Y.; Lim, Y.K.; Min, H.S.; Lee, S.H.; Kim, H.J.; Gwak, H.A.; Yoo, H.; Lee, S.H. Single-dose versus fractionated stereotactic radiotherapy for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 483–489. [Google Scholar] [CrossRef]
- Myrehaug, S.; Hudson, J.; Soliman, H.; Ruschin, M.; Tseng, C.-L.; Detsky, J.; Husain, Z.; Keith, J.; Atenafu, E.; Maralani, P.; et al. Hypofractionated Stereotactic Radiation Therapy for Intact Brain Metastases in 5 Daily Fractions: Effect of Dose on Treatment Response. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 342–350. [Google Scholar] [CrossRef]
- Mengue, L.; Bertaut, A.; Ngo Mbus, L.; Doré, M.; Ayadi, M.; Clément-Colmou, K.; Claude, L.; Carrie, C.; Laude, C.; Tanguy, R.; et al. Brain metastases treated with hypofractionated stereotactic radiotherapy: 8 years experience after Cyberknife installation. Radiat. Oncol. 2020, 15, 82. [Google Scholar] [CrossRef]
- Putz, F.; Weissmann, T.; Oft, D.; Schmidt, M.A.; Roesch, J.; Siavooshhaghighi, H.; Filimonova, I.; Schmitter, C.; Mengling, V.; Bert, C.; et al. FSRT vs. SRS in Brain Metastases-Differences in Local Control and Radiation Necrosis-A Volumetric Study. Front. Oncol. 2020, 10, 559193. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Chen, S.; Xu, C.; Shi, L.; Fu, L.; Ha, H.; Lin, Q.; Zhang, Z. Dosimetric superiority of flattening filter free beams for single-fraction stereotactic radiosurgery in single brain metastasis. Oncotarget 2017, 8, 35272–35279. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, A.; Giaj-Levra, N.; Tebano, U.; Mazzola, R.; Ricchetti, F.; Fersino, S.; Di Paola, G.; Aielli, D.; Ruggieri, R.; Alongi, F. Stereotactic ablative radiation therapy for brain metastases with volumetric modulated arc therapy and flattening filter free delivery: Feasibility and early clinical results. Radiol. Med. 2017, 122, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Rieber, J.; Tonndorf-Martini, E.; Schramm, O.; Rhein, B.; Stefanowicz, S.; Kappes, J.; Hoffmann, H.; Lindel, K.; Debus, J.; Rieken, S. Radiosurgery with flattening-filter-free techniques in the treatment of brain metastases: Plan comparison and early clinical evaluation. Strahlenther. Onkol. 2016, 192, 789–796. [Google Scholar] [CrossRef]
- Stieler, F.; Fleckenstein, J.; Simeonova, A.; Wenz, F.; Lohr, F. Intensity modulated radiosurgery of brain metastases with flattening filter-free beams. Radiother. Oncol. 2013, 109, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, B.M.; Popple, R.A.; Clark, G.M.; Spencer, S.A.; Guthrie, B.; Markert, J.; Fiveash, J.B. Improved clinical efficiency in CNS stereotactic radiosurgery using a flattening filter free linear accelerator. J. Radiosurg. SBRT 2011, 1, 117–122. [Google Scholar] [CrossRef]
- Dzierma, Y.; Nuesken, F.G.; Palm, J.; Licht, N.P.; Ruebe, C. Planning study and dose measurements of intracranial stereotactic radiation surgery with a flattening filter-free linac. Pract. Radiat. Oncol. 2014, 4, e109–e116. [Google Scholar] [CrossRef]
- Sarkar, B.; Pradhan, A.; Munshi, A. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning. Indian J. Cancer 2016, 53, 166–173. [Google Scholar] [CrossRef]
- Gasic, D.; Ohlhues, L.; Brodin, N.P.; Fog, L.S.; Pommer, T.; Bangsgaard, J.P.; af Rosenschold, P.M. A treatment planning and delivery comparison of volumetric modulated arc therapy with or without flattening filter for gliomas, brain metastases, prostate, head/neck and early stage lung cancer. Acta Oncol. 2014, 53, 1005–1011. [Google Scholar] [CrossRef]
- Greto, D.; Scoccianti, S.; Compagnucci, A.; Arilli, C.; Casati, M.; Francolini, G.; Cecchini, S.; Loi, M.; Desideri, I.; Bordi, L.; et al. Gamma Knife Radiosurgery in the management of single and multiple brain metastases. Clin. Neurol. Neurosurg. 2016, 141, 43–47. [Google Scholar] [CrossRef]
Patient Characteristics | Number (%)/Mean ± Std Dev | |
---|---|---|
Number of patients | 18 | |
Sex | ||
Male | 9 (50%) | |
Female | 9 (50%) | |
Age | ||
Mean age | 65.8 ± 9.6 years | |
Mean age male | 70.1 ± 5.4 years | |
Mean age female | 61.4 ± 11.1 years | |
Primary lesion | ||
Lung | 11 (61.1%) | |
Breast | 4 (22.2%) | |
Renal | 2 (11.1%) | |
Melanoma | 1 (5.6%) |
Patient | Number of PTVs | Volume of PTV (cc) | Number of Fields | Couch Rotation |
---|---|---|---|---|
1 | 2 | 5.45 | 4 | 315/0/45/90 |
2 | 1 | 6.08 | 3 | 0/90 |
3 | 1 | 5.59 | 4 | 45/0/315/270 |
4 | 2 | 5.39 | 3 | 0/45/90 |
5 | 2 | 2.96 | 3 | 315/45/90 |
6 | 1 | 4.47 | 2 | 0/90 |
7 | 1 | 6.11 | 2 | 0/60 |
8 | 2 | 7.52 | 4 | 0/45/315 |
9 | 1 | 4.49 | 3 | 35/325/270 |
10 | 1 | 6.96 | 3 | 0/60/300 |
11 | 1 | 2.39 | 3 | 35/325/270 |
12 | 1 | 2.49 | 3 | 0/315/270 |
13 | 2 | 6.15 | 2 | 0/90 |
14 | 1 | 9.77 | 2 | 0/45 |
15 | 1 | 2.34 | 3 | 0/45/270 |
16 | 1 | 5.39 | 3 | 0/270 |
17 | 1 | 5.89 | 3 | 0/45/90 |
18 | 1 | 4.40 | 3 | 0/45/90 |
Target Volume | Hotspot | Coverage |
---|---|---|
GTV | ≤ 140% | |
CTV | ≤ 140% | |
PTV | ≤ 140% to be kept inside PTV | |
OARs | Maximum dose | Volumetric constraints |
Brainstem | ||
Optic nerves | ||
Optic chiasma | ||
Lens | ||
Cochlea | ||
Normal brain tissue |
Patient | PTV Volume (cc) | MU | CI | DGI | Estimated Delivery Time According to TPS (s) | Beam on Time (s) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
FFF | FF | FFF | FF | FFF | FF | FFF | FF | FFF | FF | ||
1 | 5.45 | 1776.7 | 1758.3 | 0.45 | 0.45 | 70.9 | 68.7 | 178.46 | 176.4 | 126 | 265 |
2 | 6.08 | 1187 | 1199.5 | 0.85 | 0.82 | 86.4 | 85.3 | 115.21 | 114.63 | 66 | 172 |
3 | 5.59 | 1242.8 | 1364.7 | 0.77 | 0.79 | 55.7 | 62.3 | 159.65 | 169.46 | 126 | 210 |
4 | 5.39 | 1622.1 | 1716.3 | 0.41 | 0.41 | 73.5 | 70.3 | 164.2 | 173.08 | 78 | 260 |
5 | 2.96 | 1672.1 | 1705.4 | 0.4 | 0.4 | 62.2 | 62.8 | 161.47 | 165.71 | 102 | 249 |
6 | 4.47 | 1219.9 | 1271.4 | 0.88 | 0.89 | 85.8 | 85.3 | 123.1 | 126 | 90 | 189 |
7 | 6.11 | 1213.8 | 1216.1 | 0.85 | 0.85 | 82.9 | 82.4 | 117.86 | 114.5 | 78 | 172 |
8 | 7.52 | 1286.5 | 1252 | 0.41 | 0.44 | 66.6 | 65.2 | 191 | 187.6 | 102 | 281 |
9 | 4.49 | 1318 | 1267.68 | 0.85 | 0.84 | 84.6 | 84.2 | 153 | 145.8 | 126 | 219 |
10 | 6.96 | 927.6 | 733.5 | 0.91 | 0.6 | 63.6 | 45.1 | 107.8 | 94.2 | 90 | 141 |
11 | 2.39 | 1332.3 | 1341.5 | 0.8 | 0.8 | 83.5 | 83.4 | 129.5 | 133.12 | 84 | 200 |
12 | 2.49 | 1219.5 | 1267.1 | 0.75 | 0.73 | 85.1 | 83.8 | 120.87 | 124.22 | 78 | 200 |
13 | 6.15 | 1328.9 | 1284.7 | 0.4 | 0.4 | 65.0 | 63.9 | 135.6 | 132.2 | 90 | 198 |
14 | 9.77 | 773.1 | 863 | 0.82 | 0.82 | 58.6 | 59.1 | 74.61 | 87 | 48 | 131 |
15 | 2.34 | 1034.71 | 1141.4 | 0.89 | 0.89 | 90.5 | 90.4 | 120 | 127.3 | 90 | 194 |
16 | 5.39 | 1062.44 | 1135.9 | 0.89 | 0.86 | 82.4 | 81.7 | 154 | 162.71 | 78 | 244 |
17 | 5.89 | 1305.28 | 1212.2 | 0.83 | 0.8 | 65.5 | 62.9 | 132.94 | 120.9 | 84 | 181 |
18 | 4.40 | 1178.09 | 1390.58 | 0.85 | 0.87 | 76.8 | 77.1 | 127.32 | 141.07 | 90 | 221 |
Average | 5.21 | 1261.2 | 1284.5 | 0.72 | 0.7 | 74.4 | 73 | 137 | 138.7 | 90.3 | 207 |
p-value | 0.29 | 0.28 | 0.4 | 0.4 | ≤0.001 |
Patient | No. of PTVs | PTV Vol. (cc) | GTV | CTV | PTV | Normal Brain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coverage (%) | Coverage (%) | Coverage (%) | Hotspot (Gy) | V20 (cc) | Mean Dose (Gy) | |||||||||
FFF | FF | FFF | FF | FFF | FF | FFF | FF | FFF | FF | FFF | FF | |||
1 | 2 | 5.45 | 100 | 100 | 100 | 100 | 94.35 | 93.3 | 44.12 | 44.23 | 5.10 | 5.20 | 1.84 | 1.88 |
2 | 1 | 6.08 | 100 | 100 | 100 | 100 | 85.23 | 82.98 | 44.46 | 44.01 | 2.50 | 2.48 | 0.90 | 0.79 |
3 | 1 | 5.59 | 99.36 | 99.41 | 97.13 | 97.34 | 94.72 | 95.08 | 40.80 | 41.82 | 4.20 | 3.62 | 1.27 | 1.20 |
4 | 2 | 5.39 | 100 | 100 | 99.32 | 99.26 | 95.37 | 94.50 | 42.33 | 41.09 | 4.60 | 4.83 | 1.10 | 1.14 |
5 | 2 | 2.96 | 100 | 100 | 98.26 | 96.28 | 91.67 | 88.80 | 40.97 | 41.47 | 4.94 | 4.60 | 1.52 | 1.51 |
6 | 1 | 4.47 | 100 | 100 | 99.97 | 99.97 | 97.22 | 97.03 | 41.50 | 41.80 | 8.16 | 8.28 | 1.30 | 1.32 |
7 | 1 | 6.11 | 100 | 100 | 100 | 100 | 96.09 | 96.10 | 41.60 | 42.03 | 1.95 | 1.97 | 1.06 | 1.09 |
8 | 2 | 7.52 | 100 | 100 | 97.73 | 99.10 | 95.66 | 95.39 | 41.09 | 41.39 | 6.47 | 6.63 | 1.95 | 2.02 |
9 | 1 | 4.49 | 100 | 100 | 100 | 100 | 95.57 | 95.23 | 42.31 | 41.40 | 8.55 | 8.68 | 1.07 | 1.11 |
10 | 1 | 6.96 | 100 | 99.66 | 99.90 | 96.00 | 99.60 | 90.67 | 41.19 | 36.64 | 7.42 | 11.03 | 1.44 | 1.70 |
11 | 1 | 2.39 | 100 | 100 | 98.10 | 97.80 | 92.69 | 94.47 | 41.67 | 42.86 | 5.53 | 5.51 | 0.97 | 0.98 |
12 | 1 | 2.49 | 100 | 100 | 100 | 100 | 89.13 | 88.89 | 44.50 | 45.25 | 1.24 | 1.26 | 0.85 | 0.88 |
13 | 2 | 6.15 | 100 | 100 | 99.99 | 99.94 | 98.27 | 98.30 | 38.31 | 38.77 | 9.71 | 9.94 | 1.97 | 2.03 |
14 | 1 | 9.77 | 100 | 100 | 98.32 | 92.33 | 93.92 | 93.65 | 38.13 | 32.54 | 10.00 | 9.80 | 1.99 | 1.98 |
15 | 1 | 2.34 | 100 | 100 | 100 | 100 | 97.56 | 97.52 | 39.59 | 39.53 | 3.27 | 3.27 | 0.62 | 0.63 |
16 | 1 | 5.39 | 100 | 100 | 99.00 | 98.31 | 89.34 | 86.22 | 34.23 | 41.55 | 8.37 | 8.21 | 1.14 | 1.13 |
17 | 1 | 5.89 | 99.92 | 99.76 | 98.42 | 96.44 | 87.01 | 83.42 | 37.70 | 36.03 | 10.00 | 10.00 | 1.13 | 0.99 |
18 | 1 | 4.4 | 100 | 100 | 100 | 100 | 98.63 | 97.84 | 35.83 | 36.00 | 7.87 | 7.67 | 0.95 | 0.93 |
Mean | 5.21 | 99.96 | 99.94 | 99.23 | 98.49 | 94.00 | 92.74 | 40.57 | 40.47 | 6.10 | 6.28 | 1.28 | 1.30 | |
p-value | 0.246 | 0.088 | 0.036 | 0.864 | 0.419 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghemiș, D.M.; Marcu, L.G. Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study. Cancers 2023, 15, 678. https://doi.org/10.3390/cancers15030678
Ghemiș DM, Marcu LG. Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study. Cancers. 2023; 15(3):678. https://doi.org/10.3390/cancers15030678
Chicago/Turabian StyleGhemiș, Diana M., and Loredana G. Marcu. 2023. "Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study" Cancers 15, no. 3: 678. https://doi.org/10.3390/cancers15030678
APA StyleGhemiș, D. M., & Marcu, L. G. (2023). Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study. Cancers, 15(3), 678. https://doi.org/10.3390/cancers15030678