The Current Evidence of Intensity-Modulated Radiotherapy for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Studies’ Characteristics
3.2. Response and Survivals
3.3. Toxicities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Korean Liver Cancer Association; National Cancer Center (NCC) Korea. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. J. Liver Cancer 2023, 23, 1–120. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarax, S.; Barry, A.; Cao, M.; Czito, B.; DeMatteo, R.; Drinane, M.; Hallemeier, C.L.; Koay, E.J.; Lasley, F.; Meyer, J.; et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2022, 12, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol. 2021, 10, 9. [Google Scholar] [CrossRef]
- Kim, E.; Jang, W.I.; Yang, K.; Kim, M.S.; Yoo, H.J.; Paik, E.K.; Kim, H.; Yoon, J. Clinical utilization of radiation therapy in Korea between 2017 and 2019. Radiat. Oncol. J. 2022, 40, 251–259. [Google Scholar] [CrossRef]
- Kim, D.H. Combination of interventional oncology local therapies and immunotherapy for the treatment of hepatocellular carcinoma. J. Liver Cancer 2022, 22, 93–102. [Google Scholar] [CrossRef]
- Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: Current status and issues of interest. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 880–914. [Google Scholar] [CrossRef]
- Veldeman, L.; Madani, I.; Hulstaert, F.; De Meerleer, G.; Mareel, M.; De Neve, W. Evidence behind use of intensity-modulated radiotherapy: A systematic review of comparative clinical studies. Lancet Oncol. 2008, 9, 367–375. [Google Scholar] [CrossRef]
- De Neve, W.; De Gersem, W.; Madani, I. Rational use of intensity-modulated radiation therapy: The importance of clinical outcome. Semin. Radiat. Oncol. 2012, 22, 40–49. [Google Scholar] [CrossRef]
- Qi, W.X.; Fu, S.; Zhang, Q.; Guo, X.M. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: A systematic review and meta-analysis. Radiother. Oncol. 2015, 114, 289–295. [Google Scholar] [CrossRef]
- Huang, Y.J.; Hsu, H.C.; Wang, C.Y.; Wang, C.J.; Chen, H.C.; Huang, E.Y.; Fang, F.M.; Lu, S.N. The treatment responses in cases of radiation therapy to portal vein thrombosis in advanced hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Nakamura, S.; Suzuki, G.; Aibe, N.; Yoshida, K. Superiority of charged particle therapy in treatment of hepatocellular carcinoma (Regarding Qi W.X. et al. charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: A systematic review and meta-analysis). Radiother. Oncol. 2016, 118, 420. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Pieper, D.; Rombey, T. Where to prospectively register a systematic review. Syst. Rev. 2022, 11, 8. [Google Scholar] [CrossRef]
- Puljak, L. Delays in publishing systematic review registrations in PROSPERO are hindering transparency and may lead to research waste. BMJ Evid. Based Med. 2021, 26, e4. [Google Scholar] [CrossRef]
- Bae, S.H.; Jang, W.I.; Park, H.C. Intensity-modulated radiotherapy for hepatocellular carcinoma: Dosimetric and clinical results. Oncotarget 2017, 8, 59965–59976. [Google Scholar] [CrossRef]
- Hong, T.S.; Ritter, M.A.; Tome, W.A.; Harari, P.M. Intensity-modulated radiation therapy: Emerging cancer treatment technology. Br. J. Cancer 2005, 92, 1819–1824. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 22 November 2021).
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Raudenbush, S.W. Analyzing effect sizes: Random-effects models. In Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 295–315. [Google Scholar]
- Wang, K.; Xiang, Y.J.; Yu, H.M.; Cheng, Y.Q.; Liu, Z.H.; Zhong, J.Y.; Feng, S.; Ni, Q.Z.; Zhu, H.F.; Pan, W.W.; et al. Intensity-modulated radiotherapy combined with systemic atezolizumab and bevacizumab in treatment of hepatocellular carcinoma with extrahepatic portal vein tumor thrombus: A preliminary multicenter single-arm prospective study. Front. Immunol. 2023, 14, 1107542. [Google Scholar] [CrossRef]
- Qiu, H.; Ke, S.; Cai, G.; Wu, Y.; Wang, J.; Shi, W.; Chen, J.; Peng, J.; Yu, B.; Chen, Y. An exploratory clinical trial of apatinib combined with intensity-modulated radiation therapy for patients with unresectable hepatocellular carcinoma. Cancer Med. 2023, 12, 213–222. [Google Scholar] [CrossRef]
- Su, K.; Guo, L.; Ma, W.; Wang, J.; Xie, Y.; Rao, M.; Zhang, J.; Li, X.; Wen, L.; Li, B.; et al. PD-1 inhibitors plus anti-angiogenic therapy with or without intensity-modulated radiotherapy for advanced hepatocellular carcinoma: A propensity score matching study. Front. Immunol. 2022, 13, 972503. [Google Scholar] [CrossRef]
- Liu, X.; Luo, J.; Zhang, L.; Yang, F.; Peng, D. SIB-IMRT combined with apatinib for unresectable hepatocellular carcinoma in patients with poor response to transarterial chemoembolization. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101897. [Google Scholar] [CrossRef]
- Li, L.Q.; Zhao, W.D.; Su, T.S.; Wang, Y.D.; Meng, W.W.; Liang, S.X. Effect of Body Composition on Outcomes in Patients with Hepatocellular Carcinoma Undergoing Radiotherapy: A Retrospective Study. Nutr. Cancer 2022, 74, 3302–3311. [Google Scholar] [CrossRef] [PubMed]
- Tsurugai, Y.; Takeda, A.; Eriguchi, T.; Sanuki, N.; Aoki, Y. Hypofractionated radiotherapy for hepatocellular carcinomas adjacent to the gastrointestinal tract. Hepatol. Res. 2021, 51, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yan, J.; Zhu, S.; Kong, W.; Zou, Z.; Liu, J.; Li, S.; Liu, B. The Efficacy and Safety of Hypofractionated Radiation Therapy with Tomotherapy for Advanced or Recurrent Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 559112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Zhang, X.P.; Feng, S.; Feng, J.K.; Chai, Z.T.; Guo, W.X.; Shi, J.; Lau, W.Y.; Meng, Y.; Cheng, S.Q. Liver resection versus intensity-modulated radiation therapy for treatment of hepatocellular carcinoma with hepatic vein tumor thrombus: A propensity score matching analysis. Hepatobiliary Surg. Nutr. 2021, 10, 646–660. [Google Scholar] [CrossRef]
- Abulimiti, M.; Li, Z.; Wang, H.; Apiziaji, P.; Abulimiti, Y.; Tan, Y. Combination Intensity-Modulated Radiotherapy and Sorafenib Improves Outcomes in Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis. J. Oncol. 2021, 2021, 9943683. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Wang, H.; Dong, D.; Gao, S.; Zhu, X.; Wang, W. Safety and Efficacy of Transcatheter Arterial Chemoembolization Plus Radiotherapy Combined with Sorafenib in Hepatocellular Carcinoma Showing Macrovascular Invasion. Front. Oncol. 2019, 9, 1065. [Google Scholar] [CrossRef]
- Lo, Y.C.; Hsu, F.C.; Hung, S.K.; Tseng, K.C.; Hsieh, Y.H.; Lee, M.S.; Tseng, C.W.; Lin, H.Y.; Chen, L.C.; Chiou, W.Y. Prognosticators of hepatocellular carcinoma with intrahepatic vascular invasion. Ci Ji Yi Xue Za Zhi 2019, 31, 40–46. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Guo, L.; Lau, W.Y.; Ge, N.; Wang, K.; Cheng, S. Should transarterial chemoembolization be given before or after intensity-modulated radiotherapy to treat patients with hepatocellular carcinoma with portal vein tumor thrombus? a propensity score matching study. Oncotarget 2018, 9, 24537–24547. [Google Scholar] [CrossRef]
- Jiang, T.; Zeng, Z.C.; Yang, P.; Hu, Y. Exploration of Superior Modality: Safety and Efficacy of Hypofractioned Image-Guided Intensity Modulated Radiation Therapy in Patients with Unresectable but Confined Intrahepatic Hepatocellular Carcinoma. Can. J. Gastroenterol. Hepatol. 2017, 2017, 6267981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Y.T.; Wang, Z.; Li, C.R.; Jin, J.; Jia, A.Y.; Wang, S.L.; Song, Y.W.; Liu, Y.P.; Ren, H.; et al. Efficacy and Safety of Intensity-Modulated Radiotherapy Following Transarterial Chemoembolization in Patients with Unresectable Hepatocellular Carcinoma. Medicine 2016, 95, e3789. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.Z.; Zeng, Z.C.; Wang, B.L.; Yang, P.; Zhang, J.Y.; Mo, H.F. High dose radiotherapy with image-guided hypo-IMRT for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombi is more feasible and efficacious than conventional 3D-CRT. Jpn. J. Clin. Oncol. 2016, 46, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.A.; Chen, Y.S.; Perng, D.S. The role of radiotherapy in the treatment of hepatocellular carcinoma with portal vein tumor thrombus. J. Radiat. Res. 2015, 56, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Wang, B.; Tao, D.; Liu, Y.; Zhang, J.; Tan, J.; Luo, J.; Shi, F.; Tao, Z. Clinical research on alternating hyperfraction radiotherapy for massive hepatocellular carcinoma. Oncol. Lett. 2015, 10, 523–527. [Google Scholar] [CrossRef]
- Huang, C.M.; Huang, M.Y.; Tang, J.Y.; Chen, S.C.; Wang, L.Y.; Lin, Z.Y.; Huang, C.J. Feasibility and efficacy of helical tomotherapy in cirrhotic patients with unresectable hepatocellular carcinoma. World J. Surg. Oncol. 2015, 13, 201. [Google Scholar] [CrossRef]
- Yoon, H.I.; Lee, I.J.; Han, K.H.; Seong, J. Improved oncologic outcomes with image-guided intensity-modulated radiation therapy using helical tomotherapy in locally advanced hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2014, 140, 1595–1605. [Google Scholar] [CrossRef]
- Son, S.H.; Jang, H.S.; Jo, I.Y.; Choi, B.O.; Jang, J.W.; Yoon, S.K.; Kay, C.S. Significance of an increase in the Child-Pugh score after radiotherapy in patients with unresectable hepatocellular carcinoma. Radiat. Oncol. 2014, 9, 101. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, J.W.; Kim, Y.J.; Kim, B.H.; Woo, S.M.; Moon, S.H.; Kim, S.S.; Lee, W.J.; Kim, D.Y.; Kim, C.M. Simultaneous integrated boost-intensity modulated radiation therapy for inoperable hepatocellular carcinoma. Strahlenther. Onkol. 2014, 190, 882–890. [Google Scholar] [CrossRef]
- Chen, S.W.; Lin, L.C.; Kuo, Y.C.; Liang, J.A.; Kuo, C.C.; Chiou, J.F. Phase 2 study of combined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 1041–1047. [Google Scholar] [CrossRef]
- Kong, M.; Hong, S.E.; Choi, W.S.; Choi, J.; Kim, Y. Treatment outcomes of helical intensity-modulated radiotherapy for unresectable hepatocellular carcinoma. Gut Liver 2013, 7, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Yoo, E.J.; Jang, J.W.; Kwon, J.H.; Kim, K.J.; Kay, C.S. Hypofractionated radiotheapy using helical tomotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis. Radiat. Oncol. 2013, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.M.; Hsu, W.C.; Chung, N.N.; Chang, F.L.; Fogliata, A.; Cozzi, L. Radiation treatment with volumetric modulated arc therapy of hepatocellular carcinoma patients. Early clinical outcome and toxicity profile from a retrospective analysis of 138 patients. Radiat. Oncol. 2012, 7, 207. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.K.; Kim, M.S.; Kim, S.K.; Ye, G.W.; Lee, H.J.; Kim, T.N.; Eun, J.R. High-dose radiotherapy with intensity-modulated radiation therapy for advanced hepatocellular carcinoma. Tumori 2011, 97, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.H.; Liao, C.S.; Chang, C.C.; Ko, H.L.; Tsang, Y.W.; Yang, K.C.; Mehta, M.P. Angiogenic blockade and radiotherapy in hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 188–193. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.; Hagspiel, K.D.; Al-Osaimi, A.M.; Northup, P.; Caldwell, S.; Berg, C.; Angle, J.F.; Argo, C.; Weiss, G.; Rich, T.A. Accelerated treatment using intensity-modulated radiation therapy plus concurrent capecitabine for unresectable hepatocellular carcinoma. Cancer 2009, 115, 5117–5125. [Google Scholar] [CrossRef]
- Jang, J.W.; Kay, C.S.; You, C.R.; Kim, C.W.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Han, C.W.; Jung, H.S.; Choi, I.B. Simultaneous multitarget irradiation using helical tomotherapy for advanced hepatocellular carcinoma with multiple extrahepatic metastases. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 412–418. [Google Scholar] [CrossRef]
- Dennis, K.; Linden, K.; Gaudet, M. A shift from simple to sophisticated: Using intensity-modulated radiation therapy in conventional nonstereotactic palliative radiotherapy. Curr. Opin. Support. Palliat. Care 2023, 17, 70–76. [Google Scholar] [CrossRef]
- Staffurth, J.; Radiotherapy Development Board. A review of the clinical evidence for intensity-modulated radiotherapy. Clin. Oncol. 2010, 22, 643–657. [Google Scholar] [CrossRef]
- Feng, M.; Ben-Josef, E. Radiation therapy for hepatocellular carcinoma. Semin. Radiat. Oncol. 2011, 21, 271–277. [Google Scholar] [CrossRef]
- Lawrence, T.S.; Robertson, J.M.; Anscher, M.S.; Jirtle, R.L.; Ensminger, W.D.; Fajardo, L.F. Hepatic toxicity resulting from cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.C.; Kavanagh, B.D.; Dawson, L.A.; Li, X.A.; Das, S.K.; Miften, M.; Ten Haken, R.K. Radiation-associated liver injury. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S94–S100. [Google Scholar] [CrossRef]
- Guha, C.; Kavanagh, B.D. Hepatic radiation toxicity: Avoidance and amelioration. Semin. Radiat. Oncol. 2011, 21, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Kim, M.S.; Jang, W.I.; Cho, C.K.; Yoo, H.J.; Kim, K.B.; Han, C.J.; Park, S.C.; Lee, D.H. Low Hepatic Toxicity in Primary and Metastatic Liver Cancers after Stereotactic Ablative Radiotherapy Using 3 Fractions. J. Korean Med. Sci. 2015, 30, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Kim, H.J.; Seong, J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Radiother. Oncol. 2019, 131, 135–144. [Google Scholar] [CrossRef]
- Long, Y.; Liang, Y.; Li, S.; Guo, J.; Wang, Y.; Luo, Y.; Wu, Y. Therapeutic outcome and related predictors of stereotactic body radiotherapy for small liver-confined HCC: A systematic review and meta-analysis of observational studies. Radiat. Oncol. 2021, 16, 68. [Google Scholar] [CrossRef]
- Chen, L.S.; Lin, H.C.; Hwang, S.J.; Lee, F.Y.; Hou, M.C.; Lee, S.D. Prevalence of gastric ulcer in cirrhotic patients and its relation to portal hypertension. J. Gastroenterol. Hepatol. 1996, 11, 59–64. [Google Scholar] [CrossRef]
- Kim, H.; Lim, D.H.; Paik, S.W.; Yoo, B.C.; Koh, K.G.; Lee, J.H.; Choi, M.S.; Park, W.; Park, H.C.; Huh, S.J.; et al. Predictive factors of gastroduodenal toxicity in cirrhotic patients after three-dimensional conformal radiotherapy for hepatocellular carcinoma. Radiother. Oncol. 2009, 93, 302–306. [Google Scholar] [CrossRef]
- Chon, Y.E.; Seong, J.; Kim, B.K.; Cha, J.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Han, K.H.; Chon, C.Y.; Shin, S.K.; et al. Gastroduodenal complications after concurrent chemoradiation therapy in patients with hepatocellular carcinoma: Endoscopic findings and risk factors. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1343–1351. [Google Scholar] [CrossRef]
- Yoon, H.; Oh, D.; Park, H.C.; Kang, S.W.; Han, Y.; Lim, D.H.; Paik, S.W. Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma. Strahlenther. Onkol. 2013, 189, 541–546. [Google Scholar] [CrossRef]
- Kang, J.K.; Kim, M.S.; Cho, C.K.; Yang, K.M.; Yoo, H.J.; Kim, J.H.; Bae, S.H.; Jung, D.H.; Kim, K.B.; Lee, D.H.; et al. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 2012, 118, 5424–5431. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Kim, M.S.; Cho, C.K.; Kang, J.K.; Lee, S.Y.; Lee, K.N.; Lee, D.H.; Han, C.J.; Yang, K.Y.; Kim, S.B. Predictor of severe gastroduodenal toxicity after stereotactic body radiotherapy for abdominopelvic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e469–e474. [Google Scholar] [CrossRef]
- Jang, W.I.; Bae, S.H.; Kim, M.S.; Han, C.J.; Park, S.C.; Kim, S.B.; Cho, E.H.; Choi, C.W.; Kim, K.S.; Hwang, S.; et al. A phase 2 multicenter study of stereotactic body radiotherapy for hepatocellular carcinoma: Safety and efficacy. Cancer 2020, 126, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Pollom, E.L.; Deng, L.; Pai, R.K.; Brown, J.M.; Giaccia, A.; Loo, B.W., Jr.; Shultz, D.B.; Le, Q.T.; Koong, A.C.; Chang, D.T. Gastrointestinal Toxicities with Combined Antiangiogenic and Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, S.G.; Fritz, C.; Hoyer, M.; Lo, S.S.; Ricardi, U.; Sahgal, A.; Stahel, R.; Stupp, R.; Guckenberger, M. Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: A systematic review. Cancer Treat. Rev. 2017, 53, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Brade, A.M.; Ng, S.; Brierley, J.; Kim, J.; Dinniwell, R.; Ringash, J.; Wong, R.R.; Cho, C.; Knox, J.; Dawson, L.A. Phase 1 Trial of Sorafenib and Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 580–587. [Google Scholar] [CrossRef]
- Hapani, S.; Chu, D.; Wu, S. Risk of gastrointestinal perforation in patients with cancer treated with bevacizumab: A meta-analysis. Lancet Oncol. 2009, 10, 559–568. [Google Scholar] [CrossRef]
- Barney, B.M.; Markovic, S.N.; Laack, N.N.; Miller, R.C.; Sarkaria, J.N.; Macdonald, O.K.; Bauer, H.J.; Olivier, K.R. Increased bowel toxicity in patients treated with a vascular endothelial growth factor inhibitor (VEGFI) after stereotactic body radiation therapy (SBRT). Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 73–80. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fabrega, J.; Burrel, M.; Garcia-Criado, A.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Blettner, M.; Sauerbrei, W.; Schlehofer, B.; Scheuchenpflug, T.; Friedenreich, C. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int. J. Epidemiol. 1999, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Wuu, C.S. Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.G. Photons—Radiobiological issues related to the risk of second malignancies. Phys. Med. 2017, 42, 213–220. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Country | Study Type | NOS | N | CP Class A/B/C (%) | BCLC Stage 0/A/B/C/D (%) | Median Size (cm) (Range) | MVI (%) | DM (%) | AFP ≥400 ng/mL (%) | Median Total Dose (Gy) (Range) | Dose per Fraction (Gy) | Combined Treatment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wang [21] | 2023 | China | P | 5 | 30 | 77/23/0 | 0/0/0/100/0 | NR | 100 | 53 | 60 | NR (52–56) | 2 | Atezolizumab + bevacizumab (100%) |
Qiu [22] | 2023 | China | P | 4 | 33 | 76/18/6 | 0/3/55/42/0 | 8 (0.7–20.3) | NR | 21 | 36 | NR | 2–3.5 | Apatinib (100%) |
Su [23] | 2022 | China | R | 6 | 54 | 74/26/0 | 0/0/6/94/0 | NR | NR | 20 | 46 | 48 | 3 | PD-1 inhibitors + anti-angiogenic (100%) |
Liu [24] | 2022 | China | P | 5 | 19 | 53/47/0 | 0/5/26/69/0 | NR | 47 | 26 | 32 | 62 (45–72)/45 (30–50) b | 3–4.5/2–2.5 b | Apatinib (100%) |
Li [25] | 2022 | China | R | 4 | 109 | NR | 0/30/13/57/0 | 5.8 a ± 3.5 | NR | NR | NR | 50 (40–66) | 1.8–4 | No |
Tsurugai [26] | 2021 | Japan | R | 4 | 66 | 92/8/0 | 32/23/6/38/1 | 2.3 a (1.5–3.3) | NR | NR | NR | 42 | 3 | No |
Shen [27] | 2021 | China | P | 5 | 65 | 78/22/0 | 0/15/42/43/0 | NR | NR | 40 | NR | 50/30 b | 5/3 b | Sorafenib (20%); Cytokines (63%) |
Chen [28] | 2021 | China | R | 6 | 167 | 93/7/0 | 0/0/0/100/0 | NR | 100 | 0 | 51 | 58 (50–67) | 2–2.2 | TACE (39%); Sorafenib (11%) |
Abulimiti, A. [29] | 2021 | China | R | 7 | 36 | 92/3/0 | 0/0/0/100/0 | NR | 100 | 0 | 53 | NR (40–62.5) | 2–2.5 | Sorafenib (100%) |
Abulimiti, B. [29] | 2021 | China | R | 7 | 46 | 96/4/0 | 0/0/0/100/0 | NR | 100 | 0 | 48 | NR (40–62.5) | 2–2.5 | No |
Zhao, A. [30] | 2019 | China | R | 6 | 28 | 100/0/0 | 0/0/0/100/0 | 7.4 (1.9–14.9) | 100 | 0 | 43 | NR | NR | TACE + sorafenib (100%) |
Zhao, B. [30] | 2019 | China | R | 7 | 35 | 100/0/0 | 0/0/0/100/0 | 6.6 (1.2–17) | 100 | 0 | 43 | NR | NR | TACE (100%) |
Lo [31] | 2019 | Taiwan | R | 6 | 23 | 39/52/9 | 0/0/0/96/4 | NR | 100 | 0 | NR | NR (45–70) | 3–4.5 | TACE (30%) |
Li, A. [32] | 2018 | China | R | 6 | 76 | 96/4/0 | 0/0/0/100/0 | NR | 100 | 0 | 57 | 58 (50–67) | 2–2.2 | TACE (100%) |
Li, B. [32] | 2018 | China | R | 6 | 36 | 89/11/0 | 0/0/0/100/0 | NR | 100 | 0 | 67 | 58 (50–67) | 2–2.2 | TACE (100%) |
Jiang [33] | 2017 | China | R | 7 | 45 | 89/11/0 | NR | NR | 0 | 0 | 24 | 54 (35–68) | 2.2–5.5 | No |
Zhang [34] | 2016 | China | R | 5 | 54 | 100/0/0 | NR | 6.3 (1.2–14) | 48 | 0 | NR | 50 (44–70) | 1.8–2 | TACE (100%) |
Hou [35] | 2016 | China | R | 8 | 54 | 85/15/0 | 0/0/0/100/0 | 7.5 a ± 3.5 | 100 | 0 | NR | 60 (40–66) | 2.5–4 | No |
Yeh [36] | 2015 | Taiwan | R | 5 | 106 | 78/22/0 | 0/0/0/100/0 | NR | 100 | 0 | NR | 60 (NR) | 2 | No |
Long, A. [37] | 2015 | China | P | 5 | 35 | NR | NR | NR (10–20) | NR | 0 | NR | NR (40–50/30–40) b | 2 b | No |
Long, B. [37] | 2015 | China | P | 5 | 32 | NR | NR | NR (10–20) | NR | 0 | NR | NR (40–50/30–40) b | 2 b | No |
Huang [38] | 2015 | Taiwan | R | 5 | 38 | 71/29/0 | NR | 4.6 (2.5–16.7) | NR | 0 | 40 | 54 (46–71.8) | 1.8–2.4 | No |
Yoon [39] | 2014 | Republic of Korea | R | 8 | 65 | 100/0/0 | NR | 9.0 (2.2–18.8) | NR | 0 | NR | 50 (47.5–60) | 2.5–3.5 | IA_CTx (95%) |
Son [40] | 2014 | Republic of Korea | R | 5 | 103 | 88/12/0 | NR | 6.2 a ± 6.6 | NR | 0 | 35 | 50 (40–60) | 1.8–5 | No |
Kim [41] | 2014 | Republic of Korea | R | 5 | 53 | 94/6/0 | NR | 5.5 (1.6–16) | 66 | 0 | NR | 55 (55–66)/44 (44–55) b | 2.5–3/2–2.5 b | Sorafenib (9.4%) |
Chen [42] | 2014 | Taiwan | P | 6 | 40 | 100/0/0 | 0/10/25/65/0 | 8.2 (3–15.5) | NR | 0 | NR | 50 (40–60) | 2–2.5 | Sorafenib (100%) |
Kong [43] | 2013 | Republic of Korea | R | 5 | 22 | 68/32/0 | NR | 4.4 (0.9–16.4) | NR | 0 | NR | NR (30–60) | 1.8–4 | No |
Kim [44] | 2013 | Republic of Korea | R | 5 | 35 | 80/20/0 | 0/0/0/100/0 | NR | 100 | 0 | NR | 50 (45–60) | 4.5–6 | Capecitabine (100%) |
Wang [45] | 2012 | Taiwan | R | 5 | 138 | 70/30/0 | 0/6/21/73/0 | 10 (3.8–19.1) | NR | 16 | 43 | 60 (45–66) | 1.8–2 | No |
Kang [46] | 2011 | Republic of Korea | R | 4 | 27 | 70/30/0 | NR | 11.4 (8.1–18.2) | 67 | 0 | NR | 50.4 (45–64.8) | 1.8 | TACE or IA_CTx (48%) |
Chi [47] | 2010 | Taiwan | R | 5 | 23 | 65/35/0 | NR | NR | 74 | 22 | NR | 52.5 (NR) | 2.5–4.5 | Sunitinib (100%) |
McIntosh [48] | 2009 | USA | R | 5 | 20 | 55/45/0 | NR | 9 a (1.3–17.4) | NR | 0 | NR | 50 (50–60) | 2.5 | Capecitabine (100%) |
Jang [49] | 2009 | Republic of Korea | R | 5 | 42 | 76/22/2 | NR | 9 a ± 3.2 | NR | 100 | NR | 51.03 (30–57.61) b | 3–5.7 b | Capecitabine (100%) |
Author | Median f/u (mo) | Response Criteria | CR/PR/SD/PD (%) | ORR (%) | DCR (%) | 1-year LCR (%) | Median OS (mo) | 1-year OS (%) | 2-year OS (%) | 3-year OS (%) |
---|---|---|---|---|---|---|---|---|---|---|
Wang [21] | 7.4 | mRECIST | 13/77/7/3 | 90 | 97 | NR | 9.8 | 48 | NR | NR |
Qiu [22] | 11.4 | RECIST | 3/12/67/18 | 15 | 82 | NR | NR | 66.2 | 60 | 60 |
Su [23] | 12 | mRECIST | 2/41/48/9 | 43 | 91 | NR | 20.1 | 72 | 28 | NR |
Liu [24] | 9 | mRECIST | 31/37/21/11 | 68 | 89 | NR | not reached | 54.6 | NR | NR |
Li [25] | 20.5 | NR | NR | NR | NR | NR | 25.7 | 77 | 56 | NR |
Tsurugai [26] | 24 | mRECIST | NR | NR | NR | 92 | NR | 90 | 75 | 60 |
Shen [27] | 24 | NR | 28/69/3 a | 97 | 97 | 100 | 18 | 75.4 | 43 | 36.2 |
Chen [28] | NR | NR | NR | NR | NR | NR | 16.5 | 66.8 | 29.9 | 10.6 |
Abulimiti, A. [29] | 11 | RECIST | 0/61/28/11 | 61 | 89 | NR | 11 | 44.8 | 3.8 | NR |
Abulimiti, B. [29] | 9 | RECIST | 2/44/28/26 | 46 | 74 | NR | 9 | 28.6 | 2.6 | NR |
Zhao, A. [30] | 13 | mRECIST | 11/36/28/25 | 47 | 75 | NR | 19 | 72 | 48 | 36 |
Zhao, B. [30] | 14.1 | mRECIST | 0/46/31/23 | 46 | 77 | NR | 15.2 | 78 | 16 | 0 |
Lo [31] | NR | NR | NR | NR | NR | NR | 8 | NR | NR | NR |
Li, A. [32] | 11 | mRECIST | 13/46/33/8 | 59 | 92 | NR | 9.6 | 38.2 | 18.4 | 9.2 |
Li, B. [32] | 14 | mRECIST | 19/53/22/6 | 72 | 94 | NR | 13.4 | 61.1 | 27.8 | 16.7 |
Jiang [33] | 51.9 | RECIST | 9/49/38/4 | 58 | 96 | NR | 44.7 | 93.3 | 73.3 | 50 |
Zhang [34] | 28.7 | mRECIST | 20/54/15/11 | 74 | 89 | 84.3 | 20.2 | 84.6 | 49.7 | 36.7 |
Hou [35] | 11.8 | RECIST | 6/65/9/20 | 71 | 80 | NR | 15.47 | 59.3 | 32.1 | 26.4 |
Yeh [36] | 10 | WHO | 10/52/33/5 | 62 | 95 | NR | 7 | 34.7 | 11 | NR |
Long, A. [37] | NR | mRECIST | 6/29/48/17 | 35 | 83 | NR | 9.7 | 48.6 | 17.1 | 2.9 |
Long, B. [37] | NR | mRECIST | 3/22/56/19 | 25 | 81 | NR | 6.5 | 21.9 | 0 | 0 |
Huang [38] | 17.2 | RECIST | 5/48/34/13 | 53 | 87 | 88.2 | 12.6 | 56.2 | 31.7 | NR |
Yoon [39] | 21 | NR | NR | NR | NR | 72.1 | 20 | 74 | 47.1 | 33.4 |
Son [40] | 11.6 | NR | NR | NR | NR | NR | 11.6 | 48.5 | 23.4 | 14.3 |
Kim [41] | 18.9 | mRECIST | 22/40/34/4 | 62 | 96 | NR | 25.1 | NR | 54.7 | NR |
Chen [42] | 23 | RECIST | 2/53/37/8 | 55 | 92 | 44.6 | 14 | 56.7 | 32 | NR |
Kong [43] | 14.4 | mRECIST | 18/55/23/4 | 73 | 96 | NR | 14.4 | 86.4 | 69.1 | 69.1 |
Kim [44] | 12.9 | RECIST | 14/29/51/6 | 43 | 94 | NR | 12.9 | 51.4 | 22.2 | 9.2 |
Wang [45] | 9 | RECIST | 11/53/29/7 | 64 | 93 | NR | 10.3 | 45 | 28 | NR |
Kang [46] | 5 | RECIST | 4/41/33/22 | 45 | 78 | NR | 5 | 22 | 11 | 7.3 |
Chi [47] | 16 | RECIST | 9/65/22/4 | 74 | 96 | 82 | 16 | 70 | NR | NR |
McIntosh [48] | NR | RECIST | NR | 66 | 88 | NR | 9.6 | 40 | 30.6 | NR |
Jang [49] | 9.4 | RECIST | 0/45/48/7 | 45 | 93 | 79 | 12.3 | 50.1 | 14.9 | NR |
Group | Cohorts (N) | Patients (N) | P, Heterogeneity | I2 | Egger’s Test, P | Fixed Event Rate (95% CI) | Random Event Rate (95% CI) | P (between Groups) | |
---|---|---|---|---|---|---|---|---|---|
All Patients | |||||||||
CR rate | 26 | 1162 | <0.0001 | 69.58% | 0.4670 | 0.09 (0.07–0.11) | 0.08 (0.05–0.12) | ||
ORR | 26 | 1162 | <0.0001 | 85.52% | 0.2163 | 0.60 (0.57–0.62) | 0.58 (0.50–0.65) | ||
DCR | 26 | 1162 | 0.0014 | 51.31% | 0.0488 | 0.91 (0.89–0.92) | 0.90 (0.87–0.93) | ||
1-year LCR | 8 | 393 | <0.0001 | 90.31% | 0.3638 | 0.85 (0.82–0.89) | 0.84 (0.70–0.94) | ||
2-year LCR | 8 | 423 | <0.0001 | 92.94% | 0.2007 | 0.77 (0.73–0.81) | 0.75 (0.58–0.89) | ||
3-year LCR | 3 | 185 | 0.0009 | 85.64% | 0.9537 | 0.64 (0.57–0.71) | 0.64 (0.45–0.81) | ||
1-year PFS | 17 | 887 | <0.0001 | 84.96% | 0.7418 | 0.34 (0.31–0.37) | 0.34 (0.25–0.42) | ||
2-year PFS | 16 | 798 | <0.0001 | 78.78% | 0.3311 | 0.11 (0.09–0.14) | 0.10 (0.06–0.16) | ||
3-year PFS | 6 | 394 | <0.0001 | 87.57% | 0.1326 | 0.06 (0.04–0.09) | 0.09 (0.02–0.20) | ||
1-year OS | 31 | 1679 | <0.0001 | 88.29% | 0.8894 | 0.60 (0.57–0.62) | 0.59 (0.52–0.66) | ||
2-year OS | 29 | 1660 | <0.0001 | 91.25% | 0.8428 | 0.31 (0.29–0.34) | 0.31 (0.23–0.39) | ||
3-year OS | 18 | 978 | <0.0001 | 92.11% | 0.5075 | 0.22 (0.19–0.24) | 0.23 (0.14–0.33) | ||
Subgroup | |||||||||
1-year OS | mSize ≤7 cm | 7 | 427 | <0.0001 | 88.14% | 0.5353 | 0.73 (0.69–0.77) | 0.75 (0.61–0.86) | 0.0180 |
mSize >7 cm | 9 | 447 | <0.0001 | 77.16% | 0.8765 | 0.54 (0.50–0.59) | 0.55 (0.44–0.65) | ||
mRT dose <51 Gy | 11 | 638 | <0.0001 | 88.45% | 0.2042 | 0.68 (0.65–0.72) | 0.65 (0.53–0.76) | 0.3345 | |
mRT dose ≥51 Gy | 11 | 744 | <0.0001 | 87.94% | 0.5229 | 0.55 (0.51–0.59) | 0.57 (0.46–0.68) | ||
Without TA/IT | 21 | 1184 | <0.0001 | 91.30% | 0.8436 | 0.57 (0.55–0.60) | 0.58 (0.48–0.67) | 0.3144 | |
With TA/IT | 10 | 495 | 0.0369 | 49.59% | 0.2449 | 0.65 (0.61–0.69) | 0.64 (0.57–0.70) | ||
2-year OS | mSize ≤7 cm | 8 | 480 | < 0.0001 | 90.74% | 0.9223 | 0.46 (0.42–0.51) | 0.47 (0.32–0.62) | 0.1360 |
mSize >7 cm | 9 | 447 | <0.0001 | 76.84% | 0.8425 | 0.32 (0.28–0.37) | 0.33 (0.23–0.43) | ||
mRT dose <51 Gy | 11 | 638 | <0.0001 | 88.20% | 0.2813 | 0.41 (0.37–0.45) | 0.38 (0.27–0.50) | 0.3426 | |
mRT dose ≥51 Gy | 10 | 755 | <0.0001 | 89.11% | 0.3927 | 0.28 (0.25–0.32) | 0.31 (0.21–0.42) | ||
Without TA/IT | 21 | 1184 | <0.0001 | 92.48% | 0.6977 | 0.30 (0.28–0.33) | 0.29 (0.20–0.39) | 0.4302 | |
With TA/IT | 8 | 476 | <0.0001 | 86.32% | 0.7224 | 0.34 (0.30–0.39) | 0.35 (0.24–0.48) | ||
3-year OS | mSize ≤7 cm | 5 | 280 | <0.0001 | 95.50% | 0.7577 | 0.29 (0.23–0.34) | 0.31 (0.08–0.60) | 0.9724 |
mSize >7 cm | 5 | 207 | 0.0002 | 81.93% | 0.9202 | 0.32 (0.26–0.39) | 0.32 (0.17–0.48) | ||
mRT dose <51 Gy | 7 | 415 | <0.0001 | 90.19% | 0.6635 | 0.29 (0.25–0.33) | 0.27 (0.14–0.42) | 0.5148 | |
mRT dose ≥51 Gy | 5 | 378 | <0.0001 | 89.05% | 0.2229 | 0.17 (0.13–0.21) | 0.21 (0.09–0.35) | ||
Without TA/IT | 14 | 685 | <0.0001 | 92.30% | 0.6434 | 0.21 (0.18–0.24) | 0.20 (0.10–0.32) | 0.2961 | |
With TA/IT | 4 | 293 | <0.0001 | 93.55% | 0.0970 | 0.22 (0.18–0.28) | 0.34 (0.13–0.59) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.I.; Jo, S.; Moon, J.E.; Bae, S.H.; Park, H.C. The Current Evidence of Intensity-Modulated Radiotherapy for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 4914. https://doi.org/10.3390/cancers15204914
Jang WI, Jo S, Moon JE, Bae SH, Park HC. The Current Evidence of Intensity-Modulated Radiotherapy for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(20):4914. https://doi.org/10.3390/cancers15204914
Chicago/Turabian StyleJang, Won Il, Sunmi Jo, Ji Eun Moon, Sun Hyun Bae, and Hee Chul Park. 2023. "The Current Evidence of Intensity-Modulated Radiotherapy for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis" Cancers 15, no. 20: 4914. https://doi.org/10.3390/cancers15204914
APA StyleJang, W. I., Jo, S., Moon, J. E., Bae, S. H., & Park, H. C. (2023). The Current Evidence of Intensity-Modulated Radiotherapy for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Cancers, 15(20), 4914. https://doi.org/10.3390/cancers15204914