Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role of Clinical and Pathological Complete Response
3. Prediction of pCR Using Non-Radiomics Model
3.1. Clinical Predictors and Models
3.2. Role of MRI and PET/CT
3.3. Genomics, Transcriptomics
3.4. Circulating Tumor Cells, Tissue, and Circulating miRNAs
3.5. Pathomics
3.6. Microbiome
4. Prediction of pCR Using Radiomics Model
5. Limitations/Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kennecke, H.F.; Bahnson, H.T.; Lin, B.; O’Rourke, C.; Kaplan, J.; Pham, H.; Suen, A.; Simianu, V.V. Patterns of Practice and Improvements in Survival Among Patients With Stage 2/3 Rectal Cancer Treated With Trimodality Therapy. JAMA Oncol. 2022, 8, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Sauer, R.; Becker, H.; Hohenberger, W.; Rodel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, M.S.; Colangelo, L.H.; O’Connell, M.J.; Yothers, G.; Deutsch, M.; Allegra, C.J.; Kahlenberg, M.S.; Baez-Diaz, L.; Ursiny, C.S.; Petrelli, N.J.; et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 5124–5130. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Yoon, S.M.; Yu, C.S.; Kim, J.H.; Kim, T.W.; Kim, J.C. Randomized phase 3 trial comparing preoperative and postoperative chemoradiotherapy with capecitabine for locally advanced rectal cancer. Cancer 2011, 117, 3703–3712. [Google Scholar] [CrossRef]
- Swedish Rectal Cancer, T.; Cedermark, B.; Dahlberg, M.; Glimelius, B.; Pahlman, L.; Rutqvist, L.E.; Wilking, N. Improved survival with preoperative radiotherapy in resectable rectal cancer. N. Engl. J. Med. 1997, 336, 980–987. [Google Scholar] [CrossRef]
- Kapiteijn, E.; Marijnen, C.A.; Nagtegaal, I.D.; Putter, H.; Steup, W.H.; Wiggers, T.; Rutten, H.J.; Pahlman, L.; Glimelius, B.; van Krieken, J.H.; et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001, 345, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Sebag-Montefiore, D.; Stephens, R.J.; Steele, R.; Monson, J.; Grieve, R.; Khanna, S.; Quirke, P.; Couture, J.; de Metz, C.; Myint, A.S.; et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): A multicentre, randomised trial. Lancet 2009, 373, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Conroy, T.; Bosset, J.F.; Etienne, P.L.; Rio, E.; Francois, E.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouche, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Kasi, A.; Abbasi, S.; Handa, S.; Al-Rajabi, R.; Saeed, A.; Baranda, J.; Sun, W. Total Neoadjuvant Therapy vs. Standard Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2030097. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Tan, L.; Liu, Z.L.; Xiao, J.W. Total neoadjuvant therapy or standard chemoradiotherapy for locally advanced rectal cancer: A systematic review and meta-analysis. Front. Surg. 2022, 9, 911538. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, L.; Zhong, X.; Zhang, X.; Shao, L.; Wu, J. Meta-analysis of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for locally advanced rectal cancer. World J. Surg. Oncol. 2021, 19, 141. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, T.; Xiao, L.; Yang, S.; Liu, Q.; Gao, Y.; Chen, G.; Xiao, W. Total Neoadjuvant Therapy (TNT) versus Standard Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, e1555–e1566. [Google Scholar] [CrossRef] [PubMed]
- Fokas, E.; Allgauer, M.; Polat, B.; Klautke, G.; Grabenbauer, G.G.; Fietkau, R.; Kuhnt, T.; Staib, L.; Brunner, T.; Grosu, A.L.; et al. Randomized Phase II Trial of Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: CAO/ARO/AIO-12. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 3212–3222. [Google Scholar] [CrossRef]
- Gani, C.; Gani, N.; Zschaeck, S.; Eberle, F.; Schaeffeler, N.; Hehr, T.; Berger, B.; Fischer, S.G.; Classen, J.; Zipfel, S.; et al. Organ Preservation in Rectal Cancer: The Patients’ Perspective. Front. Oncol. 2019, 9, 318. [Google Scholar] [CrossRef]
- Shin, J.K.; Huh, J.W.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Cho, Y.B.; Park, Y.A. Clinical prediction model of pathological response following neoadjuvant chemoradiotherapy for rectal cancer. Sci. Rep. 2022, 12, 7145. [Google Scholar] [CrossRef]
- Maas, M.; Nelemans, P.J.; Valentini, V.; Das, P.; Rodel, C.; Kuo, L.J.; Calvo, F.A.; Garcia-Aguilar, J.; Glynne-Jones, R.; Haustermans, K.; et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: A pooled analysis of individual patient data. Lancet Oncol. 2010, 11, 835–844. [Google Scholar] [CrossRef]
- Maas, M.; Lambregts, D.M.; Nelemans, P.J.; Heijnen, L.A.; Martens, M.H.; Leijtens, J.W.; Sosef, M.; Hulsewe, K.W.; Hoff, C.; Breukink, S.O.; et al. Assessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Ann. Surg. Oncol. 2015, 22, 3873–3880. [Google Scholar] [CrossRef] [Green Version]
- Habr-Gama, A.; Perez, R.O.; Wynn, G.; Marks, J.; Kessler, H.; Gama-Rodrigues, J. Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: Characterization of clinical and endoscopic findings for standardization. Dis. Colon Rectum 2010, 53, 1692–1698. [Google Scholar] [CrossRef]
- Maas, M.; Beets-Tan, R.G.; Lambregts, D.M.; Lammering, G.; Nelemans, P.J.; Engelen, S.M.; van Dam, R.M.; Jansen, R.L.; Sosef, M.; Leijtens, J.W.; et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 4633–4640. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Strombom, P.; Chow, O.S.; Roxburgh, C.S.; Lynn, P.; Eaton, A.; Widmar, M.; Ganesh, K.; Yaeger, R.; Cercek, A.; et al. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients With a Complete Response After Neoadjuvant Therapy. JAMA Oncol. 2019, 5, e185896. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.E.; Warrier, S.K.; Lynch, A.C.; Ramsay, R.G.; Phillips, W.A.; Heriot, A.G. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A systematic review. Color. Dis. Off. J. Assoc. Coloproctology Great Br. Irel. 2016, 18, 234–246. [Google Scholar] [CrossRef]
- de Jong, E.A.; ten Berge, J.C.; Dwarkasing, R.S.; Rijkers, A.P.; van Eijck, C.H. The accuracy of MRI, endorectal ultrasonography, and computed tomography in predicting the response of locally advanced rectal cancer after preoperative therapy: A metaanalysis. Surgery 2016, 159, 688–699. [Google Scholar] [CrossRef]
- Kawai, K.; Ishihara, S.; Nozawa, H.; Hata, K.; Kiyomatsu, T.; Morikawa, T.; Fukayama, M.; Watanabe, T. Prediction of Pathological Complete Response Using Endoscopic Findings and Outcomes of Patients Who Underwent Watchful Waiting After Chemoradiotherapy for Rectal Cancer. Dis. Colon Rectum 2017, 60, 368–375. [Google Scholar] [CrossRef]
- Yoon, S.M.; Kim, D.Y.; Kim, T.H.; Jung, K.H.; Chang, H.J.; Koom, W.S.; Lim, S.B.; Choi, H.S.; Jeong, S.Y.; Park, J.G. Clinical parameters predicting pathologic tumor response after preoperative chemoradiotherapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1167–1172. [Google Scholar] [CrossRef]
- Rodel, C.; Martus, P.; Papadoupolos, T.; Fuzesi, L.; Klimpfinger, M.; Fietkau, R.; Liersch, T.; Hohenberger, W.; Raab, R.; Sauer, R.; et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 8688–8696. [Google Scholar] [CrossRef]
- Park, Y.A.; Sohn, S.K.; Seong, J.; Baik, S.H.; Lee, K.Y.; Kim, N.K.; Cho, C.W. Serum CEA as a predictor for the response to preoperative chemoradiation in rectal cancer. J. Surg. Oncol. 2006, 93, 145–150. [Google Scholar] [CrossRef]
- Kleiman, A.; Al-Khamis, A.; Farsi, A.; Kezouh, A.; Vuong, T.; Gordon, P.H.; Vasilevsky, C.A.; Morin, N.; Faria, J.; Ghitulescu, G.; et al. Normalization of CEA Levels Post-Neoadjuvant Therapy is a Strong Predictor of Pathologic Complete Response in Rectal Cancer. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2015, 19, 1106–1112. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, H.C.; Cho, Y.B.; Yun, S.H.; Lee, W.Y.; Park, Y.S.; Choi, D.H.; Chun, H.K. Predicting tumor response after preoperative chemoradiation using clinical parameters in rectal cancer. World J. Gastroenterol. 2011, 17, 5310–5316. [Google Scholar] [CrossRef] [PubMed]
- Garland, M.L.; Vather, R.; Bunkley, N.; Pearse, M.; Bissett, I.P. Clinical tumour size and nodal status predict pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer. Int. J. Color. Dis. 2014, 29, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhni, E.; Attwood, K.; Mattson, D.M.; Gabriel, E.; Nurkin, S.J. Predictors of Pathologic Complete Response Following Neoadjuvant Chemoradiotherapy for Rectal Cancer. Ann. Surg. Oncol. 2016, 23, 1177–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, J.W.; Kim, H.R.; Kim, Y.J. Clinical prediction of pathological complete response after preoperative chemoradiotherapy for rectal cancer. Dis. Colon Rectum 2013, 56, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Song, C.; Kang, S.B.; Lee, H.S.; Lee, K.W.; Kim, J.S. Predicting Pathological Complete Regression with Haematological Markers During Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Anticancer. Res. 2018, 38, 6905–6910. [Google Scholar] [CrossRef] [PubMed]
- Mbanu, P.; Osorio, E.V.; Mistry, H.; Malcomson, L.; Yousif, S.; Aznar, M.; Kochhar, R.; Van Herk, M.; Renehan, A.G.; Saunders, M.P. Clinico-pathological predictors of clinical complete response in rectal cancer. Cancer Treat. Res. Commun. 2022, 31, 100540. [Google Scholar] [CrossRef]
- Kang, B.H.; Song, C.; Kang, S.B.; Lee, K.W.; Lee, H.S.; Kim, J.S. Nomogram for Predicting the Pathological Tumor Response from Pre-treatment Clinical Characteristics in Rectal Cancer. Anticancer. Res. 2020, 40, 2171–2177. [Google Scholar] [CrossRef]
- Francois, Y.; Nemoz, C.J.; Baulieux, J.; Vignal, J.; Grandjean, J.P.; Partensky, C.; Souquet, J.C.; Adeleine, P.; Gerard, J.P. Influence of the interval between preoperative radiation therapy and surgery on downstaging and on the rate of sphincter-sparing surgery for rectal cancer: The Lyon R90-01 randomized trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 2396. [Google Scholar] [CrossRef]
- Sun, Y.S.; Cui, Y.; Tang, L.; Qi, L.P.; Wang, N.; Zhang, X.Y.; Cao, K.; Zhang, X.P. Early evaluation of cancer response by a new functional biomarker: Apparent diffusion coefficient. AJR Am. J. Roentgenol. 2011, 197, W23–W29. [Google Scholar] [CrossRef]
- Nougaret, S.; Reinhold, C.; Mikhael, H.W.; Rouanet, P.; Bibeau, F.; Brown, G. The use of MR imaging in treatment planning for patients with rectal carcinoma: Have you checked the "DISTANCE"? Radiology 2013, 268, 330–344. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, Y.; Sun, H.; Jiang, T.; Xie, S.; Ooi, B.Y.; Ding, Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag. Res. 2021, 13, 4317–4328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ye, F.; Liu, Y.; Ouyang, H.; Zhao, X.; Zhang, H. Morphologic predictors of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Oncotarget 2018, 9, 4862–4874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, M.H.; van Heeswijk, M.M.; van den Broek, J.J.; Rao, S.X.; Vandecaveye, V.; Vliegen, R.A.; Schreurs, W.H.; Beets, G.L.; Lambregts, D.M.; Beets-Tan, R.G. Prospective, Multicenter Validation Study of Magnetic Resonance Volumetry for Response Assessment After Preoperative Chemoradiation in Rectal Cancer: Can the Results in the Literature be Reproduced? Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.; Esposito, A.; Di Chiara, A.; Ambrosi, A.; Passoni, P.; Slim, N.; Fiorino, C.; Albarello, L.; Di Muzio, N.; Calandrino, R.; et al. Could early tumour volume changes assessed on morphological MRI predict the response to chemoradiation therapy in locally-advanced rectal cancer? Clin. Radiol. 2018, 73, 555–563. [Google Scholar] [CrossRef]
- Kim, S.; Han, K.; Seo, N.; Kim, H.J.; Kim, M.J.; Koom, W.S.; Ahn, J.B.; Lim, J.S. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur. Radiol. 2018, 28, 5231–5240. [Google Scholar] [CrossRef]
- Neri, E.; Guidi, E.; Pancrazi, F.; Castagna, M.; Castelluccio, E.; Balestri, R.; Buccianti, P.; Masi, L.; Falcone, A.; Manfredi, B.; et al. MRI tumor volume reduction rate vs. tumor regression grade in the pre-operative re-staging of locally advanced rectal cancer after chemo-radiotherapy. Eur. J. Radiol. 2015, 84, 2438–2443. [Google Scholar] [CrossRef]
- Sathyakumar, K.; Chandramohan, A.; Masih, D.; Jesudasan, M.R.; Pulimood, A.; Eapen, A. Best MRI predictors of complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. Br. J. Radiol. 2016, 89, 20150328. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Lim, J.S.; Keum, K.C.; Kim, K.A.; Myoung, S.; Shin, S.J.; Kim, M.J.; Kim, N.K.; Suh, J.; Kim, K.W. Comparison of diffusion-weighted MRI and MR volumetry in the evaluation of early treatment outcomes after preoperative chemoradiotherapy for locally advanced rectal cancer. J. Magn. Reson. Imaging JMRI 2011, 34, 570–576. [Google Scholar] [CrossRef]
- Lambregts, D.M.; Rao, S.X.; Sassen, S.; Martens, M.H.; Heijnen, L.A.; Buijsen, J.; Sosef, M.; Beets, G.L.; Vliegen, R.A.; Beets-Tan, R.G. MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study. Ann. Surg. 2015, 262, 1034–1039. [Google Scholar] [CrossRef]
- Intven, M.; Reerink, O.; Philippens, M.E. Diffusion-weighted MRI in locally advanced rectal cancer: Pathological response prediction after neo-adjuvant radiochemotherapy. Strahlenther. Und Onkol. Organ Der Dtsch. Rontgenges. 2013, 189, 117–122. [Google Scholar] [CrossRef]
- Blazic, I.M.; Lilic, G.B.; Gajic, M.M. Quantitative Assessment of Rectal Cancer Response to Neoadjuvant Combined Chemotherapy and Radiation Therapy: Comparison of Three Methods of Positioning Region of Interest for ADC Measurements at Diffusion-weighted MR Imaging. Radiology 2017, 282, 615. [Google Scholar] [CrossRef] [PubMed]
- Enkhbaatar, N.E.; Inoue, S.; Yamamuro, H.; Kawada, S.; Miyaoka, M.; Nakamura, N.; Sadahiro, S.; Imai, Y. MR Imaging with Apparent Diffusion Coefficient Histogram Analysis: Evaluation of Locally Advanced Rectal Cancer after Chemotherapy and Radiation Therapy. Radiology 2018, 288, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrecht, M.; Vandecaveye, V.; De Keyzer, F.; Roels, S.; Penninckx, F.; Van Cutsem, E.; Filip, C.; Haustermans, K. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: Preliminary results. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Y.; Chen, M.D.; Zhao, X.X.; Yan, C.G.; Mei, Y.J.; Xu, Y.K. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer. Eur. J. Radiol. 2019, 110, 249–255. [Google Scholar] [CrossRef]
- Zou, H.H.; Yu, J.; Wei, Y.; Wu, J.F.; Xu, Q. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging JMRI 2019, 49, 885–893. [Google Scholar] [CrossRef]
- Gollub, M.J.; Tong, T.; Weiser, M.; Zheng, J.; Gonen, M.; Zakian, K.L. Limited accuracy of DCE-MRI in identification of pathological complete responders after chemoradiotherapy treatment for rectal cancer. Eur. Radiol. 2017, 27, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.Y.; Lee, S.W.; Hong, J.H.; Kang, H.J.; Lee, S.J.; Kim, M.; Kim, J.H.; Kwak, Y.K. Linear Tumor Regression of Rectal Cancer in Daily MRI during Preoperative Chemoradiotherapy: An Insight of Tumor Regression Velocity for Personalized Cancer Therapy. Cancers 2022, 14, 3749. [Google Scholar] [CrossRef]
- Palmisano, A.; Di Chiara, A.; Esposito, A.; Rancoita, P.M.V.; Fiorino, C.; Passoni, P.; Albarello, L.; Rosati, R.; Del Maschio, A.; De Cobelli, F. MRI prediction of pathological response in locally advanced rectal cancer: When apparent diffusion coefficient radiomics meets conventional volumetry. Clin. Radiol. 2020, 75, 798.e1–798.e11. [Google Scholar] [CrossRef]
- Memon, S.; Lynch, A.C.; Akhurst, T.; Ngan, S.Y.; Warrier, S.K.; Michael, M.; Heriot, A.G. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer. Ann. Surg. Oncol. 2014, 21, 3598–3607. [Google Scholar] [CrossRef]
- Goncalves-Ribeiro, S.; Sanz-Pamplona, R.; Vidal, A.; Sanjuan, X.; Guillen Diaz-Maroto, N.; Soriano, A.; Guardiola, J.; Albert, N.; Martinez-Villacampa, M.; Lopez, I.; et al. Prediction of pathological response to neoadjuvant treatment in rectal cancer with a two-protein immunohistochemical score derived from stromal gene-profiling. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2160–2168. [Google Scholar] [CrossRef]
- Calon, A.; Lonardo, E.; Berenguer-Llergo, A.; Espinet, E.; Hernando-Momblona, X.; Iglesias, M.; Sevillano, M.; Palomo-Ponce, S.; Tauriello, D.V.; Byrom, D.; et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 2015, 47, 320–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isella, C.; Terrasi, A.; Bellomo, S.E.; Petti, C.; Galatola, G.; Muratore, A.; Mellano, A.; Senetta, R.; Cassenti, A.; Sonetto, C.; et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 2015, 47, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.; Tulina, I.; Cho, M.S.; Min, B.S.; Koom, W.S.; Lim, J.S.; Ahn, J.B.; Kim, N.K. Biomarker-Based Scoring System for Prediction of Tumor Response After Preoperative Chemoradiotherapy in Rectal Cancer by Reverse Transcriptase Polymerase Chain Reaction Analysis. Dis. Colon Rectum 2016, 59, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kobunai, T.; Akiyoshi, T.; Matsuda, K.; Ishihara, S.; Nozawa, K. Prediction of response to preoperative chemoradiotherapy in rectal cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis. Colon Rectum 2014, 57, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Renz, P.; Wegner, R.E.; Finley, G.; Raj, M.; Monga, D.; McCormick, J.; Kirichenko, A. Microsatellite Instability (MSI) as an Independent Predictor of Pathologic Complete Response (PCR) in Locally Advanced Rectal Cancer: A National Cancer Database (NCDB) Analysis. Ann. Surg. 2020, 271, 716–723. [Google Scholar] [CrossRef]
- O’Connell, E.; Reynolds, I.S.; McNamara, D.A.; Prehn, J.H.M.; Burke, J.P. Microsatellite instability and response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Surg. Oncol. 2020, 34, 57–62. [Google Scholar] [CrossRef]
- Sun, L.; Huang, Y.; Liu, Y.; Zhao, Y.; He, X.; Zhang, L.; Wang, F.; Zhang, Y. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-kappaB directly regulates PUMA-dependent apoptosis. Cell Death Dis. 2018, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, L.; Bao, H.; Fan, X.; Xia, F.; Wan, J.; Shen, L.; Guan, Y.; Bao, H.; Wu, X.; et al. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: A prospective cohort study. PLoS Med. 2021, 18, e1003741. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Tang, Y.; Song, Q.; Wang, J.; Li, N.; Chen, S.; Shi, J.; Wang, S.; Li, Y.; et al. Response prediction and risk stratification of patients with rectal cancer after neoadjuvant therapy through an analysis of circulating tumour DNA. EBioMedicine 2022, 78, 103945. [Google Scholar] [CrossRef]
- Pazdirek, F.; Minarik, M.; Benesova, L.; Halkova, T.; Belsanova, B.; Macek, M.; Stepanek, L.; Hoch, J. Monitoring of Early Changes of Circulating Tumor DNA in the Plasma of Rectal Cancer Patients Receiving Neoadjuvant Concomitant Chemoradiotherapy: Evaluation for Prognosis and Prediction of Therapeutic Response. Front. Oncol. 2020, 10, 1028. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Lin, G.; Xiao, Y.; Jia, W.; Xiao, G.; Liu, Q.; Wu, B.; Wu, A.; Qiu, H.; et al. Serial Circulating Tumor DNA in Predicting and Monitoring the Effect of Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer: A Prospective Multicenter Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Wang, Y.; Li, L.; Christie, M.; Simons, K.; Elsaleh, H.; Kosmider, S.; Wong, R.; Yip, D.; et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: A prospective biomarker study. Gut 2019, 68, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Schou, J.V.; Larsen, F.O.; Sorensen, B.S.; Abrantes, R.; Boysen, A.K.; Johansen, J.S.; Jensen, B.V.; Nielsen, D.L.; Spindler, K.L. Circulating cell-free DNA as predictor of treatment failure after neoadjuvant chemo-radiotherapy before surgery in patients with locally advanced rectal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.; Casadevall, D.; Bellosillo, B.; Pericay, C.; Garcia-Carbonero, R.; Losa, F.; Layos, L.; Alonso, V.; Capdevila, J.; Gallego, J.; et al. Clinical Impact of Presurgery Circulating Tumor DNA after Total Neoadjuvant Treatment in Locally Advanced Rectal Cancer: A Biomarker Study from the GEMCAD 1402 Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 2890–2898. [Google Scholar] [CrossRef] [PubMed]
- De Palma, F.D.E.; Luglio, G.; Tropeano, F.P.; Pagano, G.; D’Armiento, M.; Kroemer, G.; Maiuri, M.C.; De Palma, G.D. The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2020, 21, 7040. [Google Scholar] [CrossRef] [PubMed]
- Della Vittoria Scarpati, G.; Falcetta, F.; Carlomagno, C.; Ubezio, P.; Marchini, S.; De Stefano, A.; Singh, V.K.; D’Incalci, M.; De Placido, S.; Pepe, S. A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1113–1119. [Google Scholar] [CrossRef]
- Ma, W.; Yu, J.; Qi, X.; Liang, L.; Zhang, Y.; Ding, Y.; Lin, X.; Li, G.; Ding, Y. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget 2015, 6, 15984–15994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Azizian, A.; Kramer, F.; Jo, P.; Wolff, H.A.; Beissbarth, T.; Skarupke, R.; Bernhardt, M.; Grade, M.; Ghadimi, B.M.; Gaedcke, J. Preoperative Prediction of Lymph Node Status by Circulating Mir-18b and Mir-20a During Chemoradiotherapy in Patients with Rectal Cancer. World J. Surg. 2015, 39, 2329–2335. [Google Scholar] [CrossRef]
- D’Angelo, E.; Fassan, M.; Maretto, I.; Pucciarelli, S.; Zanon, C.; Digito, M.; Rugge, M.; Nitti, D.; Agostini, M. Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget 2016, 7, 28647–28657. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, Y.; Akiyoshi, T.; Inoue, R.; Murofushi, K.; Yamamoto, N.; Fukunaga, Y.; Ueno, M.; Baba, H.; Mori, S.; Yamaguchi, T. Serum miR-143 levels predict the pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Oncotarget 2017, 8, 79201–79211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Shimada, M.; Morine, Y.; Ikemoto, T.; Saito, Y.; Zhu, Z.; Wang, X.; Etxart, A.; Park, Y.; Bujanda, L.; et al. Circulating miRNA Signature Predicts Response to Preoperative Chemoradiotherapy in Locally Advanced Rectal Cancer. JCO Precis. Oncol. 2021, 5, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Haraksingh, R.R.; Snyder, M.P. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 2013, 425, 3970–3977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, M.; Crotti, S.; Bedin, C.; Cecchin, E.; Maretto, I.; D’Angelo, E.; Pucciarelli, S.; Nitti, D. Predictive response biomarkers in rectal cancer neoadjuvant treatment. Front. Biosci. 2014, 6, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Sclafani, F.; Chau, I.; Cunningham, D.; Peckitt, C.; Lampis, A.; Hahne, J.C.; Braconi, C.; Tabernero, J.; Glimelius, B.; Cervantes, A.; et al. Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: Results of the EXPERT-C trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 1936–1941. [Google Scholar] [CrossRef]
- Rodriguez-Tomas, E.; Arenas, M.; Gomez, J.; Acosta, J.; Trilla, J.; Lopez, Y.; Arquez, M.; Torres, L.; Araguas, P.; Hernandez-Aguilera, A.; et al. Identification of potential metabolic biomarkers of rectal cancer and of the effect of neoadjuvant radiochemotherapy. PLoS ONE 2021, 16, e0250453. [Google Scholar] [CrossRef]
- Lou, X.; Zhou, N.; Feng, L.; Li, Z.; Fang, Y.; Fan, X.; Ling, Y.; Liu, H.; Zou, X.; Wang, J.; et al. Deep Learning Model for Predicting the Pathological Complete Response to Neoadjuvant Chemoradiotherapy of Locally Advanced Rectal Cancer. Front. Oncol. 2022, 12, 807264. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Z.; Li, C.; Li, Z.; Lou, X.; Shao, L.; Wang, Y.; Huang, Y.; Chen, H.; Pang, X.; et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicentre observational study. Lancet Digit. Health 2022, 4, e8–e17. [Google Scholar] [CrossRef]
- Yi, Y.; Shen, L.; Shi, W.; Xia, F.; Zhang, H.; Wang, Y.; Zhang, J.; Wang, Y.; Sun, X.; Zhang, Z.; et al. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1329–1340. [Google Scholar] [CrossRef]
- Garrett, W.S. Cancer and the microbiota. Science 2015, 348, 80–86. [Google Scholar] [CrossRef]
- Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A new genomic blueprint of the human gut microbiota. Nature 2019, 568, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ternes, D.; Karta, J.; Tsenkova, M.; Wilmes, P.; Haan, S.; Letellier, E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol. 2020, 28, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Q.; Zhou, C.; Chen, K.; Chang, H.; Xiao, W.; Gao, Y. Colorectal cancer, radiotherapy and gut microbiota. Chin. J. Cancer Res. = Chung-Kuo Yen Cheng Yen Chiu 2019, 31, 212–222. [Google Scholar] [CrossRef]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Dinapoli, N.; Barbaro, B.; Gatta, R.; Chiloiro, G.; Casa, C.; Masciocchi, C.; Damiani, A.; Boldrini, L.; Gambacorta, M.A.; Dezio, M.; et al. Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 765–774. [Google Scholar] [CrossRef]
- Antunes, J.T.; Ofshteyn, A.; Bera, K.; Wang, E.Y.; Brady, J.T.; Willis, J.E.; Friedman, K.A.; Marderstein, E.L.; Kalady, M.F.; Stein, S.L.; et al. Radiomic Features of Primary Rectal Cancers on Baseline T(2) -Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study. J. Magn. Reson. Imaging JMRI 2020, 52, 1531–1541. [Google Scholar] [CrossRef]
- Boldrini, L.; Cusumano, D.; Chiloiro, G.; Casa, C.; Masciocchi, C.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Azario, L.; Teodoli, S.; et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): A hypothesis-generating study for an innovative personalized medicine approach. La Radiol. Med. 2019, 124, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Boldrini, L.; Lenkowicz, J.; Orlandini, L.C.; Yin, G.; Cusumano, D.; Chiloiro, G.; Dinapoli, N.; Peng, Q.; Casa, C.; Gambacorta, M.A.; et al. Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Radiat. Oncol. 2022, 17, 78. [Google Scholar] [CrossRef]
- Bulens, P.; Couwenberg, A.; Intven, M.; Debucquoy, A.; Vandecaveye, V.; Van Cutsem, E.; D’Hoore, A.; Wolthuis, A.; Mukherjee, P.; Gevaert, O.; et al. Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 142, 246–252. [Google Scholar] [CrossRef]
- Chen, B.Y.; Xie, H.; Li, Y.; Jiang, X.H.; Xiong, L.; Tang, X.F.; Lin, X.F.; Li, L.; Cai, P.Q. MRI-Based Radiomics Features to Predict Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer: A Single Center, Prospective Study. Front. Oncol. 2022, 12, 801743. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, L.; Nguyen, K.N.B.; Monjazeb, A.M.; Matsukuma, K.E.; Loehfelm, T.W.; Huang, H.; Qiu, J.; Rong, Y. MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation. Adv. Radiat. Oncol. 2020, 5, 1286–1295. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, Y.; Hu, Y.; Zhang, Z.; Wang, X.; Yu, Q.; Liu, G.; Cui, E.; Yu, T.; Jiang, X. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Abdom. Radiol. 2021, 46, 5072–5085. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, G.; Cusumano, D.; de Franco, P.; Lenkowicz, J.; Boldrini, L.; Carano, D.; Barbaro, B.; Corvari, B.; Dinapoli, N.; Giraffa, M.; et al. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. La Radiol. Med. 2022, 127, 11–20. [Google Scholar] [CrossRef]
- Coppola, F.; Mottola, M.; Lo Monaco, S.; Cattabriga, A.; Cocozza, M.A.; Yuan, J.C.; De Benedittis, C.; Cuicchi, D.; Guido, A.; Rojas Llimpe, F.L.; et al. The Heterogeneity of Skewness in T2W-Based Radiomics Predicts the Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Diagnostics 2021, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, X.; Shi, Z.; Yang, Z.; Du, X.; Zhao, Z.; Cheng, X. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur. Radiol. 2019, 29, 1211–1220. [Google Scholar] [CrossRef]
- Cusumano, D.; Boldrini, L.; Yadav, P.; Yu, G.; Musurunu, B.; Chiloiro, G.; Piras, A.; Lenkowicz, J.; Placidi, L.; Romano, A.; et al. Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: An external validation. Phys. Med. PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. 2021, 84, 186–191. [Google Scholar] [CrossRef]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casa, C.; Damiani, A.; et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. La Radiol. Med. 2021, 126, 421–429. [Google Scholar] [CrossRef]
- Defeudis, A.; Mazzetti, S.; Panic, J.; Micilotta, M.; Vassallo, L.; Giannetto, G.; Gatti, M.; Faletti, R.; Cirillo, S.; Regge, D.; et al. MRI-based radiomics to predict response in locally advanced rectal cancer: Comparison of manual and automatic segmentation on external validation in a multicentre study. Eur. Radiol. Exp. 2022, 6, 19. [Google Scholar] [CrossRef]
- Delli Pizzi, A.; Chiarelli, A.M.; Chiacchiaretta, P.; d’Annibale, M.; Croce, P.; Rosa, C.; Mastrodicasa, D.; Trebeschi, S.; Lambregts, D.M.J.; Caposiena, D.; et al. MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer. Sci. Rep. 2021, 11, 5379. [Google Scholar] [CrossRef]
- Fu, J.; Zhong, X.; Li, N.; Van Dams, R.; Lewis, J.; Sung, K.; Raldow, A.C.; Jin, J.; Qi, X.S. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Phys. Med. Biol. 2020, 65, 075001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Griethuysen, J.J.M.; Lambregts, D.M.J.; Trebeschi, S.; Lahaye, M.J.; Bakers, F.C.H.; Vliegen, R.F.A.; Beets, G.L.; Aerts, H.; Beets-Tan, R.G.H. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. Abdom. Radiol. 2020, 45, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Horvat, N.; Veeraraghavan, H.; Khan, M.; Blazic, I.; Zheng, J.; Capanu, M.; Sala, E.; Garcia-Aguilar, J.; Gollub, M.J.; Petkovska, I. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology 2018, 287, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Horvat, N.; Veeraraghavan, H.; Nahas, C.S.R.; Bates, D.D.B.; Ferreira, F.R.; Zheng, J.; Capanu, M.; Fuqua, J.L., 3rd; Fernandes, M.C.; Sosa, R.E.; et al. Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: An external validation study. Abdom. Radiol. 2022, 47, 2770–2782. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, V.S.; Paroder, V.; Gibbs, P.; Bajwa, R.; Gangai, N.; Sosa, R.E.; Petkovska, I.; Golia Pernicka, J.S.; Fuqua, J.L., 3rd; Bates, D.D.B.; et al. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Eur. Radiol. 2022, 32, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Pei, Q.; Zhao, L.; Gungor, C.; Zhu, H.; Song, X.; Li, C.; Zhou, Z.; Xu, Y.; et al. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Cancer Med. 2019, 8, 7244–7252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhang, X.Y.; Shi, Y.J.; Wang, L.; Zhu, H.T.; Tang, Z.; Wang, S.; Li, X.T.; Tian, J.; Sun, Y.S. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 7253–7262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbanu, P.; Saunders, M.P.; Mistry, H.; Mercer, J.; Malcomson, L.; Yousif, S.; Price, G.; Kochhar, R.; Renehan, A.G.; van Herk, M.; et al. Clinical and radiomics prediction of complete response in rectal cancer pre-chemoradiotherapy. Phys. Imaging Radiat. Oncol. 2022, 23, 48–53. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Vacca, G.; Giacobbe, G.; Angrisani, A.; Clemente, A.; Danti, G.; Correale, P.; Carbone, S.F.; et al. Ability of Delta Radiomics to Predict a Complete Pathological Response in Patients with Loco-Regional Rectal Cancer Addressed to Neoadjuvant Chemo-Radiation and Surgery. Cancers 2022, 14, 3004. [Google Scholar] [CrossRef]
- Nie, K.; Shi, L.; Chen, Q.; Hu, X.; Jabbour, S.K.; Yue, N.; Niu, T.; Sun, X. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 5256–5264. [Google Scholar] [CrossRef]
- Pang, X.; Wang, F.; Zhang, Q.; Li, Y.; Huang, R.; Yin, X.; Fan, X. A Pipeline for Predicting the Treatment Response of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer Using Single MRI Modality: Combining Deep Segmentation Network and Radiomics Analysis Based on "Suspicious Region". Front. Oncol. 2021, 11, 711747. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.J.; Simpson, M.T.; Drezdzon, M.K.; Szabo, A.; Ausman, R.A.; Nencka, A.S.; Knechtges, P.M.; Peterson, C.Y.; Ludwig, K.A.; Ridolfi, T.J. Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2022. [Google Scholar] [CrossRef] [PubMed]
- Petkovska, I.; Tixier, F.; Ortiz, E.J.; Golia Pernicka, J.S.; Paroder, V.; Bates, D.D.; Horvat, N.; Fuqua, J.; Schilsky, J.; Gollub, M.J.; et al. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. Abdom. Radiol. 2020, 45, 3608–3617. [Google Scholar] [CrossRef] [PubMed]
- Shaish, H.; Aukerman, A.; Vanguri, R.; Spinelli, A.; Armenta, P.; Jambawalikar, S.; Makkar, J.; Bentley-Hibbert, S.; Del Portillo, A.; Kiran, R.; et al. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: An international multicenter study. Eur. Radiol. 2020, 30, 6263–6273. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Nie, K.; Sun, X.; Niu, T.; Yue, N.; Kwong, T.; Chang, P.; Chow, D.; Chen, J.H.; et al. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn. Reson. Imaging 2019, 61, 33–40. [Google Scholar] [CrossRef]
- Shin, J.; Seo, N.; Baek, S.E.; Son, N.H.; Lim, J.S.; Kim, N.K.; Koom, W.S.; Kim, S. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Radiology 2022, 303, 351–358. [Google Scholar] [CrossRef]
- Song, M.; Li, S.; Wang, H.; Hu, K.; Wang, F.; Teng, H.; Wang, Z.; Liu, J.; Jia, A.Y.; Cai, Y.; et al. MRI radiomics independent of clinical baseline characteristics and neoadjuvant treatment modalities predicts response to neoadjuvant therapy in rectal cancer. Br. J. Cancer 2022, 127, 249–257. [Google Scholar] [CrossRef]
- Tang, B.; Lenkowicz, J.; Peng, Q.; Boldrini, L.; Hou, Q.; Dinapoli, N.; Valentini, V.; Diao, P.; Yin, G.; Orlandini, L.C. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. BMC Med. Imaging 2022, 22, 44. [Google Scholar] [CrossRef]
- Wan, L.; Peng, W.; Zou, S.; Ye, F.; Geng, Y.; Ouyang, H.; Zhao, X.; Zhang, H. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Acad. Radiol. 2021, 28 (Suppl. 1), S95–S104. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, Z.; Tang, Y.; Chen, W.; Zhong, L.; Mao, L.; Hu, S.; Wu, Y.; Deng, K.; Yang, W.; et al. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: A two-centre, multi-vendor study. Eur. Radiol. 2022. [Google Scholar] [CrossRef]
- Yi, X.; Pei, Q.; Zhang, Y.; Zhu, H.; Wang, Z.; Chen, C.; Li, Q.; Long, X.; Tan, F.; Zhou, Z.; et al. MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Front. Oncol. 2019, 9, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordron, A.; Rio, E.; Badic, B.; Miranda, O.; Pradier, O.; Hatt, M.; Visvikis, D.; Lucia, F.; Schick, U.; Bourbonne, V. External Validation of a Radiomics Model for the Prediction of Complete Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Cancers 2022, 14, 1079. [Google Scholar] [CrossRef] [PubMed]
- Capelli, G.; Campi, C.; Bao, Q.R.; Morra, F.; Lacognata, C.; Zucchetta, P.; Cecchin, D.; Pucciarelli, S.; Spolverato, G.; Crimi, F. 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy. Nucl. Med. Commun. 2022, 43, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Giannini, V.; Mazzetti, S.; Bertotto, I.; Chiarenza, C.; Cauda, S.; Delmastro, E.; Bracco, C.; Di Dia, A.; Leone, F.; Medico, E.; et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with (18)F-FDG PET and MRI radiomics features. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 878–888. [Google Scholar] [CrossRef]
- Bibault, J.E.; Giraud, P.; Housset, M.; Durdux, C.; Taieb, J.; Berger, A.; Coriat, R.; Chaussade, S.; Dousset, B.; Nordlinger, B.; et al. Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci. Rep. 2018, 8, 12611. [Google Scholar] [CrossRef]
- Hamerla, G.; Meyer, H.J.; Hambsch, P.; Wolf, U.; Kuhnt, T.; Hoffmann, K.T.; Surov, A. Radiomics Model Based on Non-Contrast CT Shows No Predictive Power for Complete Pathological Response in Locally Advanced Rectal Cancer. Cancers 2019, 11, 1680. [Google Scholar] [CrossRef] [Green Version]
- Lovinfosse, P.; Polus, M.; Van Daele, D.; Martinive, P.; Daenen, F.; Hatt, M.; Visvikis, D.; Koopmansch, B.; Lambert, F.; Coimbra, C.; et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 365–375. [Google Scholar] [CrossRef]
- Lutsyk, M.; Gourevich, K.; Keidar, Z. Complete Pathologic Response Prediction by Radiomics Wavelets Features of Unenhanced CT Simulation Images in Locally Advanced Rectal Cancer Patients after Neoadjuvant Chemoradiation. Isr. Med. Assoc. J. IMAJ 2021, 23, 805–810. [Google Scholar] [CrossRef]
- Mao, Y.; Pei, Q.; Fu, Y.; Liu, H.; Chen, C.; Li, H.; Gong, G.; Yin, H.; Pang, P.; Lin, H.; et al. Pre-Treatment Computed Tomography Radiomics for Predicting the Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer: A Retrospective Study. Front. Oncol. 2022, 12, 850774. [Google Scholar] [CrossRef]
- Shen, W.C.; Chen, S.W.; Wu, K.C.; Lee, P.Y.; Feng, C.L.; Hsieh, T.C.; Yen, K.Y.; Kao, C.H. Predicting pathological complete response in rectal cancer after chemoradiotherapy with a random forest using (18)F-fluorodeoxyglucose positron emission tomography and computed tomography radiomics. Ann. Transl. Med. 2020, 8, 207. [Google Scholar] [CrossRef]
- Yuan, Z.; Frazer, M.; Zhang, G.G.; Latifi, K.; Moros, E.G.; Feygelman, V.; Felder, S.; Sanchez, J.; Dessureault, S.; Imanirad, I.; et al. CT-based radiomic features to predict pathological response in rectal cancer: A retrospective cohort study. J. Med. Imaging Radiat. Oncol. 2020, 64, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Liu, Z.; Li, J.; Wang, X.; Xie, P.; Xiong, F.; Hu, J.; Meng, X.; Huang, M.; Deng, Y.; et al. Radiomic signature of the FOWARC trial predicts pathological response to neoadjuvant treatment in rectal cancer. J. Transl. Med. 2021, 19, 256. [Google Scholar] [CrossRef] [PubMed]
- Rahma, O.E.; Yothers, G.; Hong, T.S.; Russell, M.M.; You, Y.N.; Parker, W.; Jacobs, S.A.; Colangelo, L.H.; Lucas, P.C.; Gollub, M.J.; et al. Use of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: Initial Results From the Pembrolizumab Arm of a Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef] [PubMed]
Study Year | Studied Modality of Imaging Timing | External Validation - Prospective Validation | Timing for Data Acquisition - Timing of Analysis: Prospective/Retrospective | Cohort Size | Delineation | Assessment of Robustness | Extraction Software - Statistical Approach | Predicted Outcome | Correction for Site Heterogeneity | Type of NAT: CRT vs. TNT | pCR Rate | AUC | Accuracy | PPV | AUC | Accuracy | PPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | ||||||||||||||||
Antunes et al. [97] 2020 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | Training: 60, validation: 44 | Manual: single reader | Y | In-house - Random forest | pCR | N | CRT | Training: 21.7%, validation: 22.7% | 0.70 | 70.5% for the overall cohort | N/A | 0.71 | N/A | N/A |
Boldrini et al. [98] 2019 | MRI: T2/T1S longitudinal | N-4 cross fold validation - N | Retrospective - Retrospective | 16 | Manual-Cooperation of 2 radiation oncologists | N | Moddicom (R) - Wilcoxon–Mann–Whitney | pCR | N/A | CRT | 12.5% | 0.93 | N/A | N/A | N/A | N/A | N/A |
Boldrini et al. [99] 2022 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | Training: 162 (see Dinapoli et al., 2018); testing: 59 | Manual: single reader, with review by an independent reader | N | Moddicom (R) - GLM | pCR | N | Training: see Dinapoli et al., 2018; validation: CapOX followed by CRT | Training 28%; validation cohort: 16.9% | 0.73 | N/A | N/A | 0.83 | 65.0 | 28.0 |
Bulens et al. [100] 2020 | MRI: T2/DWI/ADC baseline | Y - N | Retrospective - Retrospective | Training: 70, validation: 55 | Manual consensus of 1 radiation oncologist and 1 radiologist | N | In-house - LASSO logistic regression model | pCR | N | CRT | Training: 17%, validation: 15% | 0.86 | 82.0 | 77.0 | 0.87 | 84.0 | 100.0 |
Chen et al. [101] 2022 | MRI: T2 baseline | Y - N | Prospective - Retrospective | Training: 91, validation: 46 | N/A | N | PyRadiomics - Logistic regression | pCR | N | CRT | Training: 16.5%, validation: 19.5% * | 0.96 | N/A | N/A | 0.87 | N/A | N/A |
Chen et al. [102] 2020 | MRI: T2 longitudinal (pre/post) | Y - N | Retrospective - Retrospective | Training: 26, validation: 13 | Manual: single reader | N/A | IBEX - SVM | pCR | N/A | CRT | 25.6% | N/A | 96.2% | N/A | N/A because of missing data | N/A | N/A |
Cheng et al. [103] 2021 | MRI: T2/T2FS/T1 baseline | Y - N | Retrospective - Retrospective | Training = 128, validation: 65 | Manual: single reader (+ inter-reader variability assessment on 30 patients) | Y | PyRadiomics - Logistic regression | pCR | N/A | CRT | Training: 15.6%, validation: 16.9% | 0.96 | 93.8 | N/A | 0.91 | 84.6 | N/A |
Chiloiro et al. ** [104] 2022 | MRI: N/A post-CRT | N - N | Retrospective - Retrospective | 144 | N/A | N/A | N/A - N/A | pCR | N/A | CRT | N/A | 0.84 | N/A | N/A | N/A | N/A | N/A |
Coppola et al. [105] 2021 | MRI: T2/DWI baseline | N - N | Retrospective - Retrospective | 40 | Manual: Single reader | N/A | N/A - Random forest | near pCR + pCR | N/A | CRT | 37.5% * | 0.90 | N/A | 80.0 | N/A | N/A | N/A |
Cui et al. [106] 2018 | MRI: T2/T1/ADC Baseline | Y - N | Retrospective - Retrospective | Training: 131; validation: 55 | Manual | N/A | Analysis kit-GE - Logistic regression | pCR | N/A | CRT | Training: 16.8%, validation: 16.4% | 0.95 | 87.8 | N/A | 0.97 | 94.5 | N/A |
Cusumano et al. [107] 2021 | MRI (low field): T2/T1S longitudinal | Y - N | Retrospective - Retrospective | Training: 16, validation: 43 | Manual-cooperation of 2 radiation oncologists | N | Moddicom (R) - Multiple logistic regression | pCR | N/A | CRT | Training: 12.5%, validation: 27% | 0.93 | N/A | N/A | N/A | 77.0 | N/A |
Cusumano et al. [108] 2021 | MRI: T2? baseline | N-internal cross validation - N | Retrospective - Retrospective: 2 institutions | 195 (institution1: 136; institution2: 59) | Manual: nb readers? | N/A | Moddicom (R) - Multiple logistic regression | pCR | N | CRT | Institution1: 22%; institution 2: 25% | 0.72 (after cross validation) | N/A | N/A | N/A | N/A | N/A |
Defeudis et al. [109] 2022 | MRI: T2/ADC baseline | Y - N | Retrospective - Retrospective | Training: 47, testing: 20, validation: 28 | Manual: 3 readers + assessment by 2 supplementary readers | N | PyRadiomics - SVM | pCR | N | CRT | 16.8% | 0.90 | 83.0 | 74.0 | 0.61 | 68.0 | 75.0 |
Automatic segmentation | N | PyRadiomics - SVM | pCR | N | CRT | 16.8% | 0.86 | 78.0 | 71.0 | 0.81 | 75.0 | 75.0 | |||||
Delli Pizzi et al. [110] 2021 | MRI: T2 baseline | N - N | Retrospective - Retrospective | 72 | Manual: 2 readers | Y | PyRadiomics - Partial least-squares regression | near pCR + pCR | N/A | CRT | 47.2%* | 0.79 | N/A | N/A | N/A | N/A | N/A |
Dinapoli et al. [96] 2018 | MRI: T2 baseline | Y - N | Training: retrospective, validation 1: retrospective, validation 2: prospective - Retrospective | Training: 162, validation cohort 1: 34, validation cohort 2: 25 | Manual-training: cooperation of 2 radiation oncologists + 2 radiologists, validation 1: cooperation of 2 different radiation oncologists and radiologists, validation 2: same as training | N | Moddicom (R) - GLM | pCR | N/A | CRT | Training 28%; validation cohort 1: 21%, validation cohort 2: 28% | 0.73 | N/A | N/A | Cohort 1: 0.75, cohort 2: 0.79 | N/A | N/A |
Fu et al. [111] 2020 | MRI: DWI baseline | N-internal cross validation - N | Retrospective - Retrospective | 43 | Manual: single reader | N/A | PyRadiomics - Neural network | near pCR + pCR | N | CRT | 51.2% | 0.73 (after cross validation) | N/A | N/A | N/A | N/A | N/A |
Van Griethuysen et al. [112] 2020 | MRI: T2/DWI/ADC baseline | Y - N | Retrospective - Retrospective | Training: 86, validation: 47 | Semi-automatic + manual refinement | N | PyRadiomics - Logistic regression | pCR | N | CRT | Training: 20.9%, validation: 21.3% | 0.71 | N/A | N/A | 0.77 | N/A | N/A |
Horvat et al. [113] 2018 | MRI: T2 post-CRT | N - N | Retrospective - Retrospective | 114 | Manual: consensus of 2 readers | N/A | In-house - Random forest | pCR | N | CRT | 18% | 0.93 | N/A | 72.0% | N/A | N/A | N/A |
Horvat et al. ** [114] 2022 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | Training: 114? validation: 50 | Manual: 2 readers | N/A | N/A - N/A | pCR | N/A | CRT | N/A | N/A | N/A | N/A | 0.83 | N/A | 57.0 |
Jayaprakasam et al. ** [115] 2021 | MRI: T2 baseline | N-internal cross validation - N | Retrospective - Retrospective | 236 | Manual: 3 readers | N/A | CERR - SVM | pCR | N/A | CRT | N/A | 0.89 | 83.9 | 52.5 | N/A | N/A | N/A |
Li et al. [116] 2019 | MRI: T2 longitudinal (pre/post) | Y - N | Retrospective - Retrospective | Training: 87, validation: 44 | Manual: single reader, with review by an independent reader | N | IBEX - LASSO logistic regression model | pCR | N/A | CRT | Training: 20.7%, validation: 20.5% | 0.92 | N/A | N/A | 0.87 | N/A | N/A |
Liu et al. [117] 2017 | MRI: T2/DWI baseline | Y - N | Retrospective - Retrospective | Training: 16, validation: 43 | Manual: 2 readers | Y | MATLAB workpackage - SVM | pCR | N/A | CRT | Training: 17.1%, validation: 17.1% | 0.97 | 96.1 | 91.7 | 0.98 | 94.3 | 90.0 |
Mbanu et al. [118] 2022 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | Training: 200, validation: 104 | Manual: 2 readers | Y | PyRadiomics - Logistic regression | cCR | N | CRT | 50% (selected patients for matching cohorts) | 0.76 | N/A | N/A | 0.68 | N/A | N/A |
Nardone et al. [119] 2022 | MRI: T2/DWI/ADC longitudinal (pre/post) | Y - N | Retrospective - Retrospective | Training: 37, 2 validation cohorts: 33 + 30 | Manual: 2 readers + assessment by 2 supplementary readers | Y | Life X- Logistic regression | pCR | N | CRT | Training: 27%; validation cohort 1: 18%, validation cohort 2: 17% | 0.87 | 73.0 | 50.0 | Cohort 1: 0.92, cohort 2: 0.88 | Cohort 1: 72.7, cohort 2: 80.0 | Cohort 1: 40.0, cohort 2: 44.4 |
Nie et al. [120] 2016 | MRI: T2/T1/DWI/DCE Baseline | N-4 cross fold validation - N | Retrospective - Retrospective | 48 | Manual: single reader | N/A | N/A - Neural network | pCR | N/A | CRT | 23% | 0.89 | N/A | N/A | N/A | N/A | N/A |
Pang et al. [121] 2021 | MRI: T2 post-CRT | Y - N | Retrospective - Retrospective | Training: 107, internal validation: 46, external validation: 34 | Automatic segmentation | N/A | PyRadiomics - SVM | pCR | N | CRT | Training: 33.6%, internal validation: 17.4%, external validation: 17.6% | 0.92 | 86.0 | N/A | Internal validation: 0.83, external validation: 0.82 | Internal validation: 80.4, external validation: 85.3 | N/A |
Peterson et al. ** [122] 2022 | MRI: N/A baseline | N - N | Retrospective - Retrospective | 131 | N/A | N/A | N/A - Machine learning? | pCR | N/A | CRT | 26.7% | 0.73 | N/A | N/A | N/A | N/A | N/A |
Petkovska et al. [123] 2020 | MRI: T2 baseline | Y (sub-set of patients delineated by different readers) - N | Retrospective - Retrospective | Training: 102, validation: 66 (out of the training cohort but with different delineations) | Manual: 1 reader (+ 2 readers for validation) | N | CERR - SVM | pCR | N | CRT | 19% | 0.75 | N/A | N/A | Reader 1: 0.75, reader 2: 0.71 | N/A | N/A |
Shaish et al. [124] 2020 | MRI: T2 baseline | N-internal cross validation - N | Retrospective - Retrospective | Training: 112, validation: 23 | Manual: single reader | Y | PyRadiomics - Logistic regression | pCR | N | CRT | 15% | 0.80 | N/A | N/A | N/A | N/A | N/A |
Shi et al. [125] 2019 | MRI: T2/T1/ADC/DCE longitudinal (pre/mid) | N-internal cross validation - N | Retrospective - Retrospective | 35 | Manual | N | N/A - Neural network | pCR | N/A | CRT | 22.2% | 0.86 | N/A | N/A | N/A | N/A | N/A |
Shin et al. [126] 2022 | MRI: T2/ADC post-CRT | Y - N | Retrospective - Retrospective | Training: 592, validation: 306 | Manual: single-reader assessment by 1 supplementary reader (+ inter-reader variability assessment on 40 patients) | Y | PyRadiomics - LASSO logistic regression model | pCR | N | CRT | Training: 19.3%, validation: 24.5% | 0.89 | N/A | N/A | 0.82 | N/A | 46.3 |
Song et al. [127] 2022 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | 674 patients | Manual: 4 readers and 2-step validation | N | N/A - SVM | pCR | N | CRT | 25.8% | 0.99 | 96.4 | 96.1 | 0.79 | 93.3 | 94.0 |
Tang et al. [128] 2022 | MRI: T2 baseline | Y - N | Training: see Dinapoli et al. 2018; validation: retrospective - Training: see Dinapoli et al., 2018; validation: retrospective | Training: see Dinapoli et al., 2018; validation: 88 | Manual: single reader | N/A | Moddicom (R) - Logistic regression | pCR | N | CRT | Training: see Dinapoli et al., 2018; validation: 13.6% | 0.93 | N/A | N/A | 0.93 | N/A | N/A |
Wan et al. [129] 2020 | MRI: T2/DWI longitudinal (pre/post) | Y - N | Retrospective - Retrospective | Training: 116, validation: 49 | Manual: single-reader assessment by 1 supplementary reader | N/A | Radcloud - Logistic regression | pCR | N/A | CRT | Training: 16.4%, validation: 16.3% | 0.91 | N/A | N/A | 0.91 | N/A | N/A |
Wei et al. ** [130] 2022 | MRI: N/A baseline | Y - N | Retrospective - Retrospective | Training: 100, validation: 51 | Manual | N/A | N/A - Random forest | pCR | N/A | CRT | N/A | 0.91 | 76.0 | N/A | 0.87 | 77.3 | N/A |
Yi et al. [131] 2019 | MRI: T2 baseline | Y - N | Retrospective - Retrospective | Training: 93, validation: 40 | Manual: 2 readers | Y | MaZda - SVM | pCR | N | CRT | 23.9% | 0.91 | N/A | N/A | 0.87 | N/A | N/A |
Study Year | Studied Modality of Imaging Timing | External Validation - Prospective Validation | Timing for Data Acquisition - Timing of Analysis: Prospective/Retrospective | Cohort Size | Delineation: Manual/Auto, nb Reader | Assessment of Robustness | Extraction Software - Statistical Approach | Predicted Outcome | Correction for Site Heterogeneity | Type of NAT: CRT vs. TNT | pCR Rate | AUC | Accuracy | PPV | AUC | Accuracy | PPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | ||||||||||||||||
Bordron et al. [132] 2022 | MRI: T2/DWI CE-CT baseline | Y - N | Retrospective - Retrospective | Training: 64, testing: 60 | Manual: single reader (+ inter-reader variability assessment on 25 patients) | Y | MIRAS - Neural network: multilayer perceptron | pCR | Y (Combat) | CRT | Training: 14%, validation: 8% | 0.95 | 90.0 | 45.0 | 0.81 | 85.5 | 44.4 |
Capelli et al. [133] 2022 | MRI: T2/ADC PET baseline | N/A - N | Retrospective - Retrospective | 50 | Manual:consensus of 2 radiation oncologists | N/A | PMOD - Logistic regression | pCR | N/A | CRT | 50 | 0.86 | 74.0 | N/A | N/A | N/A | N/A |
Feng et al. [88] 2022 | MRI: T2/T1/DWI pathological slides baseline | Y - Y | Retrospective: training + validation + prospective validation - Retrospective: training + validation + prospective validation | Training: 303, validation 1 + 2: 480 + 150, prospective: 100 | Manual | N/A | PyRadiomics - Neural network: VGG-19 | pCR | N | CRT | Training: 28%, validation 1/2: 22%/20%, prospective: 23% | 0.87 | N/A | 0.64 | Validation 1: 0.86, validation 2: 0.87, prospective: 0.81 | N/A | Validation 1: 0.50, validation 2: 0.47, prospective: 0.51 |
Giannini et al. [134] 2019 | MRI: T2/DWI PET baseline | N - N | Prospective - Retrospective | 52 | Semi-automatic | N/A | MATLAB workpackage - Logistic regression | near pCR + pCR | N/A | CRT | 42.3% | 0.86 | N/A | N/A | N/A | N/A | N/A |
Study Year | Studied Modality of Imaging Timing | External Validation - Prospective Validation | Timing for Data Acquisition - Timing of Analysis: Prospective/Retrospective | Cohort Size | Delineation: Manual/Auto, nb Reader | Assessment of robustness | Extraction Software - Statistical Approach | Predicted Outcome | Correction for Site Heterogeneity | Type of NAT: CRT vs. TNT | pCR Rate | AUC | Accuracy | PPV | AUC | Accuracy | PPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | ||||||||||||||||
Bibault et al. [135] 2018 | NonCE-CT baseline | N-internal cross validation - N | Retrospective - Retrospective | 95 | Manual: 2 readers | N | IBEX - Neural network: tensor flow | pCR | N | CRT | 23.1% | NaN | NaN | NaN | 0.72 | 80.0 | 68.0 |
Hamerla et al. [136] 2019 | NonCE-CT baseline | N-internal cross validation - N | Retrospective - Retrospective | 169 | Manual: consensus of 2 radiation oncologists | N | PyRadiomics - Random forest | pCR | N/A | CRT | 13% | NaN | 87.0 (before correction for imbalanced data); 50.0 (after correction for imbalanced data) | NaN | NaN | NaN | NaN |
Lovinfosse et al. [137] 2017 | PET baseline | N - N | Retrospective - Retrospective | 86 | Semi-automatic | N/A | In-house - Logistic regression | pCR | N/A | CRT | 9.1% | NaN | NaN | NaN | NaN | NaN | NaN |
Lutsyk et al. [138] 2021 | NonCE-CT baseline | Y - N | Retrospective - Retrospective | Training: 98, validation: 42 | Manual | N | PyRadiomics - Neural network: multilayer perceptron | pCR | N | CRT | 27.1% | 0.87 | 98.0 | 98.6 | NaN | 67.0 | 77.0 |
Mao et al. [139] 2022 | NonCE-CT baseline | Y - N | Retrospective - Retrospective | Training: 151, validation: 65 | Manual: 2 readers + assessment by 2 supplementary readers | Y | MaZda - Logistic regression | pCR | N/A | CRT | Training: 19.9%, validation: 21.5% | 0.93 | 87.0 | 60.5 | 0.87 | 86.0 | 70.6 |
Shen et al. [140] 2020 | PET baseline | N-internal cross validation - N | Retrospective - Retrospective | 169 | Manual | N | In-house - Random forest | pCR | N/A | CRT | 13% | 0.87–0.97 (before cross validation) | 89.0 (after cross validation) | 67.0 (after cross validation) | NaN | NaN | NaN |
Yuan et al. [141] 2020 | NonCE-CT baseline | Y - N | Retrospective - Retrospective | Training = 60, validation: 31 | Manual | N | In-house - Random forest > SVM | pCR | N | CRT | Training: 23.4%, validation: 19.4% | NaN | NaN | NaN | NaN | 83.9 | NaN |
Zhuang et al. [142] 2021 | CE-CT baseline | Y - N | Training + validation: post-hoc analysis of the FORWAC trial - Retrospective | Training: 113, validation: 64 | Manual: 2 readers | Y | PyRadiomics - GLM | pCR | N | FORWAC trial: 3 arms: arm A: LV5FU2 + RT, arm B: FOLFOX + RT, arm C: FOLFOX without RT | Training: 17.7%, validation: 17.2% | 1.00 | 0.97 | NaN | 0.82 | 81.0 | NaN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourbonne, V.; Schick, U.; Pradier, O.; Visvikis, D.; Metges, J.-P.; Badic, B. Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers 2023, 15, 432. https://doi.org/10.3390/cancers15020432
Bourbonne V, Schick U, Pradier O, Visvikis D, Metges J-P, Badic B. Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers. 2023; 15(2):432. https://doi.org/10.3390/cancers15020432
Chicago/Turabian StyleBourbonne, Vincent, Ulrike Schick, Olivier Pradier, Dimitris Visvikis, Jean-Philippe Metges, and Bogdan Badic. 2023. "Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time?" Cancers 15, no. 2: 432. https://doi.org/10.3390/cancers15020432
APA StyleBourbonne, V., Schick, U., Pradier, O., Visvikis, D., Metges, J. -P., & Badic, B. (2023). Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers, 15(2), 432. https://doi.org/10.3390/cancers15020432