Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients Sampling and Sample Collection
2.2. Antibodies
2.3. CCA Tissue Microarray (TMA)
2.4. Immunohistochemistry (IHC)
2.5. Evaluation of MMR Protein Expression
2.6. Detection of Immunoglobulin G (IgG) Antibodies against Opisthorchis viverrini (OV) Using Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Statistical Analysis
3. Results
3.1. Prevalence of MMR Status in CCA Patients
3.2. Patient Characteristics and MMR Status in CCA
3.3. The Correlation of Patient Survival with Their Clinical Features, Level of Serum OV IgG and MMR Status
3.4. Subgroup Analysis on Survival of TNM Stage by MMR Status
3.5. Subgroup Analysis on Survival of CCA with Adjuvant Chemotherapy by MMR Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Turdean, S.; Gurzu, S.; Turcu, M.; Voidazan, S.; Sin, A. Current data in clinicopathological characteristics of primary hepatic tumors. Rom. J. Morphol. Embryol. 2012, 53, 719–724. [Google Scholar]
- Patel, N.; Benipal, B. Incidence of Cholangiocarcinoma in the USA from 2001 to 2015: A US Cancer Statistics Analysis of 50 States. Cureus 2019, 11, e3962. [Google Scholar] [CrossRef]
- Khuntikeo, N.; Chamadol, N.; Yongvanit, P.; Loilome, W.; Namwat, N.; Sithithaworn, P.; Andrews, R.H.; Petney, T.N.; Promthet, S.; Thinkhamrop, K.; et al. Cohort profile: Cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 2015, 15, 459. [Google Scholar] [CrossRef]
- DeOliveira, M.L.; Cunningham, S.C.; Cameron, J.L.; Kamangar, F.; Winter, J.M.; Lillemoe, K.D.; Choti, M.A.; Yeo, C.J.; Schulick, R.D. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 2007, 245, 755–762. [Google Scholar] [CrossRef]
- Kamsa-Ard, S.; Luvira, V.; Suwanrungruang, K.; Kamsa-Ard, S.; Luvira, V.; Santong, C.; Srisuk, T.; Pugkhem, A.; Bhudhisawasdi, V.; Pairojkul, C. Cholangiocarcinoma Trends, Incidence, and Relative Survival in Khon Kaen, Thailand From 1989 Through 2013: A Population-Based Cancer Registry Study. J. Epidemiol. 2019, 29, 197–204. [Google Scholar] [CrossRef]
- Titapun, A.; Techasen, A.; Sa-Ngiamwibool, P.; Sithithaworn, P.; Luvira, V.; Srisuk, T.; Jareanrat, A.; Dokduang, H.; Loilome, W.; Thinkhamrop, B.; et al. Serum IgG as a Marker for Opisthorchis viverrini-Associated Cholangiocarcinoma Correlated with HER2 Overexpression. Int. J. Gen. Med. 2020, 13, 1271–1283. [Google Scholar] [CrossRef]
- Titapun, A.; Luvira, V.; Srisuk, T.; Jareanrat, A.; Thanasukarn, V.; Thanee, M.; Sa-Ngiamwibool, P.; Padthaisong, S.; Duangkumpha, K.; Suksawat, M.; et al. High Levels of Serum IgG for Opisthorchis viverrini and CD44 Expression Predict Worse Prognosis for Cholangiocarcinoma Patients after Curative Resection. Int. J. Gen. Med. 2021, 14, 2191–2204. [Google Scholar] [CrossRef]
- Tesana, S.; Srisawangwong, T.; Sithithaworn, P.; Itoh, M.; Phumchaiyothin, R. The ELISA-based detection of anti-Opisthorchis viverrini IgG and IgG4 in samples of human urine and serum from an endemic area of north-eastern Thailand. Ann. Trop. Med. Parasitol. 2007, 101, 585–591. [Google Scholar] [CrossRef]
- Elkins, D.B.; Haswell-Elkins, M.R.; Mairiang, E.; Mairiang, P.; Sithithaworn, P.; Kaewkes, S.; Bhudhisawasdi, V.; Uttaravichien, T. A high frequency of hepatobiliary disease and suspected cholangiocarcinoma associated with heavy Opisthorchis viverrini infection in a small community in north-east Thailand. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 715–719. [Google Scholar] [CrossRef]
- Haswell-Elkins, M.R.; Satarug, S.; Tsuda, M.; Mairiang, E.; Esumi, H.; Sithithaworn, P.; Mairiang, P.; Saitoh, M.; Yongvanit, P.; Elkins, D.B. Liver fluke infection and cholangiocarcinoma: Model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutat. Res. 1994, 305, 241–252. [Google Scholar] [CrossRef]
- Sripa, B.; Kaewkes, S.; Sithithaworn, P.; Mairiang, E.; Laha, T.; Smout, M.; Pairojkul, C.; Bhudhisawasdi, V.; Tesana, S.; Thinkamrop, B.; et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 2007, 4, e201. [Google Scholar] [CrossRef]
- Yongvanit, P.; Pinlaor, S.; Bartsch, H. Oxidative and nitrative DNA damage: Key events in opisthorchiasis-induced carcinogenesis. Parasitol. Int. 2012, 61, 130–135. [Google Scholar] [CrossRef]
- Jongsuksantigul, P. Study on prevalence and intensity of intestinal helminthiasis and opisthorchiasis in Thailand. J. Trop. Med. Parasitol. 1992, 15, 80–95. [Google Scholar]
- Pal, T.; Permuth-Wey, J.; Sellers, T.A. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 2008, 113, 733–742. [Google Scholar] [CrossRef]
- Duval, A.; Hamelin, R. Mutations at Coding Repeat Sequences in Mismatch Repair-deficient Human Cancers: Toward a New Concept of Target Genes for Instability1. Cancer Res. 2002, 62, 2447–2454. [Google Scholar]
- Dudley, J.C.; Lin, M.T.; Le, D.T.; Eshleman, J.R. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.W.; Westman, J.; et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med. 2005, 352, 1851–1860. [Google Scholar] [CrossRef]
- Hause, R.J.; Pritchard, C.C.; Shendure, J.; Salipante, S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 2016, 22, 1342–1350. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Chiappini, F.; Gross-Goupil, M.; Saffroy, R.; Azoulay, D.; Emile, J.F.; Veillhan, L.A.; Delvart, V.; Chevalier, S.; Bismuth, H.; Debuire, B.; et al. Microsatellite instability mutator phenotype in hepatocellular carcinoma in non-alcoholic and non-virally infected normal livers. Carcinogenesis 2004, 25, 541–547. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Cheah, P.L.; Li, J.; Looi, L.M.; Koh, C.C.; Lau, T.P.; Chang, S.W.; Teoh, K.H.; Mun, K.S.; Nazarina, A.R. Screening for microsatellite instability in colorectal carcinoma: Practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting. Malays. J. Pathol. 2019, 41, 91–100. [Google Scholar]
- Maio, M.; Ascierto, P.A.; Manzyuk, L.; Motola-Kuba, D.; Penel, N.; Cassier, P.A.; Bariani, G.M.; De Jesus Acosta, A.; Doi, T.; Longo, F.; et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: Updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 2022, 33, 929–938. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.A.; Park, H.E.; Han, H.; Kim, Y.; Bae, J.M.; Kim, J.H.; Cho, N.Y.; Kim, H.P.; Kim, T.Y.; et al. Targeted next-generation sequencing-based detection of microsatellite instability in colorectal carcinomas. PLoS ONE 2021, 16, e0246356. [Google Scholar] [CrossRef]
- Baudrin, L.G.; Deleuze, J.F.; How-Kit, A. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front. Oncol. 2018, 8, 621. [Google Scholar] [CrossRef]
- Sessa, F.; Furlan, D.; Zampatti, C.; Carnevali, I.; Franzi, F.; Capella, C. Prognostic factors for ampullary adenocarcinomas: Tumor stage, tumor histology, tumor location, immunohistochemistry and microsatellite instability. Virchows Arch. 2007, 451, 649–657. [Google Scholar] [CrossRef]
- Agostini, M.; Enzo, M.V.; Morandi, L.; Bedin, C.; Pizzini, S.; Mason, S.; Bertorelle, R.; Urso, E.; Mescoli, C.; Lise, M.; et al. A ten markers panel provides a more accurate and complete microsatellite instability analysis in mismatch repair-deficient colorectal tumors. Cancer Biomark. 2010, 6, 49–61. [Google Scholar] [CrossRef]
- Roth, M.T.; Das, S. Pembrolizumab in unresectable or metastatic MSI-high colorectal cancer: Safety and efficacy. Expert Rev. Anticancer Ther. 2021, 21, 229–238. [Google Scholar] [CrossRef]
- Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Bosman, F.T.; Yan, P.; Tejpar, S.; Fiocca, R.; Van Cutsem, E.; Kennedy, R.D.; Dietrich, D.; Roth, A. Tissue biomarker development in a multicentre trial context: A feasibility study on the PETACC3 stage II and III colon cancer adjuvant treatment trial. Clin. Cancer Res. 2009, 15, 5528–5533. [Google Scholar] [CrossRef]
- Buecher, B.; Cacheux, W.; Rouleau, E.; Dieumegard, B.; Mitry, E.; Lievre, A. Role of microsatellite instability in the management of colorectal cancers. Dig. Liver Dis. 2013, 45, 441–449. [Google Scholar] [CrossRef]
- Bae, Y.S.; Kim, H.; Noh, S.H.; Kim, H. Usefulness of Immunohistochemistry for Microsatellite Instability Screening in Gastric Cancer. Gut Liver 2015, 9, 629–635. [Google Scholar] [CrossRef]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; Rathkopf, D.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019, 5, 471–478. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Goeppert, B.; Roessler, S.; Renner, M.; Singer, S.; Mehrabi, A.; Vogel, M.N.; Pathil, A.; Czink, E.; Kohler, B.; Springfeld, C.; et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br. J. Cancer 2019, 120, 109–114. [Google Scholar] [CrossRef]
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020, 20, 16. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J. Era of universal testing of microsatellite instability in colorectal cancer. World J. Gastrointest. Oncol. 2013, 5, 12–19. [Google Scholar] [CrossRef]
- Thanan, R.; Murata, M.; Pinlaor, S.; Sithithaworn, P.; Khuntikeo, N.; Tangkanakul, W.; Hiraku, Y.; Oikawa, S.; Yongvanit, P.; Kawanishi, S. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine in patients with parasite infection and effect of antiparasitic drug in relation to cholangiocarcinogenesis. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 518–524. [Google Scholar] [CrossRef]
- Dechakhamphu, S.; Pinlaor, S.; Sitthithaworn, P.; Nair, J.; Bartsch, H.; Yongvanit, P. Lipid peroxidation and etheno DNA adducts in white blood cells of liver fluke-infected patients: Protection by plasma alpha-tocopherol and praziquantel. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 310–318. [Google Scholar] [CrossRef]
- Dechakhamphu, S.; Yongvanit, P.; Nair, J.; Pinlaor, S.; Sitthithaworn, P.; Bartsch, H. High excretion of etheno adducts in liver fluke-infected patients: Protection by praziquantel against DNA damage. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1658–1664. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Yongvanit, P.; Hiraku, Y.; Ma, N.; Pinlaor, S.; Pairojkul, C.; Wongkham, C.; Sripa, B.; Khuntikeo, N.; et al. Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma. Free Radic. Biol. Med. 2012, 52, 1465–1472. [Google Scholar] [CrossRef]
- Loilome, W.; Kadsanit, S.; Muisook, K.; Yongvanit, P.; Namwat, N.; Techasen, A.; Puapairoj, A.; Khuntikeo, N.; Phonjit, P. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncol. Lett. 2017, 13, 639–646. [Google Scholar] [CrossRef]
- Koopman, M.; Kortman, G.A.; Mekenkamp, L.; Ligtenberg, M.J.; Hoogerbrugge, N.; Antonini, N.F.; Punt, C.J.; van Krieken, J.H. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 2009, 100, 266–273. [Google Scholar] [CrossRef]
- Leclerc, J.; Vermaut, C.; Buisine, M.P. Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers 2021, 13, 467. [Google Scholar] [CrossRef]
- Hawkins, N.; Norrie, M.; Cheong, K.; Mokany, E.; Ku, S.L.; Meagher, A.; O’Connor, T.; Ward, R. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 2002, 122, 1376–1387. [Google Scholar] [CrossRef]
- Kane, M.F.; Loda, M.; Gaida, G.M.; Lipman, J.; Mishra, R.; Goldman, H.; Jessup, J.M.; Kolodner, R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997, 57, 808–811. [Google Scholar]
- Herman, J.G.; Umar, A.; Polyak, K.; Graff, J.R.; Ahuja, N.; Issa, J.P.; Markowitz, S.; Willson, J.K.; Hamilton, S.R.; Kinzler, K.W.; et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 1998, 95, 6870–6875. [Google Scholar] [CrossRef]
- Liengswangwong, U.; Karalak, A.; Morishita, Y.; Noguchi, M.; Khuhaprema, T.; Srivatanakul, P.; Miwa, M. Immunohistochemical expression of mismatch repair genes: A screening tool for predicting mutator phenotype in liver fluke infection-associated intrahepatic cholangiocarcinoma. World J. Gastroenterol. 2006, 12, 3740–3745. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Kim, W.-H. Microsatellite instability and mismatch repair protein (hMLH1, hMSH2) expression in intrahepatic cholangiocarcinoma. Korean J. Pathol. 2005, 39, 9–14. [Google Scholar]
- Limpaiboon, T.; Krissadarak, K.; Sripa, B.; Jearanaikoon, P.; Bhuhisawasdi, V.; Chau-in, S.; Romphruk, A.; Pairojkul, C. Microsatellite alterations in liver fluke related cholangiocarcinoma are associated with poor prognosis. Cancer Lett. 2002, 181, 215–222. [Google Scholar] [CrossRef]
- Jin, Z.; Sinicrope, F.A. Prognostic and Predictive Values of Mismatch Repair Deficiency in Non-Metastatic Colorectal Cancer. Cancers 2021, 13, 300. [Google Scholar] [CrossRef]
- Kawakami, H.; Zaanan, A.; Sinicrope, F.A. Implications of mismatch repair-deficient status on management of early stage colorectal cancer. J. Gastrointest. Oncol. 2015, 6, 676–684. [Google Scholar]
- Zhao, P.; Li, L.; Jiang, X.; Li, Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar] [CrossRef]
- Taieb, J.; Svrcek, M.; Cohen, R.; Basile, D.; Tougeron, D.; Phelip, J.M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 2022, 175, 136–157. [Google Scholar] [CrossRef]
- Hemminki, A.; Mecklin, J.P.; Jarvinen, H.; Aaltonen, L.A.; Joensuu, H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 2000, 119, 921–928. [Google Scholar] [CrossRef]
MMR Protein | IHC Status | Total | |
---|---|---|---|
Negative | Positive | ||
MLH1 | 23 (22.5%) | 79 (77.5%) | 102 (100%) |
MSH2 | 4 (3.9%) | 98 (96.1%) | 102 (100%) |
MSH6 | 1 (0.9%) | 101 (99.1%) | 102 (100%) |
PMS2 | 0 (0%) | 102 (100%) | 102 (100%) |
MMR status | dMMR | pMMR | 102 (100%) |
23 (22.5%) | 79 (77.5%) |
Features | n (102, 100%) | MMR Status | p-Value | |
---|---|---|---|---|
dMMR N (23, 22.5%) | pMMR N (79, 77.5%) | |||
Age (yrs.) | ||||
<60 | 50 (49%) | 9 (39.1%) | 41 (51.9%) | 0.281 |
≥60 | 52 (51%) | 14 (60.9%) | 38 (48.1%) | |
Gender | ||||
Male | 61 (59.8%) | 14 (60.9%) | 47 (59.5%) | 1.000 # |
Female | 41 (40.2%) | 9 (39.1%) | 32 (40.5%) | |
Tumor location | ||||
Intrahepatic CCA | 77 (75.5%) | 21 (91.3%) | 56 (70.9%) | 0.055 # |
Extrahepatic CCA | 25 (24.5%) | 2 (8.7%) | 23 (29.1%) | |
Surgical margin | ||||
Negative | 49 (48%) | 10 (43.5%) | 39 (49.4%) | 0.644 # |
Positive | 53 (52%) | 13 (56.5%) | 40 (50.6%) | |
Histological type | ||||
Papillary | 44 (43.1%) | 10 (43.5%) | 34 (43%) | 1.000 # |
Others | 58 (56.9%) | 13 (56.5%) | 45 (57%) | |
Lymph node metastasis | ||||
No | 33 (32.4%) | 8 (34.8%) | 25 (31.6%) | 0.803 |
Yes | 69 (67.6%) | 15 (65.2%) | 54 (68.4%) | |
TNM stage | ||||
I–II | 23 (23%) | 4 (17.4%) | 19 (24.1%) | 0.501 |
III–IV | 79 (79%) | 19 (82.6%) | 60 (75.9%) | |
Adjuvant CMT | ||||
No | 68 (70.1%) | 13 (61.9%) | 55 (72.4%) | 0.354 |
Yes | 29 (29.9%) | 8 (38.1%) | 21 (27.6%) | |
OV antibody | ||||
Negative | 30 (29.4%) | 6 (26.1%) | 24 (30.4%) | 0.691 |
Positive | 72 (70.6%) | 17 (73.9%) | 55 (69.6%) |
Patient’s Characteristics | n (102) | MST [Months (95% CI)] | Crude HR (95% CI) | p-Value | Adjusted HR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Gender | ||||||
Male | 61 | 15.9 (11.7–20.1) | 1 | 0.695 | ||
Female | 41 | 11.7 (7.2–16.2) | 1.08 (0.73–1.62) | |||
Age (yrs.) | ||||||
<60 | 50 | 12.8 (8.9–16.6) | 1 | 0.403 | ||
≥60 | 52 | 15.5 (10.7–20.3) | 0.85 (0.57–1.24) | |||
Tumor location | ||||||
Intrahepatic CCA | 77 | 12.8 (9.1–16.5) | 1 | 0.805 | ||
Extrahepatic CCA | 25 | 17 (14.0–19.9) | 0.94 (0.60–1.50) | |||
Margin | ||||||
Negative | 49 | 18.1 (14.4–21.7) | 1 | 0.003 * | 1 | 0.049 * |
Positive | 53 | 12.4 (8.4–16.4) | 1.83 (1.22–2.74) | 1.60 (1.01–2.58) | ||
Histological type | ||||||
Papillary | 44 | 16.9 (11.2–22.6) | 1 | 0.285 | ||
Others | 58 | 12.5 (8.7–16.4) | 1.24 (0.84–1.84) | |||
Lymph node metastasis (N) | ||||||
No | 33 | 18.8 (14.5–23.1) | 1 | 0.009 * | 1 | 0.752 |
Yes | 69 | 12.5 (9.8–15.3) | 1.78 (1.15–2.75) | 0.91 (0.51–1.62) | ||
TNM stage | ||||||
I–II | 23 | 19.2 (13.6–24.9) | 1 | 0.006 * | 1 | 0.085 |
III–IV | 79 | 12.5 (9.9–15.2) | 1.93 (1.19–3.13) | 1.81 (0.92–3.56) | ||
Adjuvant CMT | ||||||
No | 68 | 11.7 (8.0–15.4) | 1 | 0.031 * | 1 | 0.041 * |
Yes | 29 | 17.4 (13.3–21.5) | 0.61 (0.39–0.96) | 0.62 (0.39–0.98) | ||
OV antibody | ||||||
Negative | 30 | 12.8 (7.2–18.4) | 1 | 0.164 | ||
Positive | 72 | 13.7 (10.4–16.9) | 1.37 (0.88–2.12) | |||
MMR protein status | ||||||
pMMR | 79 | 12.9 (9.7–16.1) | 1 | 0.008 * | 1 | 0.041 * |
dMMR | 23 | 17.0 (12.8–21.2) | 0.50 (0.30–0.85) | 0.58 (0.34–0.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuntikeo, N.; Padthaisong, S.; Loilome, W.; Klanrit, P.; Ratchatapusit, S.; Techasen, A.; Jareanrat, A.; Thanasukarn, V.; Srisuk, T.; Luvira, V.; et al. Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage. Cancers 2023, 15, 4831. https://doi.org/10.3390/cancers15194831
Khuntikeo N, Padthaisong S, Loilome W, Klanrit P, Ratchatapusit S, Techasen A, Jareanrat A, Thanasukarn V, Srisuk T, Luvira V, et al. Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage. Cancers. 2023; 15(19):4831. https://doi.org/10.3390/cancers15194831
Chicago/Turabian StyleKhuntikeo, Natcha, Sureerat Padthaisong, Watcharin Loilome, Poramate Klanrit, Soontaree Ratchatapusit, Anchalee Techasen, Apiwat Jareanrat, Vasin Thanasukarn, Tharatip Srisuk, Vor Luvira, and et al. 2023. "Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage" Cancers 15, no. 19: 4831. https://doi.org/10.3390/cancers15194831
APA StyleKhuntikeo, N., Padthaisong, S., Loilome, W., Klanrit, P., Ratchatapusit, S., Techasen, A., Jareanrat, A., Thanasukarn, V., Srisuk, T., Luvira, V., Chindaprasirt, J., Sa-ngiamwibool, P., Aphivatanasiri, C., Intarawichian, P., Koonmee, S., Prajumwongs, P., & Titapun, A. (2023). Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage. Cancers, 15(19), 4831. https://doi.org/10.3390/cancers15194831