Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fast Biopsy Techniques
2.1. Background
2.2. Advantages, Limitations, and Clinical Applications
3. Emerging Techniques in Brain Tumor Surgery
3.1. Image-Guided Surgery and 5′ALA
3.2. Intraoperative MRI (iMRI)
3.3. Other Methodologies
4. Intraoperative Flow Cytometry
5. Comparative Analysis
5.1. Speed, Efficiency, and Accuracy
5.2. Invasiveness, Patient Impact, and Ease of Use
6. Future Prospects
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lah, T.T.; Novak, M.; Breznik, B. Brain malignancies: Glioblastoma and brain metastases. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- McFaline-Figueroa, J.R.; Lee, E.Q. Brain tumors. Am. J. Med. 2018, 131, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population-based study. Neuro-Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef]
- Ford, E.; Catt, S.; Chalmers, A.; Fallowfield, L. Systematic review of supportive care needs in patients with primary malignant brain tumors. Neuro-Oncol. 2012, 14, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Perus, L.J.; Walsh, L.A. Microenvironmental heterogeneity in brain malignancies. Front. Immunol. 2019, 10, 2294. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.G.; McCarthy, B.J. Current epidemiological trends and surveillance issues in brain tumors. Expert Rev. Anticancer Ther. 2001, 1, 395–401. [Google Scholar] [CrossRef]
- Gurney, J.G.; Kadan-Lottick, N. Brain and other central nervous system tumors: Rates, trends, and epidemiology. Curr. Opin. Oncol. 2001, 13, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.G.; McCarthy, B.J.; Freels, S.; Kupelian, V.; Bondy, M.L. The conditional probability of survival of patients with primary malignant brain tumors: Surveillance, epidemiology, and end results (SEER) data. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1999, 85, 485–491. [Google Scholar] [CrossRef]
- Sherman, J.H.; Hoes, K.; Marcus, J.; Komotar, R.J.; Brennan, C.W.; Gutin, P.H. Neurosurgery for brain tumors: Update on recent technical advances. Curr. Neurol. Neurosci. Rep. 2011, 11, 313–319. [Google Scholar] [CrossRef]
- Ostertag, C.; Mennel, H.; Kiessling, M. Stereotactic biopsy of brain tumors. Surg. Neurol. 1980, 14, 275–283. [Google Scholar]
- Feiden, W.; Steude, U.; Bise, K.; Gündisch, O. Accuracy of stereotactic brain tumor biopsy: Comparison of the histologic findings in biopsy cylinders and resected tumor tissue. Neurosurg. Rev. 1991, 14, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.M.; Jones, P.S.; Weinberg, J.S. Intraoperative MRI for brain tumors. J. Neuro-Oncol. 2021, 151, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Widhalm, G. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence. Clin. Neuropathol. 2014, 33, 260–278. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Vartholomatos, G.; Goussia, A.; Batistatou, A.; Tsamis, K.; Voulgaris, S.; Kyritsis, A.P. Fast cell cycle analysis for intraoperative characterization of brain tumor margins and malignancy. J. Clin. Neurosci. 2015, 22, 129–132. [Google Scholar] [CrossRef]
- Shioyama, T.; Muragaki, Y.; Maruyama, T.; Komori, T.; Iseki, H. Intraoperative flow cytometry analysis of glioma tissue for rapid determination of tumor presence and its histopathological grade. J. Neurosurg. 2013, 118, 1232–1238. [Google Scholar] [CrossRef]
- Jain, D.; Sharma, M.C.; Sarkar, C.; Gupta, D.; Singh, M.; Mahapatra, A. Comparative analysis of diagnostic accuracy of different brain biopsy procedures. Neurol. India 2006, 54, 394. [Google Scholar]
- Inoue, A.; Watanabe, H.; Kondo, T.; Katayama, E.; Miyazaki, Y.; Suehiro, S.; Yamashita, D.; Taniwaki, M.; Kurata, M.; Shigekawa, S. Usefulness of intraoperative rapid immunohistochemistry in the surgical treatment of brain tumors. Neuropathology 2023, 43, 209–220. [Google Scholar] [CrossRef]
- Snuderl, M.; Wirth, D.; Sheth, S.A.; Bourne, S.K.; Kwon, C.S.; Ancukiewicz, M.; Curry, W.T.; Frosch, M.P.; Yaroslavsky, A.N. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors. Brain Pathol. 2013, 23, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Sastry, R.; Bi, W.L.; Pieper, S.; Frisken, S.; Kapur, T.; Wells III, W.; Golby, A.J. Applications of ultrasound in the resection of brain tumors. J. Neuroimaging 2017, 27, 5–15. [Google Scholar] [CrossRef]
- Fuller, C. A little piece of mind: Best practices for brain tumor intraoperative consultation. Mod. Pathol. 2019, 32, 44–57. [Google Scholar] [CrossRef]
- Uzuka, T.; Aoki, H.; Natsumeda, M.; Kakita, A.; Takahashi, H.; Fujii, Y. Indication of intraoperative immunohistochemistry for accurate pathological diagnosis of brain tumors. Brain Tumor Pathol. 2011, 28, 239–246. [Google Scholar] [CrossRef]
- Barone, D.G.; Lawrie, T.A.; Hart, M.G. Image guided surgery for the resection of brain tumours. Cochrane Database Syst. Rev. 2014, 2014, CD009685. [Google Scholar] [CrossRef]
- Grimson, W.E.L.; Kikinis, R.; Jolesz, F.A.; Black, P.M. Image-guided surgery. Sci. Am. 1999, 280, 62–69. [Google Scholar] [CrossRef]
- Hu, S.; Kang, H.; Baek, Y.; El Fakhri, G.; Kuang, A.; Choi, H.S. Real-time imaging of brain tumor for image-guided surgery. Adv. Healthc. Mater. 2018, 7, 1800066. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.; Eljamel, S. ALA-induced fluorescence image guided surgery of meningiomas: A meta-analyses. Photodiagnosis Photodyn. Ther. 2016, 15, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Pierce, J.T.; Thawani, J.P.; Zeh, R.; Nie, S.; Martinez-Lage, M.; Singhal, S. Near-infrared fluorescent image-guided surgery for intracranial meningioma. J. Neurosurg. 2017, 128, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Eljamel, S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int. J. Mol. Sci. 2015, 16, 10443–10456. [Google Scholar] [CrossRef]
- Panciani, P.P.; Fontanella, M.; Schatlo, B.; Garbossa, D.; Agnoletti, A.; Ducati, A.; Lanotte, M. Fluorescence and image guided resection in high grade glioma. Clin. Neurol. Neurosurg. 2012, 114, 37–41. [Google Scholar] [CrossRef]
- Liu, J.T.; Meza, D.; Sanai, N. Trends in fluorescence image-guided surgery for gliomas. Neurosurgery 2014, 75, 61. [Google Scholar] [CrossRef] [PubMed]
- Barth, C.W.; Gibbs, S.L. Fluorescence image-guided surgery: A perspective on contrast agent development. Mol. Guid. Surg. Mol. Devices Appl. VI 2020, 11222, 27–42. [Google Scholar]
- Tuleasca, C.; Leroy, H.-A.; Peciu-Florianu, I.; Strachowski, O.; Derre, B.; Levivier, M.; Schulder, M.; Reyns, N. Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: A systematic review and meta-analysis. Neurosurg. Rev. 2021, 44, 2977–2990. [Google Scholar] [CrossRef]
- Li, P.; Qian, R.; Niu, C.; Fu, X. Impact of intraoperative MRI-guided resection on resection and survival in patient with gliomas: A meta-analysis. Curr. Med. Res. Opin. 2017, 33, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.T.; Lee, H.; Shui, C.; Lamba, N.; Korde, R.; Devi, S.; Chawla, S.; Nam, Y.; Patel, R.; Doucette, J. Intraoperative magnetic resonance imaging for low-grade and high-grade gliomas: What is the evidence? A meta-analysis. World Neurosurg. 2021, 149, 232–243.e233. [Google Scholar] [CrossRef]
- Hollon, T.; Orringer, D.A. Label-free brain tumor imaging using Raman-based methods. J. Neurooncol. 2021, 151, 393–402. [Google Scholar] [CrossRef]
- Kalkanis, S.N.; Kast, R.E.; Rosenblum, M.L.; Mikkelsen, T.; Yurgelevic, S.M.; Nelson, K.M.; Raghunathan, A.; Poisson, L.M.; Auner, G.W. Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J. Neurooncol. 2014, 116, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, L.; Chaichana, K.L.; Cardia, A.; Stifano, V.; Rossini, Z.; Olivi, A.; Sturiale, C.L. The exoscope in neurosurgery: An innovative “point of view”. A systematic review of the technical, surgical, and educational aspects. World Neurosurg. 2019, 124, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Vaqas, B.; Cameron, S.J.; Alexander, J.L.; O’Neill, K.S.; Kinross, J.M.; Takats, Z. The iKnife: Development and clinical applications of rapid evaporative ionization mass spectrometry. In The Handbook of Metabolic Phenotyping; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–236. [Google Scholar]
- Srikanthan, D.; Kaufmann, M.; Jamzad, A.; Syeda, A.; Santilli, A.; Sedghi, A.; Fichtinger, G.; Purzner, J.; Rudan, J.; Purzner, T. Attention based multi-instance learning for improved glioblastoma detection using mass spectrometry. In Medical Imaging 2023: Image-Guided Procedures, Robotic Interventions, and Modeling; SPIE: Bellingham, WA, USA, 2023. [Google Scholar]
- Neidert, M.C.; Bozinov, O. Mass spectrometry-based intraoperative tissue identification in neurosurgery. World Neurosurg. 2013, 80, 683–684. [Google Scholar] [CrossRef]
- Haapala, I.; Karjalainen, M.; Kontunen, A.; Vehkaoja, A.; Nordfors, K.; Haapasalo, H.; Haapasalo, J.; Oksala, N.; Roine, A. Identifying brain tumors by differential mobility spectrometry analysis of diathermy smoke. J. Neurosurg. 2019, 133, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.M. Practical Flow Cytometry; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Betters, D.M. Use of flow cytometry in clinical practice. J. Adv. Pract. Oncol. 2015, 6, 435. [Google Scholar]
- McKinnon, K.M. Flow cytometry: An overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef] [PubMed]
- Audia, A.; Bannish, G.; Bunting, R.; Riveley, C. Flow cytometry and receptor occupancy in immune-oncology. Expert Opin. Biol. Ther. 2022, 22, 87–94. [Google Scholar] [CrossRef]
- Tzanoudaki, M.; Konsta, E. Basic Principles of Flow Cytometry. In Intraoperative Flow Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 9–31. [Google Scholar]
- Markopoulos, G.S. Sample-Data Analysis. In Intraoperative Flow Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 33–45. [Google Scholar]
- D’Amato Figueiredo, M.V.; Alexiou, G.A.; Vartholomatos, G.; Rehder, R. Advances in Intraoperative Flow Cytometry. Int. J. Mol. Sci. 2022, 23, 13430. [Google Scholar] [CrossRef]
- Vartholomatos, E.; Vartholomatos, G.; Alexiou, G.A.; Markopoulos, G.S. The past, present and future of flow cytometry in central nervous system malignancies. Methods Protoc. 2021, 4, 11. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Markopoulos, G.S.; Vartholomatos, E.; Goussia, A.C.; Dova, L.; Dimitriadis, S.; Mantziou, S.; Zoi, V.; Nasios, A.; Sioka, C. Intraoperative Flow Cytometry for the Evaluation of Meningioma Grade. Curr. Oncol. 2023, 30, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Vartholomatos, G.; Markopoulos, G.S.; Vartholomatos, E.; Goussia, A.C.; Dova, L.; Dimitriadis, S.; Mantziou, S.; Zoi, V.; Nasios, A.; Sioka, C. Assessment of Gliomas’ Grade of Malignancy and Extent of Resection Using Intraoperative Flow Cytometry. Cancers 2023, 15, 2509. [Google Scholar] [CrossRef] [PubMed]
- Vartholomatos, G.; Harissis, H.; Andreou, M.; Tatsi, V.; Pappa, L.; Kamina, S.; Batistatou, A.; Markopoulos, G.S.; Alexiou, G.A. Rapid assessment of resection margins during breast conserving surgery using intraoperative flow cytometry. Clin. Breast Cancer 2021, 21, e602–e610. [Google Scholar] [CrossRef] [PubMed]
- Vartholomatos, G.; Basiari, L.; Exarchakos, G.; Kastanioudakis, I.; Komnos, I.; Michali, M.; Markopoulos, G.S.; Batistatou, A.; Papoudou-Bai, A.; Alexiou, G.A. Intraoperative flow cytometry for head and neck lesions. Assessment of malignancy and tumour-free resection margins. Oral Oncol. 2019, 99, 104344. [Google Scholar] [CrossRef]
- Anastasiadi, Z.; Mantziou, S.; Akrivis, C.; Paschopoulos, M.; Balasi, E.; Lianos, G.D.; Alexiou, G.A.; Mitsis, M.; Vartholomatos, G.; Markopoulos, G.S. Intraoperative flow cytometry for the characterization of gynecological malignancies. Biology 2022, 11, 1339. [Google Scholar] [CrossRef]
- Paliouras, A.; Markopoulos, G.S.; Tsampalas, S.; Mantziou, S.; Giannakis, I.; Baltogiannis, D.; Glantzounis, G.K.; Alexiou, G.A.; Lampri, E.; Sofikitis, N. Accurate characterization of bladder cancer cells with intraoperative flow cytometry. Cancers 2022, 14, 5440. [Google Scholar] [CrossRef]
- Vartholomatos, G.; Harissis, H.; Markopoulos, G.S.; Alexiou, G.A. The Role of Intraoperative Flow Cytometry in Breast-Conserving Surgery. Ann. Surg. Oncol. 2021, 28 (Suppl. S3), 785–786. [Google Scholar] [CrossRef]
- Markopoulos, G.S.; Goussia, A.; Bali, C.D.; Messinis, T.; Alexiou, G.A.; Vartholomatos, G. Resection margins assessment by intraoperative flow cytometry in pancreatic cancer. Ann. Surg. Oncol. 2022, 29, 4643–4645. [Google Scholar] [CrossRef] [PubMed]
- Markopoulos, G.S.; Alexiou, G.; Goussia, A.C.; Glantzounis, G.K.; Vartholomatos, G. Impact of intraoperative flow cytometry in management of colorectal liver metastases: Simultaneous assessment of tumor biology and resection margin status. Eur. J. Surg. Oncol. 2023, 49, 529–531. [Google Scholar] [CrossRef]
- Georvasili, V.K.; Markopoulos, G.S.; Batistatou, A.; Mitsis, M.; Messinis, T.; Lianos, G.D.; Alexiou, G.; Vartholomatos, G.; Bali, C.D. Detection of cancer cells and tumor margins during colorectal cancer surgery by intraoperative flow cytometry. Int. J. Surg. 2022, 104, 106717. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.; Voulgaris, S.; Vartholomatos, G. Intraoperative Flow Cytometry in Meningiomas. In Intraoperative Flow Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 133–139. [Google Scholar]
- Vartholomatos, G.; Alexiou, G.; Voulgaris, S. Intraoperative Flow Cytometry in Gliomas. In Intraoperative Flow Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 123–132. [Google Scholar]
- Markopoulos, G.S.; Alexiou, G.; Vartholomatos, E.; Vartholomatos, G. Future Perspectives of iFC. In Intraoperative Flow Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 309–315. [Google Scholar]
- Golub, D.; Hyde, J.; Dogra, S.; Nicholson, J.; Kirkwood, K.A.; Gohel, P.; Loftus, S.; Schwartz, T.H. Intraoperative MRI versus 5-ALA in high-grade glioma resection: A network meta-analysis. J. Neurosurg. JNS 2021, 134, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Smith, E.J.; Barreau, A.; Nyaeme, M.; Cramer, S.W.; Najafali, D.; Krist, D.T.; Arnold, P.M.; Hassaneen, W. Comparison of fluorescein sodium, 5-ALA, and intraoperative MRI for resection of high-grade gliomas: A systematic review and network meta-analysis. J. Clin. Neurosci. 2022, 98, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Pan, M.; Mo, K.; Mao, Y.; Zou, D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Wei, J.; Zhang, C.; Ma, L.; Zhang, C. Artificial Intelligence Algorithm-Based Intraoperative Magnetic Resonance Navigation for Glioma Resection. Contrast Media Mol. Imaging 2022, 2022, 4147970. [Google Scholar] [CrossRef]
- Leclerc, P.; Ray, C.; Mahieu-Williame, L.; Alston, L.; Frindel, C.; Brevet, P.-F.; Meyronet, D.; Guyotat, J.; Montcel, B.; Rousseau, D. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy. Sci. Rep. 2020, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
Technique | Description | Advantages | Limitations | Clinical Applications |
---|---|---|---|---|
Fast Biopsy | Rapid tissue sampling and analysis. |
|
|
|
Intraoperative Flow Cytometry (iFC) | Near-real-time cellular analysis during surgery. |
|
|
|
Intraoperative MRI (iMRI) | Real-time imaging during surgical procedures. |
|
|
|
5-ALA | Fluorescence-guided surgery using 5-aminolevulinic acid. |
|
|
|
iKnife | Real-time tissue analysis during surgery using mass spectrometry. |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaropoulos, I.; Liaropoulos, A.; Liaropoulos, K. Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. Cancers 2023, 15, 4843. https://doi.org/10.3390/cancers15194843
Liaropoulos I, Liaropoulos A, Liaropoulos K. Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. Cancers. 2023; 15(19):4843. https://doi.org/10.3390/cancers15194843
Chicago/Turabian StyleLiaropoulos, Ioannis, Alexandros Liaropoulos, and Konstantinos Liaropoulos. 2023. "Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry" Cancers 15, no. 19: 4843. https://doi.org/10.3390/cancers15194843
APA StyleLiaropoulos, I., Liaropoulos, A., & Liaropoulos, K. (2023). Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. Cancers, 15(19), 4843. https://doi.org/10.3390/cancers15194843