Radiogenomics: Contemporary Applications in the Management of Rectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Reporting Guidelines
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection, Data Extraction and Critical Appraisal
2.5. Systematic Review Registration
3. Results
3.1. Search Results
3.2. Methodological Characteristics and Quality of Studies
3.3. Participant Characteristics
3.4. Acquisition Parameters
3.5. Development of Signatures
3.6. Performance of Signatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sauer, R.; Becker, H.; Hohenberger, W.; Rodel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef]
- Kong, J.C.; Soucisse, M.; Michael, M.; Tie, J.; Ngan, S.Y.; Leong, T.; McCormick, J.; Warrier, S.K.; Heriot, A.G. Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes. Ann. Surg. Oncol. 2021, 28, 7476–7486. [Google Scholar] [CrossRef]
- Guida, A.M.; Sensi, B.; Formica, V.; D’Angelillo, R.M.; Roselli, M.; Del Vecchio Blanco, G.; Rossi, P.; Capolupo, G.T.; Caricato, M.; Sica, G.S. Total neoadjuvant therapy for the treatment of locally advanced rectal cancer: A systematic minireview. Biol. Direct 2022, 17, 16. [Google Scholar] [CrossRef]
- Ali, F.; Keshinro, A.; Weiser, M.R. Advances in the treatment of locally advanced rectal cancer. Ann. Gastroenterol. Surg. 2021, 5, 32–38. [Google Scholar] [CrossRef]
- Nacion, A.J.D.; Park, Y.Y.; Kim, N.K. Contemporary management of locally advanced rectal cancer: Resolving issues, controversies and shifting paradigms. Chin. J. Cancer Res. 2018, 30, 131–146. [Google Scholar] [CrossRef]
- Smith, J.J.; Garcia-Aguilar, J. Advances and challenges in treatment of locally advanced rectal cancer. J. Clin. Oncol. 2015, 33, 1797–1808. [Google Scholar] [CrossRef]
- Valadao, M.; Dias, J.A.; Araujo, R.; Cesar, D. Do We Have to Treat All T3 Rectal Cancer the Same Way? Clin. Colorectal. Cancer 2020, 19, 231–235. [Google Scholar] [CrossRef]
- Tibermacine, H.; Rouanet, P.; Sbarra, M.; Forghani, R.; Reinhold, C.; Nougaret, S.; Group, G.S. Radiomics modelling in rectal cancer to predict disease-free survival: Evaluation of different approaches. Br. J. Surg. 2021, 108, 1243–1250. [Google Scholar] [CrossRef]
- Li, S.; Zhou, B. A review of radiomics and genomics applications in cancers: The way towards precision medicine. Radiat. Oncol. 2022, 17, 217. [Google Scholar] [CrossRef]
- PelvEx, C. Contemporary Management of Locally Advanced and Recurrent Rectal Cancer: Views from the PelvEx Collaborative. Cancers 2022, 14, 1161. [Google Scholar] [CrossRef]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2020, 10, 570465. [Google Scholar] [CrossRef]
- Singh, G.; Manjila, S.; Sakla, N.; True, A.; Wardeh, A.H.; Beig, N.; Vaysberg, A.; Matthews, J.; Prasanna, P.; Spektor, V. Radiomics and radiogenomics in gliomas: A contemporary update. Br. J. Cancer 2021, 125, 641–657. [Google Scholar] [CrossRef]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al. Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef]
- Tiwari, P.; Prasanna, P.; Wolansky, L.; Pinho, M.; Cohen, M.; Nayate, A.P.; Gupta, A.; Singh, G.; Hatanpaa, K.J.; Sloan, A.; et al. Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study. AJNR Am. J. Neuroradiol. 2016, 37, 2231–2236. [Google Scholar] [CrossRef]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, P.; Jiang, Y.; Ge, H.; Li, S.; Jin, H.; Li, Y. Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features. Stroke 2019, 50, 2314–2321. [Google Scholar] [CrossRef]
- Apte, A.P.; Iyer, A.; Crispin-Ortuzar, M.; Pandya, R.; van Dijk, L.V.; Spezi, E.; Thor, M.; Um, H.; Veeraraghavan, H.; Oh, J.H.; et al. Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med. Phys. 2018, 45, 3713–3720. [Google Scholar] [CrossRef]
- Ger, R.B.; Cardenas, C.E.; Anderson, B.M.; Yang, J.; Mackin, D.S.; Zhang, L.; Court, L.E. Guidelines and Experience Using Imaging Biomarker Explorer (IBEX) for Radiomics. J. Vis. Exp. 2018, 131, e57132. [Google Scholar] [CrossRef]
- Corrias, G.; Micheletti, G.; Barberini, L.; Suri, J.S.; Saba, L. Texture analysis imaging “what a clinical radiologist needs to know”. Eur. J. Radiol. 2022, 146, 110055. [Google Scholar] [CrossRef]
- Tong, X.; Feng, X.; Peng, F.; Niu, H.; Zhang, B.; Yuan, F.; Jin, W.; Wu, Z.; Zhao, Y.; Liu, A.; et al. Morphology-based radiomics signature: A novel determinant to identify multiple intracranial aneurysms rupture. Aging Albany NY 2021, 13, 13195–13210. [Google Scholar] [CrossRef]
- Wu, G.; Jochems, A.; Refaee, T.; Ibrahim, A.; Yan, C.; Sanduleanu, S.; Woodruff, H.C.; Lambin, P. Structural and functional radiomics for lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3961–3974. [Google Scholar] [CrossRef]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Lo Gullo, R.; Daimiel, I.; Morris, E.A.; Pinker, K. Combining molecular and imaging metrics in cancer: Radiogenomics. Insights Imaging 2020, 11, 1. [Google Scholar] [CrossRef]
- Wang, J.H.; Wahid, K.A.; van Dijk, L.V.; Farahani, K.; Thompson, R.F.; Fuller, C.D. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin. Transl. Radiat. Oncol. 2021, 28, 97–115. [Google Scholar] [CrossRef]
- Darvish, L.; Bahreyni-Toossi, M.-T.; Roozbeh, N.; Azimian, H. The role of radiogenomics in the diagnosis of breast cancer: A systematic review. Egypt. J. Med. Hum. Genet. 2022, 23, 99. [Google Scholar] [CrossRef]
- Alessandrino, F.; Shinagare, A.B.; Bosse, D.; Choueiri, T.K.; Krajewski, K.M. Radiogenomics in renal cell carcinoma. Abdom. Radiol. NY 2019, 44, 1990–1998. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Jiang, Z.; Li, H.; Dang, Y.; Tang, C.; Xia, Y.; Zhang, H.; Song, B.; Long, L. Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer. Abdom. Radiol. NY 2022, 47, 1276–1290. [Google Scholar] [CrossRef]
- Oh, J.E.; Kim, M.J.; Lee, J.; Hur, B.Y.; Kim, B.; Kim, D.Y.; Baek, J.Y.; Chang, H.J.; Park, S.C.; Oh, J.H.; et al. Magnetic Resonance-Based Texture Analysis Differentiating KRAS Mutation Status in Rectal Cancer. Cancer Res. Treat. 2020, 52, 51–59. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software. Veritas Health Innovation: Melbourne, VIC, Australia. Available online: https://guides.library.harvard.edu/meta-analysis/software (accessed on 8 November 2023).
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, J.H. PROSPERO: An International Register of Systematic Review Protocols. Med. Ref. Serv. Q 2019, 38, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Zheng, D.; Pang, P.; Lu, J.; Zheng, X. Pretreatment MR-Based Radiomics Signature as Potential Imaging Biomarker for Assessing the Expression of Topoisomerase II alpha (TOPO-IIalpha) in Rectal Cancer. J. Magn. Reson. Imaging 2020, 51, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Horvat, N.; Veeraraghavan, H.; Pelossof, R.A.; Fernandes, M.C.; Arora, A.; Khan, M.; Marco, M.; Cheng, C.T.; Gonen, M.; Golia Pernicka, J.S.; et al. Radiogenomics of rectal adenocarcinoma in the era of precision medicine: A pilot study of associations between qualitative and quantitative MRI imaging features and genetic mutations. Eur. J. Radiol. 2019, 113, 174–181. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, Z.; Huang, Y.; Liang, C.; He, L.; Ma, Z.; Chen, X.; Wu, X.; Li, Y.; Liang, C.; et al. CT-based Radiomics Signature to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma. Acad. Radiol. 2018, 25, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.H.; Lim, Y.J.; Koh, J.; Chang, W.I.; Kim, S.; Kim, K.; Chie, E.K. A radiomic signature model to predict the chemoradiation-induced alteration in tumor-infiltrating CD8(+) cells in locally advanced rectal cancer. Radiother. Oncol. 2021, 162, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Chen, Y.; Ma, X.; Li, Z.; Lu, H.; Xia, Y.; Lu, Y.; Lu, J.; Shen, F. Predicting Mismatch-Repair Status in Rectal Cancer Using Multiparametric MRI-Based Radiomics Models: A Preliminary Study. Biomed. Res. Int. 2022, 2022, 6623574. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.; Wang, C.; Zhao, Z.; Ma, W.; Wang, D.; Mao, H.; Liu, F.; Yang, Y.; Pan, W.; et al. DCE-MRI radiomics models predicting the expression of radioresistant-related factors of LRP-1 and survivin in locally advanced rectal cancer. Front. Oncol. 2022, 12, 881341. [Google Scholar] [CrossRef]
- Meng, X.; Xia, W.; Xie, P.; Zhang, R.; Li, W.; Wang, M.; Xiong, F.; Liu, Y.; Fan, X.; Xie, Y.; et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur. Radiol. 2019, 29, 3200–3209. [Google Scholar] [CrossRef]
- Negreros-Osuna, A.A.; Parakh, A.; Corcoran, R.B.; Pourvaziri, A.; Kambadakone, A.; Ryan, D.P.; Sahani, D.V. Radiomics Texture Features in Advanced Colorectal Cancer: Correlation with BRAF Mutation and 5-year Overall Survival. Radiol. Imaging Cancer 2020, 2, e190084. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, L.; Liu, A.; Pan, X.; Shu, J.; Han, Y.; Huan, Y.; Zhang, J. Comparable Performance of Deep Learning-Based to Manual-Based Tumor Segmentation in KRAS/NRAS/BRAF Mutation Prediction With MR-Based Radiomics in Rectal Cancer. Front. Oncol. 2021, 11, 696706. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Z.; Zhao, J.; He, D.; Li, M.; Yin, H.; Tian, S.; Zhang, H.; Song, B. Development and validation of magnetic resonance imaging-based radiomics models for preoperative prediction of microsatellite instability in rectal cancer. Ann. Transl. Med. 2021, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, L.; Wang, Y.; Wang, J.; Zhang, H.; Xia, F.; Wan, J.; Zhang, Z. MRI Radiomics Signature as a Potential Biomarker for Predicting KRAS Status in Locally Advanced Rectal Cancer Patients. Front. Oncol. 2021, 11, 614052. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yuan, J.; Lo, G.G.; Chang, A.T.Y.; Poon, D.M.C.; Wong, O.L.; Zhou, Y.; Chu, W.C.W. Radiomics feature reliability assessed by intraclass correlation coefficient: A systematic review. Quant. Imaging Med. Surg. 2021, 11, 4431–4460. [Google Scholar] [CrossRef]
- Staal, F.C.R.; van der Reijd, D.J.; Taghavi, M.; Lambregts, D.M.J.; Beets-Tan, R.G.H.; Maas, M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review. Clin. Colorectal. Cancer 2021, 20, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Louie, B.H.; Kato, S.; Kim, K.H.; Lim, H.J.; Lee, S.; Okamura, R.; Fanta, P.T.; Kurzrock, R. Precision medicine-based therapies in advanced colorectal cancer: The University of California San Diego Molecular Tumor Board experience. Mol. Oncol. 2022, 16, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci. 2020, 21, 5311. [Google Scholar] [CrossRef]
- Chung, C. Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. J. Oncol. Pharm. Pract. 2022, 28, 850–869. [Google Scholar] [CrossRef]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Knickelbein, K.; Zhang, L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis. 2015, 2, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Pinker, K.; Shitano, F.; Sala, E.; Do, R.K.; Young, R.J.; Wibmer, A.G.; Hricak, H.; Sutton, E.J.; Morris, E.A. Background, current role, and potential applications of radiogenomics. J. Magn. Reson. Imaging 2018, 47, 604–620. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, R.; Pollack, A.; Takhar, M.; Lynne, C.; Parra, N.; Lam, L.L.; Alshalalfa, M.; Buerki, C.; Castillo, R.; Jorda, M.; et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 2016, 7, 53362–53376. [Google Scholar] [CrossRef] [PubMed]
- Renard-Penna, R.; Cancel-Tassin, G.; Comperat, E.; Varinot, J.; Leon, P.; Roupret, M.; Mozer, P.; Vaessen, C.; Lucidarme, O.; Bitker, M.O.; et al. Multiparametric Magnetic Resonance Imaging Predicts Postoperative Pathology but Misses Aggressive Prostate Cancers as Assessed by Cell Cycle Progression Score. J. Urol. 2015, 194, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Reuze, S.; Schernberg, A.; Orlhac, F.; Sun, R.; Chargari, C.; Dercle, L.; Deutsch, E.; Buvat, I.; Robert, C. Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1117–1142. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Miles, K. Radiomics for personalised medicine: The long road ahead. Br. J. Cancer 2020, 122, 929–930. [Google Scholar] [CrossRef]
- Fornacon-Wood, I.; Faivre-Finn, C.; O’Connor, J.P.B.; Price, G.J. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 2020, 146, 197–208. [Google Scholar] [CrossRef]
- Pinto Dos Santos, D.; Dietzel, M.; Baessler, B. A decade of radiomics research: Are images really data or just patterns in the noise? Eur. Radiol. 2021, 31, 1–4. [Google Scholar] [CrossRef]
- Hatt, M.; Le Rest, C.C.; Tixier, F.; Badic, B.; Schick, U.; Visvikis, D. Radiomics: Data Are Also Images. J. Nucl. Med. 2019, 60, 38S–44S. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Mao, W.; Zhou, J.; Zhang, H.; Qiu, L.; Tan, H.; Hu, Y.; Shi, H. Relationship between KRAS mutations and dual time point (18)F-FDG PET/CT imaging in colorectal liver metastases. Abdom. Radiol. NY 2019, 44, 2059–2066. [Google Scholar] [CrossRef]
- Badic, B.; Tixier, F.; Cheze Le Rest, C.; Hatt, M.; Visvikis, D. Radiogenomics in Colorectal Cancer. Cancers 2021, 13, 973. [Google Scholar] [CrossRef]
- Berenguer, R.; Pastor-Juan, M.D.R.; Canales-Vazquez, J.; Castro-Garcia, M.; Villas, M.V.; Mansilla Legorburo, F.; Sabater, S. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 2018, 288, 407–415. [Google Scholar] [CrossRef]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef]
- Dercle, L.; Ammari, S.; Bateson, M.; Durand, P.B.; Haspinger, E.; Massard, C.; Jaudet, C.; Varga, A.; Deutsch, E.; Soria, J.C.; et al. Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci. Rep. 2017, 7, 7952. [Google Scholar] [CrossRef]
- Sagaert, X.; Vanstapel, A.; Verbeek, S. Tumor Heterogeneity in Colorectal Cancer: What Do We Know So Far? Pathobiology 2018, 85, 72–84. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallieres, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning methods for radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Lim, S.H.; Ip, E.; Ng, W.; Chua, W.; Asghari, R.; Roohullah, A.; Descallar, J.; Henderson, C.; Spring, K.; de Souza, P.; et al. Health-Related Quality of Life during Chemoradiation in Locally Advanced Rectal Cancer: Impacts and Ethnic Disparities. Cancers 2019, 11, 1263. [Google Scholar] [CrossRef]
Study | Country | Journal | Primary Outcome |
---|---|---|---|
Chen 2020 [34] | China | Journal of Magnetic Resonance Imaging | TOPO-IIα expression |
Chen 2022 [28] | China | Abdominal Radiology | Aquaporin-1 expression |
Horvat 2019 [35] | USA | European Journal of Radiology | APC, RASA1, ATM, BRCA2 |
Huang 2018 [36] | China | Academic Radiology | Tumour grade |
Jeon 2021 [37] | Korea | Radiotherapy and Oncology | CD8+ TIL density |
Jing 2022 [38] | China | BioMed Research International | MMR |
Li 2022 [39] | China | Frontiers in Oncology | LRP-1 and survivin expression |
Meng 2019 [40] | China | European Radiology | Tumour differentiation, Ki-67, HER-2, lymph node metastases and KRAS-2 |
Negreros-Osuna 2020 [41] | USA | Radiology: Imaging Cancer | BRAF |
Oh 2020 [29] | Korea | Cancer Research and Treatment | KRAS |
Zhang, G. 2021 [42] | China | Frontiers in Oncology | KRAS, NRAS, BRAF |
Zhang, W. 2021 [43] | China | Annals of Translational Medicine | Microsatellite instability |
Zhang, Z. 2021 [44] | China | Frontiers in Oncology | KRAS |
Study | # Patients | Age (Mean ± Standard Deviation) [Years] | Male:Female | ||
---|---|---|---|---|---|
T | V | T | V | ||
Chen 2020 [34] | 85 | 37 | 58.6 ± 9.5 | 59.5 ± 14 | 76:46 |
Chen 2022 [28] | 87 | 23 | 60.7 ± 12.5 | 65:45 | |
Horvat 2019 [35] | 65 | - | 57 ± 13.8 | 38:27 | |
Huang 2018 [36] | 222 | 144 | 61 ± 12.8 | 219:147 | |
Jeon 2021 [37] | 75 | 38 | 61 ± 9.5 | 64 ±12.5 | 78:35 |
Jing 2022 [38] | 111 | 65 | 58.1 ± 11 | 115:61 | |
Li 2022 [39] | 70 | 30 | 68.3 ± 10.2 | 68.7 ± 9.6 | 64:36 |
Meng 2019 [40] | 197 | 148 | 59.1 ± 12.2 | 61 ± 12.4 | 213:132 |
Negreros-Osuna 2020 [41] | 145 | - | 61 ± 14 | 77:68 | |
Oh 2020 [29] | 60 | - | 61 ± 9.9 | 34:26 | |
Zhang, G. 2021 [42] | 108 | 94 | 59.9 ± 11.8 | 139:63 | |
Zhang, W. 2021 [43] | 327 | 164 | MSS 60.5 ± 4.9 MSI 59.2 ± 12.8 | MSS 60.7 ± 11.3 MSI 55.4 ± 12.1 | 318:173 |
Zhang, Z. 2021 [44] | 59 | 24 | 55 ± 9.7 | 51:32 |
Study | Modality | Model | SLT | TR/TE (ms) | FOV (cm) | ACQ Matrix | ETL | Flip Angle (Degrees) | Contrast |
---|---|---|---|---|---|---|---|---|---|
Chen 2020 [34] | T2WI MRI | 3.0T (Achieva, Philips or Netherlands) | 4 mm | 3000/90 | 19 × 19 | 272 × 228 | 19 | - | - |
Chen 2022 [28] | mpMRI | Siemens Prisma 3.0T | 4 mm | 4100/93 | 16 × 16 | - | - | 150 | Gd 3 mL/s, 0.2 mmol/kg |
Horvat 2019 [35] | mpMRI | GE Healthcare 1.5 or 3.0T | 3 mm | 4000–6000/120 | 18 × 18 | - | - | - | - |
Huang 2018 [36] | CECT | LightSpeed VCT | 1.25 mm | - | - | - | - | - | Ultravist 370 1.5 mL/kg, 3.5 mL/s |
Jeon 2021 [37] | mpMRI | 1.5 or 3.0T | 5 mm | 4500/107 | - | 512 × 512 | - | 90 | - |
Jing 2022 [38] | mpMRI | GE Discovery 1.5 or 3.0T | 4 mm | 6538/116 | 20 × 20 | 352 × 352 | 32 | 110 | Gd-DTPA 2 mL/s |
Li 2022 [39] | mpMRI | Siemens Verio 3.0T | 3 mm | - | 26 × 26 | 202 × 288 | - | 10 | Gd 0.1 mol/kg, 3.5 mL/s |
Meng 2019 [40] | mpMRI | GE Optima 1.5 | 3 mm | 4800–5000/102 | - | 288 × 256 | 24 | - | Gd-DTPA 0.1 mmol/kg, 2 mL/s |
Negreros-Osuna 2020 [41] | CECT | Multiple | 5 mm | - | - | - | - | - | IsoVue 370 mg |
Oh 2020 [29] | T2WI MRI | Philips Achieva 3.0T | 3–5 mm | 2500–8600/80–110 | 15 × 15–36 × 36 | 224 × 224 | 16–32 | - | - |
Zhang, G. 2021 [42] | mpMRI | GE Discovery 3.0T | 3 mm | 487–7355/8–136 | 20 × 20 to 34 × 34 | 128 × 140 to 352 × 256 | - | - | - |
Zhang, W. 2021 [43] | T2WI MRI | Siemens Magnetom Skyra 3.0T | 3 mm | 6890/100 | 18 × 18 | 384 × 346 | - | - | - |
Zhang, Z. 2021 [44] | T2WI MRI | GE Signa Horizon 3.0T | - | - | - | - | - | - | - |
Study | Segmentation Software | Radiomics Software | Performance of Signature (Training) | Performance of Signature (Validation) | Outcome | ||||
---|---|---|---|---|---|---|---|---|---|
AUC | Sens | Spec | AUC | Sens | Spec | ||||
Chen 2020 [34] | ITK-SNAP | Artificial Intelligence Kit v3.0 | 0.859 | 0.872 | 0.739 | 0.762 | 0.941 | 0.61 | TOPO-iiα |
Chen 2022 [28] | Syngo | Big Data Intelligent Analysis Cloud Platform | 0.932 | 0.829 | 0.925 | 0.894 | 0.833 | 0.818 | AQP-1 |
Horvat 2019 [35] | ITK-SNAP | - | - | - | - | - | - | - | APC, RASA1, ATM, BRCA2 |
Huang 2018 [36] | 3D Slicer v4.3 | MatLab 2013a | 0.812 | 0.635 | 0.845 | 0.735 | 0.521 | 0.854 | Tumour grade |
Jeon 2021 [37] | 3D Slicer v4.1 | MatLab R2019b | 0.76 | - | - | 0.729 | - | - | CD8+ TIL |
Jing 2022 [38] | Radcloud | Radcloud Radiomics Platform | 0.910 | 0.844 | 0.929 | 0.874 | 0.909 | 0.815 | MMR |
Li 2022 [39] | Omni Kinetics | Omni Kinetics | 0.853 | 0.9 | 0.733 | 0.747 | 0.882 | 0.615 | LRP-1 |
0.780 | 0.7 | 0.833 | 0.8 | 0.824 | 0.769 | Survivin | |||
Meng 2019 [40] | MITK v2013, ITK-SNAP | MatLab v2015a | 0.707 | 0.713 | 0.607 | 0.696 | 0.667 | 0.574 | HER-2 |
0.607 | 0.622 | 0.536 | 0.699 | 0.863 | 0.422 | Ki67 | |||
0.752 | 0.774 | 0.612 | 0.677 | 0.762 | 0.494 | Lymph nodes | |||
0.675 | 0.679 | 0.597 | 0.72 | 0.759 | 0.565 | Differentiation | |||
0.669 | 0.531 | 0.748 | 0.651 | 0.581 | 0.643 | KRAS | |||
Negreros-Osuna 2020 [41] | TexRAD | TexRAD | - | - | - | - | - | - | BRAF |
Oh 2020 [29] | - | MatLab | 0.884 | 0.84 | 0.8 | KRAS | |||
Zhang, G. 2021 [42] | ITK-SNAP | Machine learning: 3D V-Net Radiomics: Pyradiomics | 0.887 | 0.882 | 0.661 | KRAS, NRAS, BRAF | |||
Zhang, W. 2021 [43] | ITK-SNAP | Pyradiomics v2.1.2 | 0.989 | - | - | 0.895 | 0.667 | 0.987 | MSI |
Zhang, Z. 2021 [44] | MIM | MatLab | 0.801 | 0.64 | 0.853 | 0.703 | 0.438 | 1 | KRAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Sullivan, N.J.; Temperley, H.C.; Horan, M.T.; Corr, A.; Mehigan, B.J.; Larkin, J.O.; McCormick, P.H.; Kavanagh, D.O.; Meaney, J.F.M.; Kelly, M.E. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers 2023, 15, 5816. https://doi.org/10.3390/cancers15245816
O’Sullivan NJ, Temperley HC, Horan MT, Corr A, Mehigan BJ, Larkin JO, McCormick PH, Kavanagh DO, Meaney JFM, Kelly ME. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers. 2023; 15(24):5816. https://doi.org/10.3390/cancers15245816
Chicago/Turabian StyleO’Sullivan, Niall J., Hugo C. Temperley, Michelle T. Horan, Alison Corr, Brian J. Mehigan, John O. Larkin, Paul H. McCormick, Dara O. Kavanagh, James F. M. Meaney, and Michael E. Kelly. 2023. "Radiogenomics: Contemporary Applications in the Management of Rectal Cancer" Cancers 15, no. 24: 5816. https://doi.org/10.3390/cancers15245816
APA StyleO’Sullivan, N. J., Temperley, H. C., Horan, M. T., Corr, A., Mehigan, B. J., Larkin, J. O., McCormick, P. H., Kavanagh, D. O., Meaney, J. F. M., & Kelly, M. E. (2023). Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers, 15(24), 5816. https://doi.org/10.3390/cancers15245816