Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity
Abstract
:Simple Summary
Abstract
1. Introduction
2. HLH Definition and Diagnostic Criteria
3. HLH Incidence after CAR-T Cell Therapy
4. Emerging Non-CD19 CAR-T Products and Targets
5. Management and Treatment of IEC-HS
5.1. Supportive Care
5.2. Corticosteroids
5.3. Interleukin-1 (IL-1) Targeting Agent
5.4. JAK1/JAK2 Inhibitors
5.5. Interleukin-6 (IL-6) Inhibition
5.6. IFN-γ Blockade
5.7. Cytotoxic Anti-T Cell Therapies
5.8. Treatment Considerations and Advancements in IEC-HS
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuwana, Y.; Asakura, Y.; Utsunomiya, N.; Nakanishi, M.; Arata, Y.; Itoh, S.; Nagase, F.; Kurosawa, Y. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 1987, 149, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, M.H.; Westwood, J.A.; Parker, L.L.; Wang, G.; Eshhar, Z.; Mavroukakis, S.A.; White, D.E.; Wunderlich, J.R.; Canevari, S.; Rogers-Freezer, L.; et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 2006, 12 Pt 1, 6106–6115. [Google Scholar] [CrossRef] [PubMed]
- Lamers, C.H.J.; Sleijfer, S.; Vulto, A.G.; Kruit, W.H.J.; Kliffen, M.; Debets, R.; Gratama, J.W.; Stoter, G.; Oosterwijk, E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J. Clin. Oncol. 2006, 24, e20–e22. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.; Guo, H.-F.; Latouche, J.-B.; Tan, C.; Cheung, N.-K.V.; Sadelain, M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 1998, 188, 619–626. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Latouche, J.-B.; Santos, E.; Marti, F.; Gong, M.C.; Lyddane, C.; King, P.D.; Larson, S.; Weiss, M.; Rivière, I. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 2003, 9, 279–286. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 2012, 119, 2709–2720. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.-A.N.; Lanier, B.J.; et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010, 116, 4099–4102. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Rivière, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011, 118, 4817–4828. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Mackensen, A.; Müller, F.; Müller, F.; Mougiakakos, D.; Mougiakakos, D.; Böltz, S.; Böltz, S.; Wilhelm, A.; Wilhelm, A.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Henter, J.I.; Aricò, M.; Egeler, R.M.; Elinder, G.; Favara, B.E.; Filipovich, A.H.; Gadner, H.; Imashuku, S.; Diane Komp, G.J.-S.; Ladisch, S.; et al. HLH-94: A treatment protocol for hemophagocytic lymphohistiocytosis. HLH study Group of the Histiocyte Society. Med. Pediatr. Oncol. 1997, 28, 342–347. [Google Scholar] [CrossRef]
- Henter, J.-I.; Horne, A.; Aricó, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2006, 48, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Fardet, L.; Galicier, L.; Lambotte, O.; Marzac, C.; Aumont, C.; Chahwan, D.; Coppo, P.; Hejblum, G. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014, 66, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Hines, M.R.; Knight, T.E.; McNerney, K.O.; Leick, M.B.; Jain, T.; Ahmed, S.; Frigault, M.J.; Hill, J.A.; Jain, M.D.; Johnson, W.T.; et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Cell Ther. Transplant. 2023, 29, 438.e1–438.e16. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jaeger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Primary Analysis of Juliet: A Global, Pivotal, Phase 2 Trial of CTL019 in Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Blood 2017, 130, 577. [Google Scholar]
- Schuster, S.J.; Dickinson, M.J.; Dreyling, M.H.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.P.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Efficacy and Safety of Tisagenlecleucel in Adult Patients With Relapsed/Refractory Follicular Lymphoma: Primary Analysis of the Phase 2 ELARA Trial. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 386, 640–654. [Google Scholar] [CrossRef]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2016, 25, 285–295. [Google Scholar] [CrossRef]
- A Jacobson, C.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2021, 23, 91–103. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Shah, B.D.; Bishop, M.R.; Oluwole, O.O.; Logan, A.C.; Baer, M.R.; Donnellan, W.B.; O’dwyer, K.M.; Holmes, H.; Arellano, M.L.; Ghobadi, A.; et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 2021, 138, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 2022, 399, 2294–2308. [Google Scholar] [PubMed]
- Sehgal, A.; Hoda, D.; A Riedell, P.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; E Godwin, J.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): An open-label, phase 2 study. Lancet Oncol. 2022, 23, 1066–1077. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Borrega, J.G.; Gödel, P.; Rüger, M.A.; Onur, A.; Shimabukuro-Vornhagen, A.; Kochanek, M.; Böll, B. In the Eye of the Storm: Immune-mediated Toxicities Associated With CAR-T Cell Therapy. HemaSphere 2019, 3, e191. [Google Scholar] [CrossRef] [PubMed]
- Brito-Zerón, P.; Kostov, B.; Moral-Moral, P.; Martínez-Zapico, A.; Díaz-Pedroche, C.; Fraile, G.; Pérez-Guerrero, P.; Fonseca, E.; Robles, A.; Vaquero-Herrero, M.P.; et al. Prognostic Factors of Death in 151 Adults With Hemophagocytic Syndrome: Etiopathogenically Driven Analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2018, 2, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Bichon, A.; Bourenne, J.; Allardet-Servent, J.; Papazian, L.; Hraiech, S.; Guervilly, C.; Pauly, V.; Kaplanski, G.; Mokart, D.; Gainnier, M.; et al. High Mortality of HLH in ICU Regardless Etiology or Treatment. Front. Med. 2021, 8, 735796. [Google Scholar] [CrossRef] [PubMed]
- La Marle, S.; Richard-Colmant, G.; Fauvernier, M.; Ghesquières, H.; Hot, A.; Sève, P.; Jamilloux, Y. Mortality and Associated Causes in Hemophagocytic Lymphohistiocytosis: A Multiple-Cause-of-Death Analysis in France. J. Clin. Med. 2023, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Bukhari, A.; Lutfi, F.; Zafforoni, F.; Merechi, F.; Ali, M.K.M.; Gottlieb, D.; Lee, S.T.; Kocoglu, M.H.; Hardy, N.M.; et al. Low utility of the H-Score and HLH-2004 criteria to identify patients with secondary hemophagocytic lymphohistiocytosis after CAR-T cell therapy for relapsed/refractory diffuse large B-Cell lymphoma. Leuk. Lymphoma 2022, 63, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. 2020, 38, 1938. [Google Scholar] [CrossRef]
- Canna, S.W.; Cron, R.Q. Highways to hell: Mechanism-based management of cytokine storm syndromes. J. Allergy Clin. Immunol. 2020, 146, 949–959. [Google Scholar] [CrossRef]
- Li, Y.; Mei, H. Whole-process management of complications during CAR-T therapy. Hematol. Oncol. Discov. 2022, 1, 32–43. [Google Scholar] [CrossRef]
- Cutini, I.; Puccini, B.; Fabbri, A.; Santi, R.; Gozzini, A.; Nozzoli, C.; Boncompagni, R.; Innocenti, C.; Saccardi, R. Late haemophagocytic lymphohistiocytosis in a patient treated with Axicabtagene ciloleucel. Transpl. Immunol. 2022, 75, 101719. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Priyadarshini, S.; Harris, A.; Treisman, D.; Cupac, J.N.; Li, N.; Yan, D.; Munker, R. Hemophagocytic lymphohistiocytosis secondary to CAR-T cells: Update from the FDA and Vizient databases. Am. J. Hematol. 2022, 97, E374–E376. [Google Scholar] [CrossRef]
- Ahmed, S.; Furqan, F.; Strati, P.; Westin, J.; Fayad, L.; Hagemeister, F.B.; Lee, H.J.; Iyer, S.P.; Nair, R.; Nastoupil, L.J.; et al. Haemophagocytic lymphohistiocytosis (HLH) in patients with large B-cell lymphoma treated with standard of care (SOC) axicabtagene ciloleucel (Axi-cel). J. Clin. Oncol. 2020, 38 (Suppl. S15), 8057. [Google Scholar] [CrossRef]
- Hines, M.R.; Keenan, C.; Maron Alfaro, G.; Cheng, C.; Zhou, Y.; Sharma, A.; Hurley, C.; Nichols, K.E.; Gottschalk, S.; Triplett, B.M.; et al. Hemophagocytic lymphohistiocytosis-like toxicity (carHLH) after CD19-specific CAR T-cell therapy. Br. J. Haematol. 2021, 194, 701–707. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Cohen, A.D.; Mateos, M.-V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.; Suvannasankha, A.; De Braganca, K.C.; Corsale, C.; et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood 2023, 141, 219–230. [Google Scholar] [CrossRef]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; de Larrea, C.F.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, N.J.; Adeel, K.; Kekre, N.; Atkins, H.; Hay, K.A. A systematic review and meta-analysis of CD22 CAR T-cells alone or in combination with CD19 CAR T-cells. Front. Immunol. 2023, 14, 1178403. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Schischlik, F.; Shao, L.; Steinberg, S.M.; Yates, B.; Wang, H.-W.; Wang, Y.; Inglefield, J.; Dulau-Florea, A.; Ceppi, F.; et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood 2021, 138, 2469–2484. [Google Scholar] [CrossRef]
- Jess, J.; Yates, B.; Dulau-Florea, A.; Parker, K.; Inglefield, J.; Lichtenstein, D.; Schischlik, F.; Ongkeko, M.; Wang, Y.; Shahani, S.; et al. CD22 CAR T-cell associated hematologic toxicities, endothelial activation and relationship to neurotoxicity. J. Immunother. Cancer 2023, 11, e005898. [Google Scholar] [CrossRef] [PubMed]
- Wayne, A.S.; Huynh, V.; Hijiya, N.; Rouce, R.H.; Brown, P.A.; Krueger, J.; Kitko, C.L.; Ziga, E.D.; Hermiston, M.L.; Richards, M.K.; et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica 2022, 108, 747–760. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Locke, F.L.; Miklos, D.B.; Herrera, A.F.; Westin, J.R.; Lee, J.; Rossi, J.M.; Zheng, L.; Avanzi, M.P.; Roberts, Z.J.; et al. End of Phase 1 Results from Zuma-6: Axicabtagene Ciloleucel (Axi-Cel) in Combination with Atezolizumab for the Treatment of Patients with Refractory Diffuse Large B Cell Lymphoma. Blood 2018, 132 (Suppl. S1), 4192. [Google Scholar] [CrossRef]
- La Rosée, P.; Horne, A.; Hines, M.; von Bahr Greenwood, T.; Machowicz, R.; Berliner, N.; Birndt, S.; Gil-Herrera, J.; Girschikofsky, M.; Jordan, M.B.; et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood 2019, 133, 2465–2477. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.O.; Bouabdallah, K.; Muñoz, J.; De Guibert, S.; Vose, J.M.; Bartlett, N.L.; Lin, Y.; Deol, A.; McSweeney, P.A.; Goy, A.H.; et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br. J. Haematol. 2021, 194, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Cron, R.Q.; Hartwell, J.; Manson, J.J.; Tattersall, R.S. Silencing the cytokine storm: The use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020, 2, e358–e367. [Google Scholar] [CrossRef]
- Hines, M.R.; Greenwood, T.v.B.; Beutel, G.; Beutel, K.; Hays, J.A.; Horne, A.; Janka, G.; Jordan, M.B.; van Laar, J.A.M.; Lachmann, G.; et al. Consensus-Based Guidelines for the Recognition, Diagnosis, and Management of Hemophagocytic Lymphohistiocytosis in Critically Ill Children and Adults. Crit. Care Med. 2022, 50, 860–872. [Google Scholar] [CrossRef]
- Naymagon, L. Anakinra for the treatment of adult secondary HLH: A retrospective experience. Int. J. Hematol. 2022, 116, 947–955. [Google Scholar] [CrossRef]
- Lee, B.J.; Cao, Y.; Vittayawacharin, P.; É’Leima, G.; Rezk, S.; Reid, J.; Brem, E.A.; Ciurea, S.O.; Kongtim, P. Anakinra versus etoposide-based therapy added to high-dose steroids for the treatment of secondary hemophagocytic lymphohistiocytosis. Eur. J. Haematol. 2023, 111, 477–484. [Google Scholar] [CrossRef]
- Porter, T.J.; Lazarevic, A.; Ziggas, J.E.; Fuchs, E.; Kim, K.; Byrnes, H.; Luznik, L.; Bolaños-Meade, J.; Ali, S.A.; Shah, N.N.; et al. Hyperinflammatory syndrome resembling haemophagocytic lymphohistiocytosis following axicabtagene ciloleucel and brexucabtagene autoleucel. Br. J. Haematol. 2022, 199, 720–727. [Google Scholar] [CrossRef]
- Major, A.; Collins, J.; Craney, C.; Heitman, A.K.; Bauer, E.; Zerante, E.; Stock, W.; Bishop, M.R.; Jasielec, J. Management of hemophagocytic lymphohistiocytosis (HLH) associated with chimeric antigen receptor T-cell (CAR-T) therapy using anti-cytokine therapy: An illustrative case and review of the literature. Leuk. Lymphoma 2021, 62, 1765–1769. [Google Scholar] [CrossRef]
- Henderson, L.A.; Degar, B.A. HLH treatment: Smarter, not harder. Blood 2022, 139, 3453–3455. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wu, L.; Wang, X.; Jin, Z.; Gao, Z.; Wang, Z. Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis. Haematologica 2020, 105, e210–e212. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; He, X.; Zhou, F.; Du, F.; Wang, Z.; Chen, S.; Wu, D. Dose-escalating ruxolitinib for refractory hemophagocytic lymphohistiocytosis. Front. Immunol. 2023, 14, 1211655. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Q.; Ma, H.; Wang, D.; Zhao, Y.; Zhu, T.; Wang, W.; Zhou, C.; Wei, A.; Lian, H.; et al. Ruxolitinib-based regimen in children with primary hemophagocytic lymphohistiocytosis. Haematologica 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, H.; Qu, W.-Y.; Lu, Y.-J.; Feng, Z. Case report: Ruxolitinib plus dexamethasone as first-line therapy in haemophagocytic lymphohistiocytosis. Front. Oncol. 2023, 13, 1054175. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, X.; Zhou, X.; Xie, Y.; Xiang, D.; Wan, Z.; Huang, Y.; Zhu, B. Case report: Ruxolitinib as first-line therapy for secondary hemophagocytic lymphohistiocytosis in patients with AIDS. Front. Immunol. 2022, 13, 1012643. [Google Scholar] [CrossRef]
- Keenan, C.; Nichols, K.E.; Albeituni, S. Use of the JAK Inhibitor Ruxolitinib in the Treatment of Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2021, 12, 614704. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.S.; Yassine, F.; Iqbal, M.; Alotaibi, S.; Moustafa, M.A.; Kharfan-Dabaja, M.A. Management of CAR T-cell related toxicities: What did the learning curve teach us so far? Hematol Oncol. Stem. Cell Ther. 2022, 15, 100–111. [Google Scholar] [CrossRef]
- Grom, A.A.; Horne, A.; De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 2016, 12, 259–268. [Google Scholar] [CrossRef]
- Rocco, J.M.; Inglefield, J.; Yates, B.; Lichtenstein, D.A.; Wang, Y.; Goffin, L.; Filipovic, D.; Schiffrin, E.J.; Shah, N.N. Free interleukin-18 is elevated in CD22 CAR T-cell–associated hemophagocytic lymphohistiocytosis–like toxicities. Blood Adv. 2023, 7, 6134–6139. [Google Scholar] [CrossRef]
- Diorio, C.; Shraim, R.; Myers, R.; Behrens, E.M.; Canna, S.; Bassiri, H.; Aplenc, R.; Burudpakdee, C.; Chen, F.; DiNofia, A.M.; et al. Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clin. Cancer Res. 2022, 28, 3804–3813. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, M.; Park, J.K.; Lee, E.B.; Park, J.W.; Hong, J. Limited efficacy of tocilizumab in adult patients with secondary hemophagocytic lymphohistiocytosis: A retrospective cohort study. Orphanet. J. Rare Dis. 2022, 17, 363. [Google Scholar] [CrossRef]
- Ceruti, S.; Glotta, A.; Adamson, H.; Mauri, R.; Molnar, Z. Hemoadsorption Treatment with CytoSorb® in Probable Hemophagocytic Lymphohistiocytosis: A Role as Adjunctive Therapy? Case Rep. Hematol. 2021, 2021, 5539126. [Google Scholar] [CrossRef]
- Martín-Rojas, R.M.; Gómez-Centurión, I.; Bailén, R.; Bastos, M.; Diaz-Crespo, F.; Carbonell, D.; Correa-Rocha, R.; Pion, M.; Muñoz, C.; Sancho, M.; et al. Hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS) following treatment with tisagenlecleucel. Clin. Case Rep. 2022, 10, e05209. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.C.; Kann, M.C.; Bailey, S.R.; Haradhvala, N.J.; Llopis, P.M.; Bouffard, A.A.; Scarfó, I.; Leick, M.B.; Grauwet, K.; Berger, T.R.; et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 2022, 604, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Manni, S.; Del Bufalo, F.; Merli, P.; Silvestris, D.A.; Guercio, M.; Caruso, S.; Reddel, S.; Iaffaldano, L.; Pezzella, M.; Di Cecca, S.; et al. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat. Commun. 2023, 14, 3423. [Google Scholar] [CrossRef] [PubMed]
- McNerney, K.O.; DiNofia, A.M.; Teachey, D.T.; Grupp, S.A.; Maude, S.L. Potential Role of IFNγ Inhibition in Refractory Cytokine Release Syndrome Associated with CAR T-cell Therapy. Blood Cancer Discov. 2022, 3, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Rainone, M.; Ngo, D.; Baird, J.H.; Budde, L.E.; Htut, M.; Aldoss, I.; Pullarkat, V. Interferon-γ blockade in CAR T-cell therapy–associated macrophage activation syndrome/hemophagocytic lymphohistiocytosis. Blood Adv. 2023, 7, 533–536. [Google Scholar] [CrossRef]
- Johnson, T.S.; Terrell, C.E.; Millen, S.H.; Katz, J.D.; Hildeman, D.A.; Jordan, M.B. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J. Immunol. 2014, 192, 84–91. [Google Scholar] [CrossRef]
- Trottestam, H.; Horne, A.; Aricò, M.; Egeler, R.M.; Filipovich, A.H.; Gadner, H.; Imashuku, S.; Ladisch, S.; Webb, D.; Janka, G.; et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: Long-term results of the HLH-94 treatment protocol. Blood 2011, 118, 4577–4584. [Google Scholar] [CrossRef]
- Moshous, D.; Briand, C.; Castelle, M.; Dupic, L.; Morelle, G.; Chahla, W.A.; Barlogis, V.; Bertrand, Y.; Bruno, B.; Jeziorski, E.; et al. Alemtuzumab as First Line Treatment in Children with Familial Lymphohistiocytosis. Blood 2019, 134 (Suppl. S1), 80. [Google Scholar] [CrossRef]
- Mahlaoui, N.; Ouachée-Chardin, M.; Basile, G.d.S.; Neven, B.; Picard, C.; Blanche, S.; Fischer, A. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: A single-center retrospective report of 38 patients. Pediatrics 2007, 120, e622–e628. [Google Scholar] [CrossRef] [PubMed]
HLH-94 criteria (1994) [13] |
|
HLH-2004 criteria (2004) [14] | Must have 5 of the following:
|
H score [15] (2014) | Points assigned as following:
|
CARTOX criteria [16] (2017) |
|
ASTCT criteria [17] (2023) | Most common manifestations:
|
Product | Trial | Indication | Incidence of HLH/MAS |
---|---|---|---|
Tisagenlecleucel (brand name: Kymriah) | ELIANA [18] | B-ALL (peds/AYA) | 6% (5/79) |
JULIET [19] | Large B-cell lymphoma | 2% (2/115) | |
ELARA [20] | Follicular lymphoma | 1% * (1/97) | |
Axicabtagene ciloleucel (brand name: Yescarta) | ZUMA-7 [21] | Large B-cell lymphoma | 0% (0/168) |
ZUMA-1 [22] | Large B-cell lymphoma | 1% (1/108) | |
ZUMA-5 [23] | Indolent non-Hodgkin lymphoma (124 follicular lymphoma, 22 marginal zone) | 0% (0/146) | |
Brexucabtagene autoleucel (brand name: Tecartus) | ZUMA-2 [24] | Mantle cell lymphoma | 0% (0/82) |
ZUMA-3 [25] | B-ALL | 4% (3/78) | |
lisocabtagene maraleucel (brand name: Breyanzi) | Transform [26] | Large B-cell lymphoma | 1.1% (1/89 |
PILOT [27] | Large B-cell lymphoma | 0% (0/61) | |
TRANSCEND [28] | Large B-cell lymphoma | 0% (0/268) |
Product | Target Antigen | Trial | Indication | Incidence of HLH/MAS |
---|---|---|---|---|
Idecabtagene vicleucel (brand name: Abecma) | BCMA | KarMMa [42] | Multiple myeloma | 4% (5/127) |
Ciltacabtagene autoleucel (brand name: Carvykti) | BCMA | CARTITUDE-1 [44] | Multiple myeloma | 1% (1/97) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fugere, T.; Baltz, A.; Mukherjee, A.; Gaddam, M.; Varma, A.; Veeraputhiran, M.; Gentille Sanchez, C.G. Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity. Cancers 2023, 15, 5149. https://doi.org/10.3390/cancers15215149
Fugere T, Baltz A, Mukherjee A, Gaddam M, Varma A, Veeraputhiran M, Gentille Sanchez CG. Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity. Cancers. 2023; 15(21):5149. https://doi.org/10.3390/cancers15215149
Chicago/Turabian StyleFugere, Tyler, Alan Baltz, Akash Mukherjee, Mamatha Gaddam, Ankur Varma, Muthu Veeraputhiran, and Cesar Giancarlo Gentille Sanchez. 2023. "Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity" Cancers 15, no. 21: 5149. https://doi.org/10.3390/cancers15215149
APA StyleFugere, T., Baltz, A., Mukherjee, A., Gaddam, M., Varma, A., Veeraputhiran, M., & Gentille Sanchez, C. G. (2023). Immune Effector Cell-Associated HLH-like Syndrome: A Review of the Literature of an Increasingly Recognized Entity. Cancers, 15(21), 5149. https://doi.org/10.3390/cancers15215149