Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Multiparametric-MRI of the Prostate
2.3. Workflow for Co-Registration of Genomic and Radiomic Data
2.4. Normalization of T2W and BVAL Intensities
2.5. Radiomic Analysis
2.6. Genomic Analysis
2.7. Calculation of Spratt Score
2.8. Modeling and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Kryvenko, O.N.; Epstein, J.I. Prostate Cancer Grading: A Decade After the 2005 Modified Gleason Grading System. Arch. Pathol. Lab. Med. 2016, 140, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Vince, R.A., Jr.; Jiang, R.; Qi, J.; Tosoian, J.J.; Takele, R.; Feng, F.Y.; Linsell, S.; Johnson, A.; Shetty, S.; Hurley, P.; et al. Impact of Decipher Biopsy testing on clinical outcomes in localized prostate cancer in a prospective statewide collaborative. Prostate Cancer Prostatic Dis. 2021, 25, 677–683. [Google Scholar] [CrossRef]
- Berlin, A.; Murgic, J.; Hosni, A.; Pintilie, M.; Salcedo, A.; Fraser, M.; Kamel-Reid, S.; Zhang, J.; Wang, Q.; Ch’Ng, C.; et al. Genomic classifier for guiding treatment of intermediate-risk prostate cancers to dose-escalated image guided radiation therapy without hormone therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.L.; Armstrong, A.J.; Bahnson, R.R.; D’Amico, A.V.; Davis, B.J.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; Horwitz, E.M.; et al. Prostate Cancer, Version 1. J. Natl. Compr. Cancer Netw. 2016, 14, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Zhang, J.; Santiago-Jiménez, M.; Dess, R.T.; Davis, J.W.; Den, R.B.; Dicker, A.P.; Kane, C.J.; Pollack, A.; Stoyanova, R.; et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J. Clin. Oncol. 2018, 36, 581–590. [Google Scholar] [CrossRef]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Radical Prostatectomy versus Observation for Localized Prostate Cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef]
- Klotz, L.; Zhang, L.; Lam, A.; Nam, R.; Mamedov, A.; Loblaw, A. Clinical Results of Long-Term Follow-Up of a Large, Active Surveillance Cohort with Localized Prostate Cancer. J. Clin. Oncol. 2010, 28, 126–131. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Cowan, J.E.; Hilton, J.F.; Reese, A.C.; Zaid, H.B.; Porten, S.P.; Shinohara, K.; Meng, M.V.; Greene, K.L.; Carroll, P.R. Outcomes of Active Surveillance for Men With Intermediate-Risk Prostate Cancer. J. Clin. Oncol. 2011, 29, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Musunuru, H.B.; Vesprini, D.; Zhang, L.; Ghanem, G.; Loblaw, A.; Klotz, L. Metastatic Prostate Cancer in Men Initially Treated with Active Surveillance. J. Urol. 2015, 195, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Punnen, S.; Stoyanova, R.; Kwon, D.; Reis, I.M.; Soodana-Prakash, N.; Ritch, C.R.; Nahar, B.; Gonzalgo, M.L.; Kava, B.; Liu, Y.; et al. Heterogeneity in Genomic Risk Assessment from Tissue Based Prognostic Signatures Used in the Biopsy Setting and the Impact of MRI Targeted Biopsy. J. Urol. 2020, 205, 1344–1351. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Barentsz, J.O.; Richenberg, J.; Clements, R.; Choyke, P.; Verma, S.; Villeirs, G.; Rouviere, O.; Logager, V.; Fütterer, J.J. ESUR prostate MR guidelines 2012. Eur. Radiol. 2012, 22, 746–757. [Google Scholar] [CrossRef]
- Barentsz, J.O.; Weinreb, J.C.; Verma, S.; Thoeny, H.C.; Tempany, C.M.; Shtern, F.; Padhani, A.R.; Margolis, D.; Macura, K.J.; Haider, M.A.; et al. Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur. Urol. 2016, 69, 41–49. [Google Scholar] [CrossRef]
- Kwak, J.T.; Xu, S.; Wood, B.J.; Turkbey, B.; Choyke, P.L.; Pinto, P.A.; Wang, S.; Summers, R.M. Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med. Phys. 2015, 42, 2368–2378. [Google Scholar] [CrossRef]
- Turkbey, B.; Mani, H.; Shah, V.; Rastinehad, A.R.; Bernardo, M.; Pohida, T.; Pang, Y.; Daar, D.; Benjamin, C.; McKinney, Y.L.; et al. Multiparametric 3T Prostate Magnetic Resonance Imaging to Detect Cancer: Histopathological Correlation Using Prostatectomy Specimens Processed in Customized Magnetic Resonance Imaging Based Molds. J. Urol. 2011, 186, 1818–1824. [Google Scholar] [CrossRef]
- Khalvati, F.; Wong, A.; Haider, M.A. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med. Imaging 2015, 15, 27. [Google Scholar] [CrossRef]
- Haider, M.A.; van der Kwast, T.H.; Tanguay, J.; Evans, A.J.; Hashmi, A.-T.; Lockwood, G.; Trachtenberg, J. Combined T2-Weighted and Diffusion-Weighted MRI for Localization of Prostate Cancer. Am. J. Roentgenol. 2007, 189, 323–328. [Google Scholar] [CrossRef]
- Litjens, G.; Debats, O.; Barentsz, J.; Karssemeijer, N.; Huisman, H. Computer-Aided Detection of Prostate Cancer in MRI. IEEE Trans. Med. Imaging 2014, 33, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.J.S.; Huisman, H.J.; Elliott, R.M.; Shih, N.N.; Feldman, M.D.; Viswanath, S.; Fütterer, J.J.; Bomers, J.G.R.; Madabhushi, A. Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy. J. Med. Imaging 2014, 1, 035001. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, R.; Chinea, F.; Kwon, D.; Reis, I.M.; Tschudi, Y.; Parra, N.A.; Breto, A.L.; Padgett, K.R.; Pra, A.D.; Abramowitz, M.C.; et al. An Automated Multiparametric MRI Quantitative Imaging Prostate Habitat Risk Scoring System for Defining External Beam Radiation Therapy Boost Volumes. Int. J. Radiat. Oncol. 2018, 102, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Reis, I.M.; Breto, A.L.; Tschudi, Y.; Gautney, N.; Zavala-Romero, O.; Lopez, C.; Ford, J.C.; Punnen, S.; Pollack, A.; et al. Classification of suspicious lesions on prostate multiparametric MRI using machine learning. J. Med. Imaging 2018, 5, 034502. [Google Scholar]
- Stoilescu, L.; Huisman, H. Feasibility of Multireference Tissue Normalizaton of T2-Weighted Prostate MRI; RSNA: Chicago, IL, USA, 2017. [Google Scholar]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Fehr, D.; Veeraraghavan, H.; Wibmer, A.; Gondo, T.; Matsumoto, K.; Vargas, H.A.; Sala, E.; Hricak, H.; Deasy, J.O. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 2015, 112, E6265–E6273. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, R.; Pollack, A.; Takhar, M.; Lynne, C.; Parra, N.; Lam, L.L.; Alshalalfa, M.; Buerki, C.; Castillo, R.; Jorda, M.; et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 2016, 7, 53362–53376. [Google Scholar] [CrossRef]
- Ross, A.E.; Johnson, M.H.; Yousefi, K.; Davicioni, E.; Netto, G.J.; Marchionni, L.; Fedor, H.L.; Glavaris, S.; Choeurng, V.; Buerki, C.; et al. Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men. Eur. Urol. 2016, 69, 157–165. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Venkatraman, E.S.; Begg, C.B. A distribution-free procedure for comparing receiver operating characteristic curves from a paired experiment. Biometrika 1996, 83, 835–848. [Google Scholar] [CrossRef]
- Harrell, F.E.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Castillo T, J.M.; Arif, M.; Niessen, W.J.; Schoots, I.G.; Veenland, J.F. Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications. Cancers 2020, 12, 1606. [Google Scholar] [CrossRef] [PubMed]
- Woźnicki, P.; Westhoff, N.; Huber, T.; Riffel, P.; Froelich, M.F.; Gresser, E.; von Hardenberg, J.; Mühlberg, A.; Michel, M.S.; Schoenberg, S.O.; et al. Multiparametric MRI for Prostate Cancer Characterization: Combined Use of Radiomics Model with PI-RADS and Clinical Parameters. Cancers 2020, 12, 1767. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.B.; Partin, A.W.; Walsh, P.C.; Trock, B.J.; Veltri, R.W.; Nelson, W.G.; Coffey, D.S.; Singer, E.A.; Epstein, J.I. Gleason score 6 adenocarcinoma: Should it be labeled as cancer? J. Clin. Oncol. 2012, 30, 4294–4296. [Google Scholar] [CrossRef]
- Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef]
- Cuzick, J.; Berney, D.M.; Fisher, G.; Mesher, D.; Møller, H.; Reid, J.E.; Perry, M.; Park, J.; Younus, A.; Gutin, A.; et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 2012, 106, 1095–1099. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef]
- Beksac, A.T.; Cumarasamy, S.; Falagario, U.; Xu, P.; Takhar, M.; Alshalalfa, M.; Gupta, A.; Prasad, S.; Martini, A.; Thulasidass, H.; et al. Multiparametric Magnetic Resonance Imaging Features Identify Aggressive Prostate Cancer at the Phenotypic and Transcriptomic Level. J. Urol. 2018, 200, 1241–1249. [Google Scholar] [CrossRef]
- Hectors, S.J.; Cherny, M.; Yadav, K.K.; Beksaç, A.T.; Thulasidass, H.; Lewis, S.; Davicioni, E.; Wang, P.; Tewari, A.K.; Taouli, B. Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness. J. Urol. 2019, 202, 498–505. [Google Scholar] [CrossRef]
- Huang, W.; Li, X.; Chen, Y.; Li, X.; Chang, M.-C.; Oborski, M.J.; Malyarenko, D.I.; Muzi, M.; Jajamovich, G.H.; Fedorov, A.; et al. Variations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Evaluation of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge. Transl. Oncol. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Y.; Fedorov, A.; Li, X.; Jajamovich, G.H.; Malyarenko, D.I.; Aryal, M.P.; LaViolette, P.S.; Oborski, M.J.; O’Sullivan, F.; et al. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge. Tomography 2016, 2, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Padhani, A.R.; Schoots, I.; Villeirs, G. Contrast Medium or No Contrast Medium for Prostate Cancer Diagnosis. That Is the Question. J. Magn. Reson. Imaging 2020, 53, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Brancato, V.; Di Costanzo, G.; Basso, L.; Puglia, M.; Ragozzino, A.; Salvatore, M.; Cavaliere, C. Multiparametric MRI for Prostate Cancer Detection: New Insights into the Combined Use of a Radiomic Approach with Advanced Acquisition Protocol. Cancers 2020, 12, 390. [Google Scholar] [CrossRef] [PubMed]
ROI | Image Sequence | Radiomics Feature | Histogram Descriptor |
---|---|---|---|
Lesion (L) Normal Appearing Peripheral Zone (NAPZ) Normal Appearing Transition Zone (NATZ) | T2-weighted (t2) ADC (adc) High b-value (b) | Intensity (int) Contrast (con) Correlation (cor) Energy (ene) Entropy (ent) Homogeneity (hom) | 10% 25% 50% 75% 90% mean standard deviation (SD) kurtosis (Kurt) skewness (Skew) |
Variable | TOTAL (N (%)) | MAST (N (%)) | BLASTM (N (%)) | p-Value a |
---|---|---|---|---|
Patients | 78 | 46 | 32 | |
Age (median, range) years | 64.5 (44–82) | 64.0 (44–82) | 67.5 (44–79) | 0.237 |
Age groups | 0.559 | |||
≤44 years | 2 (2.6) | 1 (2.2) | 1 (3.1) | |
45 to 54 years | 7 (9.0) | 5 (10.9) | 2 (6.3) | |
55 to 64 years | 30 (38.5) | 20 (43.5) | 10 (31.3) | |
65 to 74 years | 31 (39.7) | 17 (37.0) | 14 (43.8) | |
≥75 years | 8 (10.3) | 3 (6.5) | 5 (15.6) | |
Race/ethnicity | 0.218 | |||
Non-Hispanic White | 37 (47.4) | 25 (54.3) | 12 (37.5) | |
Non-Hispanic Black | 11 (14.1) | 6 (13.0) | 5 (15.6) | |
Hispanic/Latino | 28 (35.9) | 15 (32.6) | 13 (40.6) | |
Others | 2 (2.6) | 0 (0) | 2 (6.3) | |
PSA, ng/mL, median, range | 6 (1.3–77.7) | 4.7 (1.3–16.7) | 9.7 (1.5–77.7) | 0.0004 |
PSA groups, ng/mL | 0.001 | |||
<10 | 57 (73.1) | 40 (87.0) | 17 (53.1) | |
10–20 | 15 (19.2) | 6 (13.0) | 9 (21.8) | |
>20 | 6 (7.7) | - | 6 (18.8) | |
Grade Group | <0.0001 | |||
1 | 40 (51.3) | 36 (78.3) | 4 (12.5) | |
2 | 15 (19.2) | 7 (15.2) | 8 (25.0) | |
3 | 10 (12.8) | 3 (6.5) | 7 (21.9) | |
4–5 | 13 (16.7) | 0 (0.0) | 13 (40.6) | |
T stage | <0.0001 | |||
T1 | 58 (74.4) | 46 (100) | 12 (37.5) | |
T2–T3 | 20 (25.6) | 0 (0) | 20 (62.5) | |
N of biopsy | 0.3748 | |||
1 | 25 (32.1) | 16 (34.8) | 9 (28.1) | |
2 | 10 (12.8) | 7 (15.2) | 3 (9.4) | |
3 | 3 (25.6) | 13 (28.3) | 7 (21.9) | |
4 | 9 (11.5) | 5 (10.9) | 4 (12.5) | |
≥5 | 14 (17.9) | 5 (10.9) | 9 (28.1) | |
DRE b | <0.0001 | |||
0 | 55 (70.5) | 46 (100) | 9 (28.1) | |
1 | 18 (23.1) | 0 (0.0) | 18 (56.3) | |
2 | 5 (6.4) | 0 (0.0) | 5 (15.6) | |
PI-RADSv.2.1 | 0.0002 | |||
1–2 | 28 (35.9) | 22 (47.8) | 6 (18.8) | |
3 | 8 (10.3) | 7 (15.2) | 1 (3.1) | |
4 | 23 (29.5) | 12 (26.1) | 11 (34.3) | |
5 | 19 (24.3) | 5 (10.9) | 14 (43.8) | |
MRI scanner (Vendor) | 0.2029 | |||
3T Discovery (GE) | 42 (50.6) | 21 (42.0) | 21 (63.6) | |
3T Skyra (Siemens) | 33 (39.8) | 24 (48.0) | 9 (27.3) | |
3T TimTrio (Siemens) | 6 (7.2) | 4 (8.0) | 2 (6.1) | |
1.5T Symphony (Siemens) | 2 (2.4) | 1 (2.0) | 1 (3.0) |
Variable | TOTAL (N (%)) | MAST (N (%)) | BLASTM (N (%)) | p-Value a |
---|---|---|---|---|
Biopsy N | 231 | 124 | 107 | |
Grade Group | <0.0001 | |||
1 | 123 (53.2) | 102 (82.3) | 21 (19.6) | |
2 | 46 (19.9) | 18 (14.5) | 28 (26.2) | |
3 | 21 (9.1) | 4 (3.2) | 17 (15.9) | |
4–5 | 41 (17.7) | - | 41 (38.3) | |
Biopsy Type | 0.656 | |||
Diagnostic | 75 (32.5) | 23 (18.5) | 52 (48.6) | |
Trial | 156 (67.5) | 101 (81.5) | 55 (51.4) | |
Decipher | <0.0001 | |||
Low risk | 161 (69.7) | 114 (91.9) | 47 (43.9) | |
Intermediate risk | 23 (10.0) | 7 (5.7) | 16 (15.0) | |
High Risk | 47 (20.3) | 3 (2.4) | 44 (41.1) | |
NCCN | <0.0001 | |||
Group 1 | 90 (39.0) | 79 (63.7) | 11 (10.3) | |
Group 2 | 48 (20.8) | 28 (22.6) | 20 (18.7) | |
Group 3 | 41 (17.7) | 14 (11.3) | 27 (25.2) | |
Group 4 | 52 (22.5) | 3 (2.4) | 49 (45.8) | |
3-tier classification system | <0.0001 | |||
Low risk | 133 (57.6) | 103 (83.1) | 30 (28.0) | |
Intermediate risk | 61 (26.4) | 21 (16.9) | 40 (37.4) | |
High Risk | 37 (16.0) | - | 37 (34.6) |
Clinical Variables Model 1 | Lesion Radiomic Variables Model 2 | Lesion/NAPZ/NATZ Radiomic Variables Model 3 |
---|---|---|
Age (continuous) PSAD (continuous) DRE (0 vs. 1–2) PI-RADS (1–2 vs. 3,4,5) | HRS6 (volume) L_t2_int_10 L_adc_int_50 L_adc_int_Kur L_adc_int_Ske L_b_int_75 L_t2_con_25 L_adc_con_90 L_t2_ene_SD L_adc_ene_SD L_b_ene_25 L_b_ene_50 L_adc_ent_10 L_t2_hom_90 | HRS6 (volume) L_t2_int_10 * L_adc_int_Ske * L_adc_con_90 * L_adc_cor_90 L_adc_ene_25 L_adc_ene_SD * L_b_ene_75 L_b_ent_10 L_t2_hom_90 * NATZ_t2_int_SD NATZ_t2_int_Ske NATZ_adc_int_90 NATZ_b_int_90 NATZ_b_int_SD NATZ_t2_con_SD NATZ_adc_con_10 NATZ_adc_cor_50 NATZ_t2_ene_SD NATZ_b_ene_75 NATZ_t2_ent_50 NATZ_b_hom_50 NAPZ_t2_int_75 NAPZ_t2_int_Kur NAPZ_t2_int_Ske NAPZ_b_int_90 NAPZ_b_int_Kur NAPZ_t2_con_75 NAPZ_adc_con_10 NAPZ_b_con_10 NAPZ_t2_cor_50 NAPZ_adc_cor_25 NAPZ_adc_ene_75 NAPZ_t2_ent_90 NAPZ_b_ent_10 NAPZ_t2_hom_90 NAPZ_t2_hom_SD NAPZ_b_hom_10 NAPZ_b_hom_SD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanova, R.; Zavala-Romero, O.; Kwon, D.; Breto, A.L.; Xu, I.R.; Algohary, A.; Alhusseini, M.; Gaston, S.M.; Castillo, P.; Kryvenko, O.N.; et al. Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI. Cancers 2023, 15, 5240. https://doi.org/10.3390/cancers15215240
Stoyanova R, Zavala-Romero O, Kwon D, Breto AL, Xu IR, Algohary A, Alhusseini M, Gaston SM, Castillo P, Kryvenko ON, et al. Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI. Cancers. 2023; 15(21):5240. https://doi.org/10.3390/cancers15215240
Chicago/Turabian StyleStoyanova, Radka, Olmo Zavala-Romero, Deukwoo Kwon, Adrian L. Breto, Isaac R. Xu, Ahmad Algohary, Mohammad Alhusseini, Sandra M. Gaston, Patricia Castillo, Oleksandr N. Kryvenko, and et al. 2023. "Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI" Cancers 15, no. 21: 5240. https://doi.org/10.3390/cancers15215240
APA StyleStoyanova, R., Zavala-Romero, O., Kwon, D., Breto, A. L., Xu, I. R., Algohary, A., Alhusseini, M., Gaston, S. M., Castillo, P., Kryvenko, O. N., Davicioni, E., Nahar, B., Spieler, B., Abramowitz, M. C., Dal Pra, A., Parekh, D. J., Punnen, S., & Pollack, A. (2023). Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI. Cancers, 15(21), 5240. https://doi.org/10.3390/cancers15215240