Evaluation of 8% Capsaicin Patches in Chemotherapy-Induced Peripheral Neuropathy: A Retrospective Study in a Comprehensive Cancer Center
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Study Treatment
2.3. Data Collection
2.4. Evaluating the Primary Objectives
2.5. Statistical Analysis
3. Results
3.1. Study Follow-Up
3.2. Patient Characteristics
3.3. Characteristics of HCCP Applications
3.4. HCCP Overall Efficacy
3.5. HCCP Efficacy Depending on Several Factors
3.5.1. Pain Duration before HCCP Application
3.5.2. Responsible Chemotherapy
3.5.3. Analgesic Treatment Line
3.5.4. Total Number of HCCP Applications
3.6. Time Lapse before HCCP Efficacy and Duration of the Pain Relief
3.7. HCCP Tolerability
3.8. End of Treatment and End of Study
4. Discussion
4.1. HCCP Efficacy
4.2. HCCP Tolerability
4.3. CIPN in CERCAN Cohort and General Population
4.4. Why HCCP in Painful CIPN?
4.5. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored. Am. Soc. Prev. Oncol. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Glare, P.A.; Davies, P.S.; Finlay, E.; Gulati, A.; Lemanne, D.; Moryl, N.; Oeffinger, K.C.; Paice, J.A.; Stubblefield, M.D.; Syrjala, K.L. Pain in Cancer Survivors. J. Clin. Oncol. 2014, 32, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.-D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2007, 70, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.-Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin. 2013, 63, 419–437. [Google Scholar] [CrossRef]
- Cuzzubbo, S.; Javeri, F.; Tissier, M.; Roumi, A.; Barlog, C.; Doridam, J.; Lebbe, C.; Belin, C.; Ursu, R.; Carpentier, A. Neurological adverse events associated with immune checkpoint inhibitors: Review of the literature. Eur. J. Cancer 2017, 73, 1–8. [Google Scholar] [CrossRef]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef]
- Grisold, W.; Cavaletti, G.; Windebank, A.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-Oncology 2012, 14 (Suppl. 4), iv45–iv54. [Google Scholar] [CrossRef]
- Cavaletti, G.; Bogliun, G.; Marzorati, L.; Zincone, A.; Piatti, M.; Colombo, N.; Franchi, D.; La Presa, M.T.; Lissoni, A.; Buda, A.; et al. Early predictors of peripheral neurotoxicity in cisplatin and paclitaxel combination chemotherapy. Ann. Oncol. 2004, 15, 1439–1442. [Google Scholar] [CrossRef]
- Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015, 596, 90–107. [Google Scholar] [CrossRef]
- Maihöfner, C.; Diel, I.; Tesch, H.; Quandel, T.; Baron, R. Chemotherapy-induced peripheral neuropathy (CIPN): Current therapies and topical treatment option with high-concentration capsaicin. Support Care Cancer 2021, 29, 4223–4238. [Google Scholar] [CrossRef]
- Calls, A.; Carozzi, V.; Navarro, X.; Monza, L.; Bruna, J. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp. Neurol. 2020, 325, 113141. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.J.; DeAngelis, L.M. Therapy of chemotherapy-induced peripheral neuropathy. Br. J. Haematol. 2009, 145, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kneis, S.; Wehrle, A.; Dalin, D.; Wiesmeier, I.K.; Lambeck, J.; Gollhofer, A.; Bertz, H.; Maurer, C. A new approach to characterize postural deficits in chemotherapy-induced peripheral neuropathy and to analyze postural adaptions after an exercise intervention. BMC Neurol. 2020, 20, 23. [Google Scholar] [CrossRef]
- Bhatnagar, B.; Gilmore, S.; Goloubeva, O.; Pelser, C.; Medeiros, M.; Chumsri, S.; Tkaczuk, K.; Edelman, M.; Bao, T. Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: A single-center experience. Springerplus 2014, 3, 366. [Google Scholar] [CrossRef]
- Richardson, P.G.; Briemberg, H.; Jagannath, S.; Wen, P.Y.; Barlogie, B.; Berenson, J.; Singhal, S.; Siegel, D.S.; Irwin, D.; Schuster, M.; et al. Frequency, Characteristics, and Reversibility of Peripheral Neuropathy During Treatment of Advanced Multiple Myeloma With Bortezomib. J. Clin. Oncol. 2006, 24, 3113–3120. [Google Scholar] [CrossRef] [PubMed]
- Bonhof, C.S.; Mols, F.; Vos, M.C.; Pijnenborg, J.M.; Boll, D.; Vreugdenhil, G.; Ezendam, N.P.; van de Poll-Franse, L.V. Course of chemotherapy-induced peripheral neuropathy and its impact on health-related quality of life among ovarian cancer patients: A longitudinal study. Gynecol. Oncol. 2018, 149, 455–463. [Google Scholar] [CrossRef]
- Boyette-Davis, J.A.; Hou, S.; Abdi, S.; Dougherty, P.M. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag. 2018, 8, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Kavelaars, A.; Dougherty, P.M.; Heijnen, C.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018, 124, 2289–2298. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Pike, C.T.; Birnbaum, H.G.; Muehlenbein, C.E.; Pohl, G.M.; Natale, R.B. Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemother. Res. Pr. 2012, 2012, 913848. [Google Scholar] [CrossRef]
- Jordan, B.; Margulies, A.; Cardoso, F.; Cavaletti, G.; Haugnes, H.S.; Jahn, P.; Le Rhun, E.; Preusser, M.; Scotté, F.; Taphoorn, M.J.B.; et al. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann. Oncol. 2020, 31, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- EMEA. Qutenza-Epar-Public-Assessment-Report_en.pdf [Internet]. 2009. Available online: https://www.ema.europa.eu/en/documents/assessment-report/qutenza-epar-public-assessment-report_en.pdf (accessed on 10 August 2022).
- EMEA. Qutenza-Epar-Assessment-Report-Variation_en.pdf [Internet]. 2015. Available online: https://www.ema.europa.eu/en/documents/variation-report/qutenza-h/c-909-ii-0039-epar-assessment-report-variation_en.pdf (accessed on 10 August 2022).
- Mankowski, C.; Poole, C.D.; Ernault, E.; Thomas, R.; Berni, E.; Currie, C.J.; Treadwell, C.; Calvo, J.I.; Plastira, C.; Zafeiropoulou, E.; et al. Effectiveness of the capsaicin 8% patch in the management of peripheral neuropathic pain in European clinical practice: The ASCEND study. BMC Neurol. 2017, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Nagy, I.; Sántha, P.; Jancsó, G.; Urbán, L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur. J. Pharmacol. 2004, 500, 351–369. [Google Scholar] [CrossRef]
- Derry, S.; Rice, A.S.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 2021, CD007393. [Google Scholar] [CrossRef]
- Simpson, D.M.; Robinson-Papp, J.; Van, J.; Stoker, M.; Jacobs, H.; Snijder, R.J.; Schregardus, D.S.; Long, S.K.; Lambourg, B.; Katz, N. Capsaicin 8% Patch in Painful Diabetic Peripheral Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Study. J. Pain 2016, 18, 42–53. [Google Scholar] [CrossRef]
- Babbar, S.; Marier, J.F.; Mouksassi, M.-S.; Beliveau, M.; Vanhove, G.F.; Chanda, S.; Bley, K. Pharmacokinetic Analysis of Capsaicin After Topical Administration of a High-Concentration Capsaicin Patch to Patients With Peripheral Neuropathic Pain. Ther. Drug Monit. 2009, 31, 502–510. [Google Scholar] [CrossRef]
- Juurlink, D. Revisiting the drug interaction between tamoxifen and SSRI antidepressants. BMJ 2016, 354, i5309. [Google Scholar] [CrossRef]
- Anand, P.; Elsafa, E.; Privitera, R.; Naidoo, K.; Yiangou, Y.; Donatien, P.; Gabra, H.; Wasan, H.; Kenny, L.; Rahemtulla, A.; et al. Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8% patch: From pain relief towards disease modification. J. Pain Res. 2019, 12, 2039–2052. [Google Scholar] [CrossRef]
- Filipczak-Bryniarska, I.; Krzyzewski, R.M.; Kucharz, J.; Michalowska-Kaczmarczyk, A.; Kleja, J.; Woron, J.; Strzepek, K.; Kazior, L.; Wordliczek, J.; Grodzicki, T.; et al. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: Single-center experience. Med. Oncol. Northwood. Lond. Engl. 2017, 34, 162. [Google Scholar] [CrossRef] [PubMed]
- Le Marec, C.; Berard, J.; Queneuille, I.; Mezaib, K.; Croixmarie, F.; Di Palma, M.; Laurent, S. Improvement of chemotherapy induced neuropathy (CIN) in cancer patients using capsaicin 8% patch. J. Clin. Oncol. 2016, 34, e14031. [Google Scholar] [CrossRef]
- Ramnarine, S.; Laird, B.; Williams, L.J.; Fallon, M.T. Investigating high-concentration 8% capsaicin patch in chronic cancer-treatment related peripheral neuropathic pain. J. Clin. Oncol. 2016, 34, 208. [Google Scholar] [CrossRef]
- Dupoiron, D.; Jubier-Hamon, S.; Seegers, V.; Bienfait, F.; Pluchon, Y.M.; Lebrec, N.; Jaoul, V.; Delorme, T. Peripheral Neuropathic Pain Following Breast Cancer: Effectiveness and Tolerability of High-Concentration Capsaicin Patch. J. Pain Res. 2022, 15, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, T.; Kudo, M.; Yoshida, J.; Ishibashi, T.; Muramatsu, I.; Kato, N.; Imaizumi, N.; Nishio, M. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia. Front. Cell. Neurosci. 2016, 10, 79. [Google Scholar] [CrossRef]
- Da Costa, R.; Passos, G.F.; Quintão, N.L.; Fernandes, E.S.; Maia, J.R.L.; Campos, M.M.; Calixto, J.B. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br. J. Pharmacol. 2020, 177, 3127–3146. [Google Scholar] [CrossRef]
- Freynhagen, R.; Argoff, C.; Eerdekens, M.; Engelen, S.; Perrot, S. Progressive Response to Repeat Application of Capsaicin 179 mg (8% w/w) Cutaneous Patch in Peripheral Neuropathic Pain: Comprehensive New Analysis and Clinical Implications. Pain Med. Malden. Mass. 2021, 22, 2324–2336. [Google Scholar] [CrossRef]
- Hansson, P.; Jensen, T.; Kvarstein, G.; Strömberg, M. Pain-relieving effectiveness, quality of life and tolerability of repeated capsaicin 8% patch treatment of peripheral neuropathic pain in Scandinavian clinical practice. Eur. J. Pain Lond. Engl. 2018, 22, 941–950. [Google Scholar] [CrossRef]
- Sultana, A.; Singla, R.K.; He, X.; Sun, Y.; Alam, M.S.; Shen, B. Topical Capsaicin for the Treatment of Neuropathic Pain. Curr. Drug Metab. 2021, 22, 198–207. [Google Scholar] [CrossRef]
- Di Stefano, G.; Di Lionardo, A.; Galosi, E.; Truini, A.; Cruccu, G. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review. J. Pain Res. 2019, 12, 1341–1351. [Google Scholar] [CrossRef]
- Hershman, D.L.; Unger, J.M.; Crew, K.D.; Minasian, L.M.; Awad, D.; Moinpour, C.M.; Hansen, L.; Lew, D.L.; Greenlee, H.; Fehrenbacher, L.; et al. Randomized Double-Blind Placebo-Controlled Trial of Acetyl-L-Carnitine for the Prevention of Taxane-Induced Neuropathy in Women Undergoing Adjuvant Breast Cancer Therapy. J. Clin. Oncol. 2013, 31, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef] [PubMed]
- Beijers, A.; Bonhof, C.; Mols, F.; Ophorst, J.; de Vos-Geelen, J.; Jacobs, E.; van de Poll-Franse, L.; Vreugdenhil, G. Multicenter randomized controlled trial to evaluate the efficacy and tolerability of frozen gloves for the prevention of chemotherapy-induced peripheral neuropathy. Ann. Oncol. 2020, 31, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Fallon, M.T.; Storey, D.J.; Krishan, A.; Weir, C.J.; Mitchell, R.; Fleetwoodwalker, S.M.; Scott, A.C.; Colvin, L. Cancer treatment-related neuropathic pain: Proof of concept study with menthol—A TRPM8 agonist. Support Care Cancer 2015, 23, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.; Andrews, R.; Kumar, L.; Wadhwa, S.; Shukla, G. A Randomized Controlled Trial to Assess the Effectiveness of Muscle Strengthening and Balancing Exercises on Chemotherapy-Induced Peripheral Neuropathic Pain and Quality of Life Among Cancer Patients. Cancer Nurs. 2020, 43, 269–280. [Google Scholar] [CrossRef]
Study | Publication Year | Type of Study | Number of Patients | Responsible Chemotherapy | HCCP Application Duration | Results |
---|---|---|---|---|---|---|
Anand et al. [32] | 2019 | Prospective | 16 | Platinum salts, taxanes, and/or bortezomib | 30 min | Significant −1.27 (−0.24; −2.3) diminution in NRS scores at 12 weeks |
Filipczak-Bryniarska et al. [33] | 2017 | Prospective | 18 | Platinum salts | As long as possible | Pain reduction of 84% and 97% in high and low platinum sensitivity groups respectively at 12 weeks |
Le Marec et al. [34] | 2016 (abstract) | Retrospective | 28 | Platinum salts, taxanes, bortezomib, thalidomide, or alkeran | 30 min | Pain scores reduced by >50% in 21 patients (75%) at 6 months |
Ramnarine et al. [35] | 2016 (abstract) | Retrospective | 19 | N/A | N/A | 7 responders (37%) at 4 weeks corresponding to a 30% pain scores reduction and 7 responders (50%) at 12 weeks. |
Analgesic Effect | Definition |
---|---|
No effect | No change |
Clinically observable effect but no pain relief | Reduction in pain area OR decreased intensity of allodynia or hyperalgia |
Minimal effect | 2-point (NRS) or 1-category (VRS) decrease in mean pain intensity AND/OR 2-point (NRS) or 1-category (VRS) decrease in maximum pain intensity |
Mild effect | 2-point (NRS) or 1-category (VRS) decrease in mean pain intensity AND 2-point (NRS) or 1-category (VRS) decrease in maximum pain intensity AND changes in one or more of the following criteria: 1/ Decrease in pain flare frequency (but at least 2/day) 2/ Decrease in sleep interference score (but at least 1 awake/night) 3/ Slight decrease in daily activities interference score 4/ Slight decrease in evoked pain reported by the patient 5/ 50% decrease in the daily dose of at least one neuropathic pain medication 6/ Breakthrough pain analgesic dose reduction or cessation |
Moderate effect | 30% to 50% (NRS) or 2-category (VRS) decrease in mean pain intensity: OR 30% to 50% (NRS) or 2-category (VRS) decrease in maximum pain intensity AND changes in one or more of the following criteria: 1/ At least 50% decrease in pain flare frequency 2/ No more sleep interference (or rare) 3/ At least 50% decrease in daily activities interference score 4/ Cessation of at least one neuropathic pain medication OR at least 50% decrease in the daily dose of two neuropathic pain medications |
Important effect | 30% to 50% (NRS) or 2-category (VRS) decrease in mean pain intensity: OR 30% to 50% (NRS) or 2-category (VRS) decrease in maximum pain intensity AND changes in two of the following criteria: 1/ At least 50% decrease in pain flare frequency 2/ No more sleep interference (or rare) 3/ At least 50% decrease in daily activities interference score 4/ Cessation of at least one neuropathic pain medication OR at least 50% decrease in the daily dose of two neuropathic pain medications |
Complete effect | No pain flares (or <1/week max) Usual pain: absent No pain interference on sleep (or ≤1/week) No more neuropathic pain medication |
Baseline Characteristics (N = 57) | N (%) or Mean (SD) |
---|---|
Sex | |
Female | 46 (80.7) |
Male | 11 (19.3) |
Cancer Localization | |
Prostate | 4 (7.0) |
Lung | 4 (7.0) |
Oligodendroglioma | 1 (1.8) |
ORL | 1 (1.8) |
Uterus | 1 (1.8) |
Acute leukemia | 1 (1.8) |
Myeloma | 1 (1.8) |
Testis | 34 (59.7) |
Breast | 8 (14.0) |
Digestive cancer | |
Comorbidity | |
Hypertension | 21 (36.8) |
Infarct | 2 (3.51) |
Pulmonary embolism | 1 (1.75) |
Stroke | 2 (3.51) |
Age (median) (IQR) | 59 (51; 69) |
Suspected chemotherapy | |
Taxane alone | 30 (52.6) |
Platinum salts | 8 (14.0) |
Taxane + platinum salts | 5 (12.3) |
Taxane + immunotherapy | 5 (12.3) |
Platinum salts + immunotherapy | 2 (3.5) |
Taxane + Platinum salts + immunotherapy | 2 (3.5) |
Immunotherapy | 1 (1.8) |
Vincristine | 2 (3.5) |
Thalidomide + lenalidomide | 1 (1.8) |
Thalidomide + lenalidomide + bortezomib | 1 (1.8) |
Duration of CIPN before capsaicin use | |
<1 year | 25 (43.9) |
1–5 years | 23 (40.3) |
>5 years | 9 (15.8) |
Previous pain medication | |
At least one previous (stopped before inclusion) | 39 (68.4) |
At least one antidepressant | 13 (22.8) |
At least one antiepileptic | 20 (35.1) |
At least one opioid | 6 (10.5) |
Ongoing analgesic medication for neuropathic pain | |
At least one ongoing analgesic medication | 46 (80.7) |
Treatment line for CIPN | |
First line | 8 (14.0) |
Second line | 21 (36.8) |
Third line (or more) | 28 (49.1) |
Analgesic Effect | Per Patient (N = 57) | Per Application (N = 184) | ||
---|---|---|---|---|
N (%) | N (%) | |||
Complete | 11 (19.3) | 17 (9.2) | ||
Important | 14 (24.6) | 44 (23.9) | ||
Moderate | 9 (15.8) | 27 (14.7) | ||
Mild | 3 (5.3) | 14 (7.6) | ||
Minimal | 3 (5.3) | 8 (4.3) | ||
Clinically observable effect without pain relief | 3 (5.3) | 8 (4.3) | ||
No effect | 14 (24.6) | 66 (35.6) |
Characteristics | Application (N = 184) | CGIC | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No effect | Clin. E | Min E. | Mild E. | Mod. E | Imp. E | Comp. E | ||||
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | ||||
Pain duration | <1 year | 52 | 16 (30.8) | 2 (3.8) | 4 (7.7) | 3 (5.8) | 16 (30.8) | 5 (9.6) | 6 (11.5) | 0.0005 * |
1–2 years | 58 | 27 (46.6) | 2 (3.4) | 4 (6.7) | 4 (6.7) | 5 (8.6) | 16 (27.6) | 0 (0) | ||
3–4 years | 32 | 12 (37.5) | 1 (3.1) | 0 (0) | 5 (15.6) | 3 (9.4) | 9 (28.1) | 2 (6.3) | ||
>5 years | 42 | 11 (26.2) | 3 (7.1) | 0 (0) | 2 (4.8) | 3 (7.1) | 14 (33.3) | 9 (21.4) | ||
Responsible chemotherapy | T | 94 | 27 (28.7) | 2 (2.1) | 1 (1.1) | 9 (9.6) | 12 (12.8) | 31 (33.0) | 12 (12.8) | 0.001 * |
P | 45 | 16 (35.6) | 2 (4.4) | 4 (8.9) | 2 (4.4) | 7 (15.6) | 12 (26.7) | 2 (4.4) | ||
T + P | 8 | 5 (62.5) | 0 (0) | 0 (0) | 0 (0) | 3 (37.5) | 0 (0) | 0 (0) | ||
T + I | 13 | 5 (38.5) | 0 (0) | 2 (15.4) | 1 (7.7) | 2 (15.4) | 0 (0) | 3 (23.1) | ||
P + I | 4 | 2 (50.0) | 0 (0) | 0 (0) | 1 (25.0) | 1 (25.0) | 0 (0) | 0 (0) | ||
T + P + I | 9 | 8 (88.9) | 0 (0) | 0 (0) | 1 (11.1) | 0 (0) | 0 (0) | 0 (0) | ||
I | 1 | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Vincristine | 4 | 2 (50.0) | 1 (25.0) | 0 (0) | 0 (0) | 1 (25.0) | 0 (0) | 0 (0) | ||
Th + L | 2 | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Th + L + B | 4 | 1 (25.0) | 1 (25.0) | 0 (0) | 0 (0) | 1 (25.0) | 1 (25.0) | 0 (0) | ||
Treatment line | First line | 16 | 6 (37.5) | 2 (12.5) | 1 (6.3) | 0 (0) | 2 (12.5) | 2 (12.5) | 3 (18.8) | 0.003 * |
Second line | 77 | 26 (33.8) | 1 (1.3) | 1 (1.3) | 2 (2.6) | 10 (13.0) | 30 (39.0) | 7 (9.1) | ||
Third line | 91 | 34 (37.4) | 5 (5.5) | 6 (6.6) | 12 (13.2) | 15 (16.5) | 12 (13.2) | 7 (7.7) | ||
Ongoing pain medication | No | 21 | 5 (23.8) | 0 (0) | 1 (4.8) | 3 (14.3) | 0 (0) | 8 (38.1) | 4 (19.0) | 0.046 * |
Yes | 163 | 61 (37.4) | 8 (4.9) | 7 (4.3) | 11 (6.7) | 27 (16.6) | 36 (22.1) | 13 (8.0) | ||
Antidepressants | No | 94 | 36 (38.3) | 4 (4.3) | 4 (4.3) | 6 (6.4) | 14 (14.9) | 22 (23.4) | 8 (8.5) | 0.7431 |
Yes | 90 | 30 (33.3) | 4 (4.4) | 4 (4.4) | 8 (8.9) | 13 (14.4) | 22 (24.4) | 9 (10.0) | ||
Antiepileptics | No | 83 | 30 (36.1) | 4 (4.8) | 2 (2.4) | 9 (10.8) | 6 (7.2) | 27 (32.5) | 5 (6.0) | 0.0005 * |
Yes | 101 | 36 (35.6) | 4 (4.0) | 6 (5.9) | 5 (5.0) | 21 (20.8) | 17 (16.8) | 12 (11.9) | ||
Opioids | No | 151 | 56 (37.1) | 5 (3.3) | 7 (4.6) | 13 (8.6) | 21 (13.9) | 33 (21.9) | 16 (10.6) | 0.08 |
Yes | 33 | 10 (30.3) | 3 (9.1) | 1 (3.0) | 1 (3.0) | 6 (18.2) | 11 (33.3) | 1 (3.0) |
Adverse Event | Per Patient n = 57 (%) | Per Application n = 184 (%) | Per Session n = 296 (%) |
---|---|---|---|
Local reaction | 38 (66.6%) | 87 (47.3%) | 118 (39.9%) |
Burning or painful sensation | 32 (56.1%) | 77 (41.4%) | 107 (36.1%) |
Erythema | 12 (21.1%) | 17 (9.2%) | 19 (6.4%) |
Systemic reaction | 2 (3.5%) | 2 (1.1%) | 2 (0.6%) |
Hypertensive crisis | 1 (1.7%) | 1 (0.5%) | 1 (0.3%) |
Vasovagal syncope | 1 (1.7%) | 1 (0.5%) | 1(0.3%) |
Local pain during the application | |||
Very intense | 4 (7.0%) | 4 (2.2%) | 5 (1.7%) |
Intense | 8 (14.0%) | 17 (9.2%) | 21 (7.1%) |
Moderate | 20 (35.1%) | 48 (26.1%) | 64 (21.2%) |
Light | 9 (15.8%) | 57 (31%) | 93 (31.2%) |
No data | 16 (28.1%) | 58 (31.5%) | 113 (38.2%) |
Local pain after discharge | |||
Very intense | 8 (14.0%) | 8 (4.3%) | 9 (3.0%) |
Intense | 20 (35.0%) | 29 (15.8%) | 35 (11.8%) |
Moderate | 6 (10.5%) | 21 (11.4%) | 26 (8.8%) |
Light | 6 (10.5%) | 26 (14.1%) | 31 (10.4%) |
No pain | 1 (1.8%) | 5 (2.7%) | 8 (2.7%) |
No data | 11 (19.3%) | 95 (51.6%) | 187 (63.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bienfait, F.; Julienne, A.; Jubier-Hamon, S.; Seegers, V.; Delorme, T.; Jaoul, V.; Pluchon, Y.-M.; Lebrec, N.; Dupoiron, D. Evaluation of 8% Capsaicin Patches in Chemotherapy-Induced Peripheral Neuropathy: A Retrospective Study in a Comprehensive Cancer Center. Cancers 2023, 15, 349. https://doi.org/10.3390/cancers15020349
Bienfait F, Julienne A, Jubier-Hamon S, Seegers V, Delorme T, Jaoul V, Pluchon Y-M, Lebrec N, Dupoiron D. Evaluation of 8% Capsaicin Patches in Chemotherapy-Induced Peripheral Neuropathy: A Retrospective Study in a Comprehensive Cancer Center. Cancers. 2023; 15(2):349. https://doi.org/10.3390/cancers15020349
Chicago/Turabian StyleBienfait, Florent, Arthur Julienne, Sabrina Jubier-Hamon, Valerie Seegers, Thierry Delorme, Virginie Jaoul, Yves-Marie Pluchon, Nathalie Lebrec, and Denis Dupoiron. 2023. "Evaluation of 8% Capsaicin Patches in Chemotherapy-Induced Peripheral Neuropathy: A Retrospective Study in a Comprehensive Cancer Center" Cancers 15, no. 2: 349. https://doi.org/10.3390/cancers15020349