Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Churilla, T.M.; Chowdhury, I.H.; Handorf, E.; Collette, L.; Collette, S.; Dong, Y.; Alexander, B.M.; Kocher, M.; Soffietti, R.; Claus, E.B.; et al. Comparison of Local Control of Brain Metastases With Stereotactic Radiosurgery vs Surgical Resection: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2019, 5, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, A.; Walier, M.; Régis, J.; Liščák, R.; Motti, E.; Lindquist, C.; Kemeny, A.; Kitz, K.; Lippitz, B.; Martínez Álvarez, R.; et al. Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients. Neurosurgery 2012, 70, 32–39, discussion 39. [Google Scholar] [CrossRef] [PubMed]
- Stafford, S.L.; Pollock, B.E.; Foote, R.L.; Link, M.J.; Gorman, D.A.; Schomberg, P.J.; Leavitt, J.A. Meningioma radiosurgery: Tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 2001, 49, 1029–1037, discussion 1037–1028. [Google Scholar] [CrossRef] [PubMed]
- Pollock, B.E.; Driscoll, C.L.; Foote, R.L.; Link, M.J.; Gorman, D.A.; Bauch, C.D.; Mandrekar, J.N.; Krecke, K.N.; Johnson, C.H. Patient outcomes after vestibular schwannoma management: A prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 2006, 59, 77–85, discussion 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D.; Mousavi, S.H.; Kano, H.; Flickinger, J.C.; Lunsford, L.D. The newly diagnosed vestibular schwannoma: Radiosurgery, resection, or observation? Neurosurg. Focus 2012, 33, E8. [Google Scholar] [CrossRef]
- Ius, T.; Tel, A.; Minniti, G.; Somma, T.; Solari, D.; Longhi, M.; De Bonis, P.; Scerrati, A.; Caccese, M.; Barresi, V.; et al. Advances in Multidisciplinary Management of Skull Base Meningiomas. Cancers 2021, 13, 2664. [Google Scholar] [CrossRef]
- Blonigen, B.J.; Steinmetz, R.D.; Levin, L.; Lamba, M.A.; Warnick, R.E.; Breneman, J.C. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 996–1001. [Google Scholar] [CrossRef]
- Kohutek, Z.A.; Yamada, Y.; Chan, T.A.; Brennan, C.W.; Tabar, V.; Gutin, P.H.; Yang, T.J.; Rosenblum, M.K.; Ballangrud, Å.; Young, R.J.; et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J. Neurooncol. 2015, 125, 149–156. [Google Scholar] [CrossRef]
- Ahluwalia, M.; Barnett, G.H.; Deng, D.; Tatter, S.B.; Laxton, A.W.; Mohammadi, A.M.; Leuthardt, E.; Chamoun, R.; Judy, K.; Asher, A.; et al. Laser ablation after stereotactic radiosurgery: A multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J. Neurosurg. 2018, 130, 804–811. [Google Scholar] [CrossRef]
- Wu, A.; Jin, M.C.; Meola, A.; Wong, H.N.; Chang, S.D. Efficacy and toxicity of particle radiotherapy in WHO grade II and grade III meningiomas: A systematic review. Neurosurg. Focus 2019, 46, E12. [Google Scholar] [CrossRef]
- Song, J.; Aljabab, S.; Abduljabbar, L.; Tseng, Y.D.; Rockhill, J.K.; Fink, J.R.; Chang, L.; Halasz, L.M. Radiation-induced brain injury in patients with meningioma treated with proton or photon therapy. J. Neurooncol. 2021, 153, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.S.; Barnett, G.H.; Vogelbaum, M.A.; Neyman, G.; Stevens, G.H.; Cohen, B.H.; Elson, P.; Vassil, A.D.; Suh, J.H. Long-term outcomes of Gamma Knife radiosurgery in patients with vestibular schwannomas. J. Neurosurg. 2011, 114, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Pikis, S.; Mantziaris, G.; Kormath Anand, R.; Nabeel, A.M.; Sheehan, D.; Sheehan, K.; Reda, W.A.; Tawadros, S.R.; Abdelkarim, K.; El-Shehaby, A.M.N.; et al. Stereotactic radiosurgery for Koos grade IV vestibular schwannoma: A multi-institutional study. J. Neurosurg. 2023, 138, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Mandl, E.S.; Meijer, O.W.; Slotman, B.J.; Vandertop, W.P.; Peerdeman, S.M. Stereotactic radiation therapy for large vestibular schwannomas. Radiother. Oncol. 2010, 95, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Dhermain, F.; Vogin, G.; Reyns, N.; Metellus, P. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert. Rev. Neurother. 2016, 16, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, E.N.; Taksler, G.B.; Dayton, O.; Loganathan, A.; Bourland, D.; Tatter, S.B.; Laxton, A.W.; Chan, M.D. Is there a tumor volume threshold for postradiosurgical symptoms? A single-institution analysis. Neurosurgery 2014, 75, 536–545, discussion 544–535; quiz 545 . [Google Scholar] [CrossRef]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef]
- Levin, V.A.; Bidaut, L.; Hou, P.; Kumar, A.J.; Wefel, J.S.; Bekele, B.N.; Grewal, J.; Prabhu, S.; Loghin, M.; Gilbert, M.R.; et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1487–1495. [Google Scholar] [CrossRef]
- Telera, S.; Fabi, A.; Pace, A.; Vidiri, A.; Anelli, V.; Carapella, C.M.; Marucci, L.; Crispo, F.; Sperduti, I.; Pompili, A. Radionecrosis induced by stereotactic radiosurgery of brain metastases: Results of surgery and outcome of disease. J. Neurooncol. 2013, 113, 313–325. [Google Scholar] [CrossRef]
- Kerschbaumer, J.; Demetz, M.; Krigers, A.; Nevinny-Stickel, M.; Thomé, C.; Freyschlag, C.F. Risk Factors for Radiation Necrosis in Patients Undergoing Cranial Stereotactic Radiosurgery. Cancers 2021, 13, 4736. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014, 16 (Suppl. 4), iv1–iv63. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef] [PubMed]
- Sneed, P.K.; Mendez, J.; Vemer-van den Hoek, J.G.; Seymour, Z.A.; Ma, L.; Molinaro, A.M.; Fogh, S.E.; Nakamura, J.L.; McDermott, M.W. Adverse radiation effect after stereotactic radiosurgery for brain metastases: Incidence, time course, and risk factors. J. Neurosurg. 2015, 123, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Nordal, R.A.; Nagy, A.; Pintilie, M.; Wong, C.S. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: A role for vascular endothelial growth factor. Clin. Cancer Res. 2004, 10, 3342–3353. [Google Scholar] [CrossRef] [PubMed]
- Yoritsune, E.; Furuse, M.; Kuwabara, H.; Miyata, T.; Nonoguchi, N.; Kawabata, S.; Hayasaki, H.; Kuroiwa, T.; Ono, K.; Shibayama, Y.; et al. Inflammation as well as angiogenesis may participate in the pathophysiology of brain radiation necrosis. J. Radiat. Res. 2014, 55, 803–811. [Google Scholar] [CrossRef]
- Ali, F.S.; Arevalo, O.; Zorofchian, S.; Patrizz, A.; Riascos, R.; Tandon, N.; Blanco, A.; Ballester, L.Y.; Esquenazi, Y. Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Curr. Oncol. Rep. 2019, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Snyder, M.H.; Desai, B.D.; Li, C.E.; Narayan, A.; Trifiletti, D.M.; Schlesinger, D.; Sheehan, J.P. Clinical and radiographic adverse events after Gamma Knife radiosurgery for brainstem lesions: A dosimetric analysis. Radiother. Oncol. 2020, 147, 200–209. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Starke, R.M.; Lee, C.C.; Kano, H.; Huang, P.; Kondziolka, D.; Grills, I.S.; Silva, D.; Abbassy, M.; Missios, S.; et al. Stereotactic Radiosurgery for Brainstem Arteriovenous Malformations: A Multicenter Study. Neurosurgery 2017, 81, 910–920. [Google Scholar] [CrossRef]
- Trifiletti, D.M.; Lee, C.C.; Kano, H.; Cohen, J.; Janopaul-Naylor, J.; Alonso-Basanta, M.; Lee, J.Y.K.; Simonova, G.; Liscak, R.; Wolf, A.; et al. Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 280–288. [Google Scholar] [CrossRef]
- Koyfman, S.A.; Tendulkar, R.D.; Chao, S.T.; Vogelbaum, M.A.; Barnett, G.H.; Angelov, L.; Weil, R.J.; Neyman, G.; Reddy, C.A.; Suh, J.H. Stereotactic radiosurgery for single brainstem metastases: The cleveland clinic experience. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 409–414. [Google Scholar] [CrossRef]
- Viselner, G.; Farina, L.; Lucev, F.; Turpini, E.; Lungarotti, L.; Bacila, A.; Iannalfi, A.; D’Ippolito, E.; Vischioni, B.; Ronchi, S.; et al. Brain MR findings in patients treated with particle therapy for skull base tumors. Insights Imaging 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Meling, T.R.; Da Broi, M.; Scheie, D.; Helseth, E. Skull base versus non-skull base meningioma surgery in the elderly. Neurosurg. Rev. 2019, 42, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Luryi, A.L.; Kveton, J.F.; Babu, S.; Bojrab, D.I.; Michaelides, E.M.; Schutt, C.A. Evolving Role of Non-Total Resection in Management of Acoustic Neuroma in the Gamma Knife Era. Otol. Neurotol. 2020, 41, e1354–e1359. [Google Scholar] [CrossRef] [PubMed]
- El-Kashlan, H.K.; Zeitoun, H.; Arts, H.A.; Hoff, J.T.; Telian, S.A. Recurrence of acoustic neuroma after incomplete resection. Am. J. Otolaryngol. 2000, 21, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.S.; Ma, L.; DiBiase, S. Radiation necrosis following gamma knife surgery: A case-controlled comparison of treatment parameters and long-term clinical follow up. J. Neurosurg. 2001, 94, 899–904. [Google Scholar] [CrossRef]
- Minniti, G.; Esposito, V.; Clarke, E.; Scaringi, C.; Bozzao, A.; Lanzetta, G.; De Sanctis, V.; Valeriani, M.; Osti, M.; Enrici, R.M. Stereotactic radiosurgery in elderly patients with brain metastases. J. Neurooncol. 2013, 111, 319–325. [Google Scholar] [CrossRef]
- Kim, S.H.; Weil, R.J.; Chao, S.T.; Toms, S.A.; Angelov, L.; Vogelbaum, M.A.; Suh, J.H.; Barnett, G.H. Stereotactic radiosurgical treatment of brain metastases in older patients. Cancer 2008, 113, 834–840. [Google Scholar] [CrossRef]
- Milano, M.T.; Grimm, J.; Niemierko, A.; Soltys, S.G.; Moiseenko, V.; Redmond, K.J.; Yorke, E.; Sahgal, A.; Xue, J.; Mahadevan, A.; et al. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 68–86. [Google Scholar] [CrossRef]
- Asuzu, D.T.; Bunevicius, A.; Kormath Anand, R.; Suleiman, M.; Nabeel, A.M.; Reda, W.A.; Tawadros, S.R.; Abdel Karim, K.; El-Shehaby, A.M.N.; Emad Eldin, R.M.; et al. Clinical and radiologic outcomes after stereotactic radiosurgery for meningiomas in direct contact with the optic apparatus: An international multicenter study. J. Neurosurg. 2022, 136, 1070–1076. [Google Scholar] [CrossRef]
- Shepard, M.J.; Xu, Z.; Kearns, K.; Li, C.; Chatrath, A.; Sheehan, K.; Sheehan, D.; Faramand, A.; Niranjan, A.; Kano, H.; et al. Stereotactic Radiosurgery for Atypical (World Health Organization II) and Anaplastic (World Health Organization III) Meningiomas: Results From a Multicenter, International Cohort Study. Neurosurgery 2021, 88, 980–988. [Google Scholar] [CrossRef]
- Mangesius, J.; Mangesius, S.; Demetz, M.; Uprimny, C.; Di Santo, G.; Galijasevic, M.; Minasch, D.; Gizewski, E.R.; Ganswindt, U.; Virgolini, I.; et al. A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers 2022, 14, 6264. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.M.; Benson, J.C.; DeLone, D.R.; Diehn, F.E.; Kim, D.K.; Merrell, K.W.; Nagelschneider, A.A.; Madhavan, A.A.; Johnson, D.R. Intracranial long-term complications of radiation therapy: An image-based review. Neuroradiology 2021, 63, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Vellayappan, B.; Lim-Fat, M.J.; Kotecha, R.; De Salles, A.; Fariselli, L.; Levivier, M.; Ma, L.; Paddick, I.; Pollock, B.E.; Regis, J.; et al. A Systematic Review Informing The Management of Symptomatic Brain Radiation Necrosis after Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society (ISRS) Recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Piper, K.; Yu, S.; Taghvaei, M.; Fernandez, C.; Mouchtouris, N.; Smit, R.D.; Yudkoff, C.; Collopy, S.; Reyes, M.; Lavergne, P.; et al. Radiation of meningioma dural tail may not improve tumor control rates. Front. Surg. 2022, 9, 908745. [Google Scholar] [CrossRef]
- Furuse, M.; Nonoguchi, N.; Yamada, K.; Shiga, T.; Combes, J.D.; Ikeda, N.; Kawabata, S.; Kuroiwa, T.; Miyatake, S.I. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: A systematic review. Radiat. Oncol. 2019, 14, 28. [Google Scholar] [CrossRef]
Cases | Percent | SB Location | |
---|---|---|---|
Vestibular schwannoma | 125 | 60.9 | 125 (100%) |
Meningioma | 52 | 25.4 | 21 (40.4%) |
Glomus jugulare tumors (GJTs) | 6 | 2.9 | 6 (100%) |
Ependymoma | 8 | 3.9 | 0 (0%) |
Schwannoma of other cranial nerves | 5 | 2.4 | 5 (100%) |
Others | 9 | 4.4 | 0 (0%) |
Cases (SB Location) | Radiation Necrosis | No Radiation Necrosis | |
---|---|---|---|
Vestibular schwannoma | 125 (100%) | 10 (8%) | 115 (92%) |
Meningioma | 52 (40.4%) | 20 (38.5%) | 32 (61.5%) |
Glomus jugulare tumors (GJTs) | 6 (100%) | 0 (0%) | 6 (100%) |
Ependymoma | 8 (0%) | 1 (12.5%) | 7 (87.5%) |
Schwannoma of other cranial nerves | 5 (100%) | 0 (0%) | 5 (100%) |
Others | 9 (0%) | 1 (11.1%) | 8 (88.9%) |
Risk Factors for RN | HR | Cl | p-Value | |
---|---|---|---|---|
Location at skull base | yes/no | 0.139 | 0.068–0.284 | <0.001 |
Previous resection | yes/no | 1.153 | 0.950–1.400 | 0.150 |
Applied radiation dose | per gray | 1.571 | 1.342–1.840 | <0.001 |
Age | per year | 1.009 | 0.984–1.035 | 0.479 |
Previous SRS | yes/no | 1.281 | 0.665–2.467 | 0.459 |
Dexamethasone dose | per mg | 0.995 | 0.985–1.004 | 0.249 |
Tumor diameter | per mm | 1.052 | 0.990–1.117 | 0.104 |
Gender | male/female | 1.161 | 0.567–2.374 | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetz, M.; Mangesius, J.; Krigers, A.; Nevinny-Stickel, M.; Thomé, C.; Freyschlag, C.F.; Kerschbaumer, J. Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors. Cancers 2023, 15, 4760. https://doi.org/10.3390/cancers15194760
Demetz M, Mangesius J, Krigers A, Nevinny-Stickel M, Thomé C, Freyschlag CF, Kerschbaumer J. Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors. Cancers. 2023; 15(19):4760. https://doi.org/10.3390/cancers15194760
Chicago/Turabian StyleDemetz, Matthias, Julian Mangesius, Aleksandrs Krigers, Meinhard Nevinny-Stickel, Claudius Thomé, Christian F. Freyschlag, and Johannes Kerschbaumer. 2023. "Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors" Cancers 15, no. 19: 4760. https://doi.org/10.3390/cancers15194760
APA StyleDemetz, M., Mangesius, J., Krigers, A., Nevinny-Stickel, M., Thomé, C., Freyschlag, C. F., & Kerschbaumer, J. (2023). Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors. Cancers, 15(19), 4760. https://doi.org/10.3390/cancers15194760