The Heterogeneous Impact of Prediagnostic Folate Intake for Fluorouracil-Containing Induction Chemotherapy for Head and Neck Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Estimation of Folate Intake and Life Style Factors
2.2. Evaluation of Treatment
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Impact of Dietary Folate Intake on Overall Survival
3.2.1. Sensitivity Analysis and Stratification by Clinical Confounder
3.2.2. Impact of Dietary Folate Intake on Recurrent-Free Survival and Distant Metastasis-Free Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Marur, S.; Forastiere, A.A. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin. Proc. 2016, 91, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Remenar, E.; van Herpen, C.; Gorlia, T.; Mesia, R.; Degardin, M.; Stewart, J.S.; Jelic, S.; Betka, J.; Preiss, J.H.; et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 2007, 357, 1695–1704. [Google Scholar] [CrossRef]
- Haddad, R.; O’Neill, A.; Rabinowits, G.; Tishler, R.; Khuri, F.; Adkins, D.; Clark, J.; Sarlis, N.; Lorch, J.; Beitler, J.J.; et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): A randomised phase 3 trial. Lancet Oncol. 2013, 14, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Matsuo, K.; Suzuki, R.; Hamajima, N.; Ogura, M.; Kagami, Y.; Taji, H.; Kondoh, E.; Maeda, S.; Asakura, S.; Kaba, S.; et al. Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 2001, 97, 3205–3209. [Google Scholar] [CrossRef]
- Radparvar, S.; Houghton, P.J.; Houghton, J.A. Effect of polyglutamylation of 5,10-methylenetetrahydrofolate on the binding of 5-fluoro-2’-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft. Biochem. Pharmacol. 1989, 38, 335–342. [Google Scholar] [CrossRef]
- Dolnick, B.J.; Cheng, Y.C. Human thymidylate synthetase. II. Derivatives of pteroylmono- and -polyglutamates as substrates and inhibitors. J. Biol. Chem. 1978, 253, 3563–3567. [Google Scholar] [CrossRef]
- Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: Evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol. 1992, 10, 896–903. [CrossRef]
- Boige, V.; Mendiboure, J.; Pignon, J.P.; Loriot, M.A.; Castaing, M.; Barrois, M.; Malka, D.; Tregouet, D.A.; Bouche, O.; Le Corre, D.; et al. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J. Clin. Oncol. 2010, 28, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Thirion, P.; Michiels, S.; Pignon, J.P.; Buyse, M.; Braud, A.C.; Carlson, R.W.; O’Connell, M.; Sargent, P.; Piedbois, P. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: An updated meta-analysis. J. Clin. Oncol. 2004, 22, 3766–3775. [Google Scholar] [CrossRef] [PubMed]
- Wolmark, N.; Rockette, H.; Fisher, B.; Wickerham, D.L.; Redmond, C.; Fisher, E.R.; Jones, J.; Mamounas, E.P.; Ore, L.; Petrelli, N.J.; et al. The benefit of leucovorin-modulated fluorouracil as postoperative adjuvant therapy for primary colon cancer: Results from National Surgical Adjuvant Breast and Bowel Project protocol C-03. J. Clin. Oncol. 1993, 11, 1879–1887. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.H.; Lee, S.H.; Kim, T.Y.; Heo, D.S.; Bang, Y.J.; Kim, N.K. Phase II study of oxaliplatin, 5-fluorouracil and leucovorin in previously platinum-treated patients with advanced gastric cancer. Ann. Oncol. 2003, 14, 383–387. [Google Scholar] [CrossRef]
- Kondoh, C.; Kadowaki, S.; Komori, A.; Narita, Y.; Taniguchi, H.; Ura, T.; Ando, M.; Muro, K. Salvage chemotherapy with the combination of oxaliplatin, leucovorin, and 5-fluorouracil in advanced gastric cancer refractory or intolerant to fluoropyrimidines, platinum, taxanes, and irinotecan. Gastric Cancer 2018, 21, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.F.; Baron, J.A.; Sandler, R.S.; Haile, R.W.; Ahnen, D.J.; Bresalier, R.S.; McKeown-Eyssen, G.; Summers, R.W.; Rothstein, R.I.; Burke, C.A.; et al. Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA 2007, 297, 2351–2359. [Google Scholar] [CrossRef]
- Kim, Y.I. Folate, colorectal carcinogenesis, and DNA methylation: Lessons from animal studies. Env. Mol. Mutagen. 2004, 44, 10–25. [Google Scholar] [CrossRef]
- Song, J.; Medline, A.; Mason, J.B.; Gallinger, S.; Kim, Y.I. Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse. Cancer Res. 2000, 60, 5434–5440. [Google Scholar] [CrossRef]
- Ulrich, C.M.; Potter, J.D. Folate and cancer—Timing is everything. JAMA 2007, 297, 2408–2409. [Google Scholar] [CrossRef]
- Shitara, K.; Muro, K.; Ito, S.; Sawaki, A.; Tajika, M.; Kawai, H.; Yokota, T.; Takahari, D.; Shibata, T.; Ura, T.; et al. Folate intake along with genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase in patients with advanced gastric cancer. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Ghi, M.G.; Paccagnella, A.; Ferrari, D.; Foa, P.; Alterio, D.; Codeca, C.; Nole, F.; Verri, E.; Orecchia, R.; Morelli, F.; et al. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial. Ann. Oncol. 2017, 28, 2206–2212. [Google Scholar] [CrossRef]
- Cohen, E.E.; Karrison, T.G.; Kocherginsky, M.; Mueller, J.; Egan, R.; Huang, C.H.; Brockstein, B.E.; Agulnik, M.B.; Mittal, B.B.; Yunus, F.; et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J. Clin. Oncol 2014, 32, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, Y.; Huang, X.L.; Zhang, Z.Y.; Myers, J.N.; Neskey, D.M.; Zhong, L.P. Induction chemotherapy decreases the rate of distant metastasis in patients with head and neck squamous cell carcinoma but does not improve survival or locoregional control: A meta-analysis. Oral Oncol. 2012, 48, 1076–1084. [Google Scholar] [CrossRef]
- Hamajima, N.; Matsuo, K.; Saito, T.; Hirose, K.; Inoue, M.; Takezaki, T.; Kuroishi, T.; Tajima, K. Gene-environment Interactions and Polymorphism Studies of Cancer Risk in the Hospital-based Epidemiologic Research Program at Aichi Cancer Center II (HERPACC-II). Asian Pac. J. Cancer Prev. 2001, 2, 99–107. [Google Scholar]
- Tajima, K.; Hirose, K.; Inoue, M.; Takezaki, T.; Hamajima, N.; Kuroishi, T. A Model of Practical Cancer Prevention for Out-patients Visiting a Hospital: The Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC). Asian Pac. J. Cancer Prev. 2000, 1, 35–47. [Google Scholar] [PubMed]
- Imaeda, N.; Goto, C.; Tokudome, Y.; Hirose, K.; Tajima, K.; Tokudome, S. Reproducibility of a short food frequency questionnaire for Japanese general population. J. Epidemiol. 2007, 17, 100–107. [Google Scholar] [CrossRef]
- Tokudome, Y.; Goto, C.; Imaeda, N.; Hasegawa, T.; Kato, R.; Hirose, K.; Tajima, K.; Tokudome, S. Relative validity of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in middle-aged Japanese. J. Epidemiol. 2005, 15, 135–145. [Google Scholar] [CrossRef]
- Hagiwara, K. Standard tables of food composition in Japan Fifth Revised Edition. J. Integr. Study Diet. Habits 2001, 12, 86–89. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Hirakawa, H.; Hanai, N.; Suzuki, H.; Nishikawa, D.; Matayoshi, S.; Hasegawa, Y.; Suzuki, M. Prognostic importance of pathological response to neoadjuvant chemotherapy followed by definitive surgery in advanced oral squamous cell carcinoma. Jpn. J. Clin. Oncol. 2017, 47, 1038–1046. [Google Scholar] [CrossRef]
- Nishikawa, D.; Hanai, N.; Ozawa, T.; Hirakawa, H.; Suzuki, H.; Nakashima, T.; Hasegawa, Y. Role of induction chemotherapy for N3 head and neck squamous cell carcinoma. Auris Nasus Larynx 2015, 42, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Hanai, N.; Ozawa, T.; Suzuki, H.; Nishikawa, D.; Matayoshi, S.; Suzuki, M.; Hasegawa, Y. Prognostic impact of pathological response to neoadjuvant chemotherapy followed by definitive surgery in sinonasal squamous cell carcinoma. Head Neck 2016, 38 (Suppl. 1), E1305–E1311. [Google Scholar] [CrossRef]
- Hanai, N.; Ozawa, T.; Hirakawa, H.; Suzuki, H.; Fukuda, Y.; Hasegawa, Y. The nodal response to chemoselection predicts the risk of recurrence following definitive chemoradiotherapy for pharyngeal cancer. Acta Otolaryngol. 2014, 134, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Kish, J.; Drelichman, A.; Jacobs, J.; Hoschner, J.; Kinzie, J.; Loh, J.; Weaver, A.; Al-Sarraf, M. Clinical trial of cisplatin and 5-FU infusion as initial treatment for advanced squamous cell carcinoma of the head and neck. Cancer Treat Rep. 1982, 66, 471–474. [Google Scholar] [PubMed]
- Nakata, Y.; Hanai, N.; Nishikawa, D.; Suzuki, H.; Koide, Y.; Fukuda, Y.; Nomura, M.; Kodaira, T.; Shimizu, T.; Hasegawa, Y. Comparison between chemoselection and definitive radiotherapy in patients with cervical esophageal squamous cell carcinoma. Int. J. Clin. Oncol. 2017, 22, 1034–1041. [Google Scholar] [CrossRef]
- Lu, C.; Xie, H.; Wang, F.; Shen, H.; Wang, J. Diet folate, DNA methylation and genetic polymorphisms of MTHFR C677T in association with the prognosis of esophageal squamous cell carcinoma. BMC Cancer 2011, 11, 91. [Google Scholar] [CrossRef]
- Harris, H.R.; Bergkvist, L.; Wolk, A. Folate intake and breast cancer mortality in a cohort of Swedish women. Breast Cancer Res. Treat. 2012, 132, 243–250. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Wei, E.K.; Ng, K.; Meyerhardt, J.A.; Chan, J.A.; Selhub, J.; Giovannucci, E.L.; Fuchs, C.S. Prediagnostic plasma folate and the risk of death in patients with colorectal cancer. J. Clin. Oncol. 2008, 26, 3222–3228. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Kawakita, D.; Matsuo, K.; Sato, F.; Oze, I.; Hosono, S.; Ito, H.; Watanabe, M.; Yatabe, Y.; Hanai, N.; Hasegawa, Y.; et al. Association between dietary folate intake and clinical outcome in head and neck squamous cell carcinoma. Ann. Oncol. 2012, 23, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, Y.; Wang, L.; Zhang, C.X. Folate intake and breast cancer prognosis: A meta-analysis of prospective observational studies. Eur. J. Cancer Prev. 2015, 24, 113–121. [Google Scholar] [CrossRef]
- McEligot, A.J.; Ziogas, A.; Pfeiffer, C.M.; Fazili, Z.; Anton-Culver, H. The association between circulating total folate and folate vitamers with overall survival after postmenopausal breast cancer diagnosis. Nutr. Cancer 2015, 67, 442–448. [Google Scholar] [CrossRef]
- Persson, E.C.; Schwartz, L.M.; Park, Y.; Trabert, B.; Hollenbeck, A.R.; Graubard, B.I.; Freedman, N.D.; McGlynn, K.A. Alcohol consumption, folate intake, hepatocellular carcinoma, and liver disease mortality. Cancer Epidemiol. Biomark. Prev. 2013, 22, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.C.; Ibiebele, T.I.; Protani, M.M.; Beesley, J.; deFazio, A.; Crandon, A.J.; Gard, G.B.; Rome, R.M.; Webb, P.M.; Nagle, C.M. Dietary folate and related micronutrients, folate-metabolising genes, and ovarian cancer survival. Gynecol. Oncol. 2014, 132, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Kasperzyk, J.L.; Fall, K.; Mucci, L.A.; Hakansson, N.; Wolk, A.; Johansson, J.E.; Andersson, S.O.; Andren, O. One-carbon metabolism-related nutrients and prostate cancer survival. Am. J. Clin. Nutr. 2009, 90, 561–569. [Google Scholar] [CrossRef] [PubMed]
- The National Comprehensive Cancer Network® Guidelines for Treatment of Cancer by Site. Available online: https://www.nccn.org/professionals/physician_gls/default.aspx#site (accessed on 26 October 2022).
- Cheradame, S.; Etienne, M.C.; Formento, P.; Schneider, M.; Dassonville, O.; Demard, F.; Milano, G. Tumoral-reduced folates and clinical resistance to fluorouracil-based treatment in head and neck cancer patients. J. Clin. Oncol. 1997, 15, 2604–2610. [Google Scholar] [CrossRef] [PubMed]
- Branda, R.F.; Nigels, E.; Lafayette, A.R.; Hacker, M. Nutritional folate status influences the efficacy and toxicity of chemotherapy in rats. Blood 1998, 92, 2471–2476. [Google Scholar] [CrossRef]
- Rosen, F.; Nichol, C.A. Inhibition of the growth of an ame-thopterin-refractory tumor by dietary restriction of folic acid. Cancer Res. 1962, 22, 495–500. [Google Scholar]
- Bills, N.D.; Hinrichs, S.H.; Morgan, R.; Clifford, A.J. Delayed tumor onset in transgenic mice fed a low-folate diet. J. Natl. Cancer Inst. 1992, 84, 332–337. [Google Scholar] [CrossRef]
- Lorch, J.H.; Goloubeva, O.; Haddad, R.I.; Cullen, K.; Sarlis, N.; Tishler, R.; Tan, M.; Fasciano, J.; Sammartino, D.E.; Posner, M.R. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: Long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol. 2011, 12, 153–159. [Google Scholar] [CrossRef] [PubMed]
Total | FU-Containing IC Followed by Definitive Treatment | Definitive Treatment Alone | ||||||
---|---|---|---|---|---|---|---|---|
N = 504 | (%) | N = 240 | (%) | N = 264 | (%) | p-Value † | ||
Sex | 0.959 | |||||||
Male | 413 | (82) | 210 | (88) | 203 | (77) | ||
Female | 91 | (18) | 30 | (13) | 61 | (23) | ||
Age (years) | 0.200 | |||||||
<60 | 214 | (42) | 107 | (45) | 107 | (41) | ||
≥60 | 290 | (58) | 123 | (51) | 167 | (63) | ||
ECOG PS | 0.016 | |||||||
0 | 293 | (58) | 153 | (64) | 140 | (53) | ||
1 | 191 | (38) | 82 | (34) | 109 | (41) | ||
2 | 20 | (4) | 5 | (2) | 15 | (6) | ||
Primary site | 0.016 | |||||||
Oral cavity | 201 | (40) | 52 | (22) | 149 | (56) | ||
Oropharynx | 114 | (23) | 85 | (35) | 29 | (11) | ||
Hypopharynx | 136 | (27) | 85 | (35) | 51 | (19) | ||
Larynx | 53 | (11) | 18 | (8) | 35 | (13) | ||
UICC stage | 0.004 | |||||||
III | 142 | (28) | 53 | (22) | 89 | (34) | ||
IV | 362 | (72) | 187 | (78) | 175 | (66) | ||
UICC T classification | 0.132 | |||||||
1 | 33 | (7) | 13 | (5) | 20 | (8) | ||
2 | 165 | (33) | 87 | (36) | 78 | (30) | ||
3 | 153 | (30) | 78 | (33) | 75 | (28) | ||
4 | 152 | (30) | 62 | (26) | 90 | (34) | ||
x | 1 | (0) | 0 | (0) | 1 | (0) | ||
UICC N classification | <0.001 | |||||||
0 | 104 | (21) | 38 | (16) | 66 | (25) | ||
1 | 111 | (22) | 38 | (16) | 73 | (28) | ||
2 | 268 | (53) | 147 | (61) | 121 | (46) | ||
3 | 21 | (4) | 17 | (7) | 4 | (2) | ||
Definitive treatment | 0.013 | |||||||
Surgery | 223 | (44) | 97 | (40) | 126 | (48) | ||
Radiotherapy | 281 | (56) | 143 | (60) | 138 | (52) | ||
Cumulative smoking | 0.001 | |||||||
Non-smoker | 111 | (22) | 30 | (12) | 81 | (31) | ||
Light (<20PY) | 71 | (14) | 37 | (15) | 34 | (13) | ||
Moderate (20PY to <30PY) | 127 | (25) | 60 | (23) | 67 | (25) | ||
Heavy (≥30PY) | 181 | (36) | 104 | (43) | 77 | (30) | ||
Unknown | 14 | (3) | 9 | (4) | 5 | (2) | ||
Alcohol consumption | 0.001 | |||||||
Non-drinker | 115 | (23) | 40 | (17) | 75 | (28) | ||
Light | 112 | (22) | 45 | (19) | 67 | (25) | ||
Moderate | 107 | (21) | 56 | (23) | 51 | (19) | ||
Heavy | 167 | (33) | 98 | (41) | 69 | (26) | ||
Unknown | 3 | (1) | 1 | (0) | 2 | (1) | ||
Folate intake ‡ | 0.746 | |||||||
Low | 169 | (34) | 83 | (35) | 86 | (33) | ||
Medium | 168 | (33) | 76 | (32) | 92 | (35) | ||
High | 167 | (33) | 81 | (34) | 86 | (33) | ||
Vitamin supplement use | 0.094 | |||||||
No | 423 | (84) | 205 | (85) | 218 | (83) | ||
Yes | 69 | (14) | 33 | (14) | 36 | (14) | ||
Unknown | 12 | (2) | 2 | (1) | 10 | (4) | ||
Cumulative dose of FU during IC term | ||||||||
High-dose § | - | 152 | (63) | - | ||||
Low-dose § | - | 88 | (37) | - |
FU-Based IC Followed by Definitive Treatment | Definitive Treatment Alone | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Folate Intake † | N (%) | Event | 5-Year OS (%) (95%CI) | Crude HR (95%CI) | p-Value | Adjusted ‡ HR (95%CI) | p-Value | N (%) | Event | 5-Year OS (%) (95%CI) | Crude HR (95%CI) | p-Value | Adjusted ‡ HR (95%CI) | p-Value | p for Interaction |
Overall | N = 240 | N = 264 | 0.202 § | ||||||||||||
Low | 83 (35) | 38 | 50.8 (37.6–61.6) | 1 (reference) | 1 (reference) | 86 (33) | 36 | 58.6 (45.8–69.2) | 1 (reference) | 1 (reference) | |||||
Medium | 76 (32) | 34 | 56.0 (43.6–66.7) | 0.86 (0.54–1.37) | 0.516 | 0.80 (0.49–1.30) | 0.365 | 92 (35) | 34 | 61.0 (49.1–71.0) | 0.85 (0.53–1.36) | 0.504 | 0.82 (0.49–1.37) | 0.449 | |
High | 81 (34) | 24 | 70.8 (59.0–80.6) | 0.50 (0.30–0.84) | 0.009 | 0.42 (0.25–0.76) | 0.003 | 86 (33) | 29 | 67.6 (55.7–77.0) | 0.75 (0.46–1.22) | 0.245 | 0.83 (0.49–1.42) | 0.504 | |
trend p = 0.009 | trend p = 0.004 | trend p = 0.243 | trend p = 0.491 | ||||||||||||
Stratification by cumulative dose of FU during IC terms | |||||||||||||||
High cumulative dose of FU during IC term in FU-containing IC (N = 152) §§ | 0.012 ¶ | ||||||||||||||
Low | 53 (35) | 26 | 48.0 (32.8–61.7) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 54 (36) | 18 | 67.2 (51.8–78.7) | 0.55 (0.30–1.01) | 0.053 | 0.35 (0.17–0.74) | 0.006 | ||||||||
High | 45 (30) | 9 | 79.7 (63.1–89.4) | 0.29 (0.13–0.62) | 0.002 | 0.22 (0.10–0.53) | 0.001 | ||||||||
trend p = 0.001 | trend p = <0.001 | ||||||||||||||
Low cumulative dose of FU during IC term (N = 88) §§ | 0.975 † | ||||||||||||||
Low | 30 (34) | 12 | 56.1 (35.5–72.5) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 22 (25) | 16 | 29.6 (12.2–49.3) | 1.85 (0.87–3.93) | 0.108 | 3.18 (1.04–9.71) | 0.042 | ||||||||
High | 36 (41) | 15 | 59.7 (41.5–73.9) | 0.90 (0.87–3.93) | 0.784 | 0.78 (0.29–2.05) | 0.608 | ||||||||
trend p = 0.683 | trend p = 0.305 | ||||||||||||||
Stratification by definitive treatment | |||||||||||||||
Surgery N = 97 | N = 126 | 0.762 § | |||||||||||||
Low | 27 (28) | 11 | 54.2 (31.9–72.0) | 1 (reference) | 1 (reference) | 35 (28) | 14 | 63.9 (43.2–78.8) | 1 (reference) | 1 (reference) | |||||
Medium | 37 (38) | 21 | 45.6 (28.6–61.1) | 1.37 (0.66–2.86) | 0.394 | 1.05 (0.44–2.46) | 0.919 | 51 (40) | 17 | 60.1 (42.5–73.9) | 0.93 (0.45–1.94) | 0.849 | 1.16 (0.50–2.67) | 0.733 | |
High | 33 (34) | 9 | 70.1 (50.0–83.4) | 0.55 (0.23–1.35) | 0.199 | 0.35 (0.13–0.93) | 0.034 | 40 (32) | 11 | 72.1 (54.1–84.1) | 0.59 (0.26–1.34) | 0.214 | 0.89 (0.33–2.38) | 0.823 | |
trend p = 0.215 | trend p = 0.025 | trend p = 0.215 | trend p = 0.854 | ||||||||||||
Stratification by cumulative dose of FU during IC terms | |||||||||||||||
High cumulative dose of FU during IC term in FU-containing IC (N = 45) §§ | 0.031 ¶ | ||||||||||||||
Low | 10 (22) | 7 | 25.0 (4.0–54.8) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 22 (49) | 10 | 56.3(32.6–74.5) | 0.45(0.16–1.22) | 0.118 | 0.12 (0.19–0.74) | 0.023 | ||||||||
High | 13 (29) | 1 | 88.9 (43.3–98.3) | 0.06 (0.07–0.51) | 0.010 | 0.03 (0.00–0.38) | 0.007 | ||||||||
trend p = 0.002 | trend p = 0.005 | ||||||||||||||
Low cumulative dose of FU during IC term (N = 52) §§ | 0.361 † | ||||||||||||||
Low | 17 (37) | 4 | 75.3 (45.7–89.9) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 15 (33) | 11 | 30.0 (9.5–54.0) | 3.65 (1.15–11.50) | 0.027 | 2.54 (0.48–13.15) | 0.268 | ||||||||
High | 20 (43) | 8 | 58.0(33.0–76.5) | 1.62 (0.48–5.38) | 0.784 | 0.25 (0.05–1.40) | 0.115 | ||||||||
trend p= 0.593 | trend p = 0.64 | ||||||||||||||
Radiotherapy | N =143 | N = 138 | 0.302 § | ||||||||||||
Low | 56 (39) | 27 | 48.9 (34.262.1) | 1 (reference) | 1 (reference) | 51 (37) | 22 | 54.7 (38.0–68.7) | 1 (reference) | 1 (reference) | |||||
Medium | 39 (27) | 13 | 67.1 (49.1–89.1) | 0.54 (0.25–1.07) | 0.078 | 0.49 (0.23–1.05) | 0.067 | 41 (30) | 17 | 62.5 (45.5–75.5) | 0.86 (0.45–2.62) | 0.70 (0.34–1.42) | 0.324 | ||
High | 48 (34) | 15 | 71.6 (56.0–82.5) | 0.47 (0.25–0.91) | 0.026 | 0.56 (0.26–1.17) | 0.121 | 46 (33) | 18 | 63.3 (46.6–76.4) | 0.82 (0.44–1.54) | 0.70 (0.35–1.42) | 0.327 | ||
trend p = 0.023 | trend p = 0.083 | trend p = 0.551 | trend p = 0.319 | ||||||||||||
Stratification by cumulative dose of FU during IC terms | |||||||||||||||
High cumulative dose of FU during IC term in FU-containing IC (N = 107) §§ | 0.142 ¶ | ||||||||||||||
Low | 43 (40) | 19 | 53.5 (36.2–68.2) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 32 (30) | 8 | 76.5 (56.4–88.2) | 0.47 (0.19–1.11) | 0.085 | 0.30 (0.10–0.88) | 0.028 | ||||||||
High | 32 (30) | 8 | 76.5 (56.7–88.1) | 0.42 (0.17–1.01) | 0.052 | 0.30 (0.10–0.91) | 0.033 | ||||||||
trend p= 0.042 | trend p = 0.022 | ||||||||||||||
Low cumulative dose of FU during IC term (N = 36) §§ | 0.764 † | ||||||||||||||
Low | 13 (36) | 8 | 33.8 (10.5–59.4) | 1 (reference) | 1 (reference) | ||||||||||
Medium | 7 (19) | 5 | 28.6 (4.1–61.2) | 0.92 (0.30–2.82) | 0.879 | 2.46 (0.16–37.81) | 0.518 | ||||||||
High | 16 (44) | 7 | 61.9 (33.9–80.8) | 0.55 (0.19–1.54) | 0.258 | 0.74 (0.10–5.20) | 0.761 | ||||||||
trend p = 0.253 | trend p = 0.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawabe, M.; Kawakita, D.; Oze, I.; Iwasaki, S.; Hasegawa, Y.; Murakami, S.; Ito, H.; Hanai, N.; Matsuo, K. The Heterogeneous Impact of Prediagnostic Folate Intake for Fluorouracil-Containing Induction Chemotherapy for Head and Neck Cancer. Cancers 2023, 15, 5150. https://doi.org/10.3390/cancers15215150
Sawabe M, Kawakita D, Oze I, Iwasaki S, Hasegawa Y, Murakami S, Ito H, Hanai N, Matsuo K. The Heterogeneous Impact of Prediagnostic Folate Intake for Fluorouracil-Containing Induction Chemotherapy for Head and Neck Cancer. Cancers. 2023; 15(21):5150. https://doi.org/10.3390/cancers15215150
Chicago/Turabian StyleSawabe, Michi, Daisuke Kawakita, Isao Oze, Shinichi Iwasaki, Yasuhisa Hasegawa, Shingo Murakami, Hidemi Ito, Nobuhiro Hanai, and Keitaro Matsuo. 2023. "The Heterogeneous Impact of Prediagnostic Folate Intake for Fluorouracil-Containing Induction Chemotherapy for Head and Neck Cancer" Cancers 15, no. 21: 5150. https://doi.org/10.3390/cancers15215150
APA StyleSawabe, M., Kawakita, D., Oze, I., Iwasaki, S., Hasegawa, Y., Murakami, S., Ito, H., Hanai, N., & Matsuo, K. (2023). The Heterogeneous Impact of Prediagnostic Folate Intake for Fluorouracil-Containing Induction Chemotherapy for Head and Neck Cancer. Cancers, 15(21), 5150. https://doi.org/10.3390/cancers15215150