Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design
Abstract
:Simple Summary
Abstract
1. Introduction
- We describe a deep learning method based on autosegmentation that automatically categorizes each nodal metastasis into a specific lymph node level based on its spatial proximity to autosegmented level boundaries. This method utilizes a previously described nnU-Net 3D/2D ensemble model to autosegment 20 head and neck levels [11] but extends it to this novel task using an algorithmic distance-based level assignment.
- We introduce a nonrigid-registration-based mapping method for H/N CT datasets that allows for the estimation, analysis, and visualization of the 3D probability distribution for the lymph node metastases of an entire patient cohort, independent of predefined level boundaries.
- Both methods are evaluated on a cohort of 193 head and neck cancer patient planning CTs including multireader expert assessment by three radiation oncologists demonstrating that the automated analysis of large head and neck patient cohorts for the purpose of improved nodal-level target volume design is feasible with high accuracy.
2. Materials and Methods
2.1. Patient Population and Dataset
2.2. Deep Learning Automated Analysis of the Distribution of Nodal Metastases
2.3. Evaluation and Expert Review
2.4. Nonrigid-Registration-Based Mapping Analysis
3. Results
3.1. Accuracy of the Deep Learning Method for the Nodal Metastases Distribution Analysis
3.2. Distribution of Nodal Metastases in Reference to Nodal Levels
3.3. Nonrigid-Registration-Based Mapping Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beadle, B.M.; Liao, K.P.; Elting, L.S.; Buchholz, T.A.; Ang, K.K.; Garden, A.S.; Guadagnolo, B.A. Improved survival using intensity-modulated radiation therapy in head and neck cancers: A SEER-Medicare analysis. Cancer 2014, 120, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Baudelet, M.; Van den Steen, L.; Tomassen, P.; Bonte, K.; Deron, P.; Huvenne, W.; Rottey, S.; De Neve, W.; Sundahl, N.; Van Nuffelen, G.; et al. Very late xerostomia, dysphagia, and neck fibrosis after head and neck radiotherapy. Head Neck 2019, 41, 3594–3603. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Early side effects of radiation treatment for head and neck cancer. Cancer Radiother. 2021, 25, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Buga, S.; Banerjee, C.; Salman, J.; Cangin, M.; Zachariah, F.; Freeman, B. Supportive Care for the Head and Neck Cancer Patient. Cancer Treat. Res. 2018, 174, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Baxi, S.S.; Sher, D.J.; Pfister, D.G. Value considerations in the treatment of head and neck cancer: Radiation, chemotherapy, and supportive care. Am. Soc. Clin. Oncol. Educ. Book 2014, e296–e303. [Google Scholar] [CrossRef] [PubMed]
- Svajdova, M.; Dubinsky, P.; Kazda, T. Radical external beam re-irradiation in the treatment of recurrent head and neck cancer: Critical review. Head Neck 2021, 43, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, T.Y.; Foster, C.C.; Blair, E.A.; Karrison, T.G.; Agrawal, N.; Melotek, J.M.; Portugal, L.; Brisson, R.J.; Dekker, A.; Kochanny, S.; et al. OPTIMA: A phase II dose and volume de-escalation trial for human papillomavirus-positive oropharyngeal cancer. Ann. Oncol. 2019, 30, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Villaflor, V.M.; Melotek, J.M.; Karrison, T.G.; Brisson, R.J.; Blair, E.A.; Portugal, L.; De Souza, J.A.; Ginat, D.T.; Stenson, K.M.; Langerman, A.; et al. Response-adapted volume de-escalation (RAVD) in locally advanced head and neck cancer. Ann. Oncol. 2016, 27, 908–913. [Google Scholar] [CrossRef]
- Tsai, C.J.; McBride, S.M.; Riaz, N.; Kang, J.J.; Spielsinger, D.J.; Waldenberg, T.; Gelblum, D.; Yu, Y.; Chen, L.C.; Zakeri, K.; et al. Evaluation of Substantial Reduction in Elective Radiotherapy Dose and Field in Patients With Human Papillomavirus-Associated Oropharyngeal Carcinoma Treated With Definitive Chemoradiotherapy. JAMA Oncol. 2022, 8, 364–372. [Google Scholar] [CrossRef]
- Foster, C.C.; Seiwert, T.Y.; MacCracken, E.; Blair, E.A.; Agrawal, N.; Melotek, J.M.; Portugal, L.; Brisson, R.J.; Gooi, Z.; Spiotto, M.T.; et al. Dose and Volume De-Escalation for Human Papillomavirus-Positive Oropharyngeal Cancer is Associated with Favorable Posttreatment Functional Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 662–671. [Google Scholar] [CrossRef]
- Weissmann, T.; Huang, Y.; Fischer, S.; Roesch, J.; Mansoorian, S.; Ayala Gaona, H.; Gostian, A.O.; Hecht, M.; Lettmaier, S.; Deloch, L.; et al. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy. Front Oncol. 2023, 13, 1115258. [Google Scholar] [CrossRef] [PubMed]
- Kosmin, M.; Ledsam, J.; Romera-Paredes, B.; Mendes, R.; Moinuddin, S.; de Souza, D.; Gunn, L.; Kelly, C.; Hughes, C.O.; Karthikesalingam, A.; et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother. Oncol. 2019, 135, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 2014, 110, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Luebke, D. CUDA: Scalable parallel programming for high-performance scientific computing. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 836–838. [Google Scholar]
- Filimonova, I.; Schmidt, D.; Mansoorian, S.; Weissmann, T.; Siavooshhaghighi, H.; Cavallaro, A.; Kuwert, T.; Bert, C.; Frey, B.; Distel, L.V.; et al. The Distribution of Pelvic Nodal Metastases in Prostate Cancer Reveals Potential to Advance and Personalize Pelvic Radiotherapy. Front. Oncol. 2020, 10, 590722. [Google Scholar] [CrossRef] [PubMed]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011, 54, 2033–2044. [Google Scholar] [CrossRef]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46, 786–802. [Google Scholar] [CrossRef]
- Odland, T. KDEpy: Kernel Density Estimation in Python v0.9.10. Available online: https://github.com/tommyod/KDEpy (accessed on 4 April 2020).
- Blender—A 3D Modelling and Rendering Package, Version 3.5; Blender Foundation: Amsterdam, The Netherlands, 2023.
- Samarasinghe, G.; Jameson, M.; Vinod, S.; Field, M.; Dowling, J.; Sowmya, A.; Holloway, L. Deep learning for segmentation in radiation therapy planning: A review. J. Med. Imaging Radiat. Oncol. 2021, 65, 578–595. [Google Scholar] [CrossRef]
- Limbus AI. Available online: https://limbus.ai/ (accessed on 19 July 2022).
- Therapanacea. Available online: https://www.therapanacea.eu/ (accessed on 19 July 2022).
- Kocher, M. Artificial intelligence and radiomics for radiation oncology. Strahlenther. Onkol. 2020, 196, 847. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, L.; Bibault, J.E.; Masciocchi, C.; Shen, Y.; Bittner, M.I. Deep Learning: A Review for the Radiation Oncologist. Front. Oncol. 2019, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, B.B. Deep Learning in Head and Neck Tumor Multiomics Diagnosis and Analysis: Review of the Literature. Front. Genet. 2021, 12, 624820. [Google Scholar] [CrossRef] [PubMed]
- Iuga, A.I.; Lossau, T.; Caldeira, L.L.; Rinneburger, M.; Lennartz, S.; Große Hokamp, N.; Püsken, M.; Carolus, H.; Maintz, D.; Klinder, T.; et al. Automated mapping and N-Staging of thoracic lymph nodes in contrast-enhanced CT scans of the chest using a fully convolutional neural network. Eur. J. Radiol. 2021, 139, 109718. [Google Scholar] [CrossRef] [PubMed]
- Strijbis, V.I.J.; Dahele, M.; Gurney-Champion, O.J.; Blom, G.J.; Vergeer, M.R.; Slotman, B.J.; Verbakel, W. Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy. Cancers 2022, 14, 5501. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, F.; Di, M.; Shen, J.; Wang, S.; Chen, Q.; Chen, Y.; Liu, Z.; Lian, X.; Ma, J.; et al. Clinical target volume automatic segmentation based on lymph node stations for lung cancer with bulky lump lymph nodes. Thorac. Cancer 2022, 13, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, J.; Willems, S.; Bollen, H.; Maes, F.; Nuyts, S. Deep learning for elective neck delineation: More consistent and time efficient. Radiother. Oncol. 2020, 153, 180–188. [Google Scholar] [CrossRef]
- Taku, N.; Wahid, K.A.; van Dijk, L.V.; Sahlsten, J.; Jaskari, J.; Kaski, K.; Fuller, C.D.; Naser, M.A. Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network. Clin. Transl. Radiat. Oncol. 2022, 36, 47–55. [Google Scholar] [CrossRef]
- Gunderson, L.L.; Sosin, H. Adenocarcinoma of the stomach: Areas of failure in a re-operation series (second or symptomatic look) clinicopathologic correlation and implications for adjuvant therapy. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, D.; Kang, M.; Zhu, L.; Yang, M.; Jiang, J.; Xia, W.; Kang, N.; Chen, X.; Wang, J.; et al. Mapping of Cervical and Upper Mediastinal Lymph Node Recurrence for Guiding Clinical Target Delineation of Postoperative Radiotherapy in Thoracic Esophageal Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 663679. [Google Scholar] [CrossRef]
- Zhao, X.R.; Guo, N.; Ma, C.; Yan, X.N.; Tang, Y.; Jing, H.; Fang, H.; Li, Y.X.; Li, J.; Wang, S.L. Mapping of Level I Axillary Lymph Nodes in Patients with Newly Diagnosed Breast Cancer: Optimal Target Delineation and Treatment Techniques for Breast and Level I Axilla Irradiation. Pract. Radiat. Oncol. 2022, 12, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Wu, H.; Yang, L.; Xu, H.; Dai, J.; Wang, W.; Xia, L.; Peng, J.; Zhou, F. Recommendations of the clinical target volume for the para-aortic region based on the patterns of lymph node metastasis in patients with biliary tract cancer. Front. Oncol. 2022, 12, 893509. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhou, M.; Hu, R.; Li, G.; Wang, Y.; Shen, L.; Liang, L.; Yang, J.; Zhang, Z. Patterns of regional nodal relapse after D2 lymphadenectomy in gastric cancer: Rethinking the target volume. OncoTargets Ther. 2018, 11, 8015–8024. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ouyang, W.; Li, C.; Shen, J.; Xu, Y.; Zhang, J.; Xie, C. Mapping patterns of metastatic lymph nodes for postoperative radiotherapy in thoracic esophageal squamous cell carcinoma: A recommendation for clinical target volume definition. BMC Cancer 2019, 19, 927. [Google Scholar] [CrossRef] [PubMed]
- D’Cunha, P.; Pinho, D.F.; Nwachukwu, C.; Xi, Y.; Frame, R.; Albuquerque, K. Updating and Optimizing Anatomic Atlases for Elective Radiation of Para-Aortic Lymph Nodes in Cervical Cancer. Pract. Radiat. Oncol. 2021, 11, e301–e307. [Google Scholar] [CrossRef] [PubMed]
- Linz, C.; Brands, R.C.; Herterich, T.; Hartmann, S.; Müller-Richter, U.; Kübler, A.C.; Haug, L.; Kertels, O.; Bley, T.A.; Dierks, A.; et al. Accuracy of 18-F Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Imaging in Primary Staging of Squamous Cell Carcinoma of the Oral Cavity. JAMA Netw. Open 2021, 4, e217083. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.G.A.; Vasquez Osorio, E.M.; van Herk, M.; Brouwer, C.L.; Steenbakkers, R.; Green, A.F. Accurate segmentation of head and neck radiotherapy CT scans with 3D CNNs: Consistency is key. Phys. Med. Biol. 2023, 68. [Google Scholar] [CrossRef] [PubMed]
- Deo, S.; Singh, V.; Mokkapati, P.R.; Shukla, N.K.; Dwivedi, S.N.; Sharma, A.; Biswas, A. Clinical Spectrum, Pattern, and Level-Wise Nodal Involvement Among Oral Squamous Cell Carcinoma Patients—Audit of 945 Oral Cancer Patient Data. Indian J. Surg. Oncol. 2020, 11, 86–91. [Google Scholar] [CrossRef]
- Sanguineti, G.; Califano, J.; Stafford, E.; Fox, J.; Koch, W.; Tufano, R.; Sormani, M.P.; Forastiere, A. Defining the risk of involvement for each neck nodal level in patients with early T-stage node-positive oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1356–1364. [Google Scholar] [CrossRef]
- Candela, F.C.; Kothari, K.; Shah, J.P. Patterns of cervical node metastases from squamous carcinoma of the oropharynx and hypopharynx. Head Neck 1990, 12, 197–203. [Google Scholar] [CrossRef]
Dataset Characteristic | Total Cohort (N = 193) |
---|---|
Primary tumor location | |
Oropharynx | 105 (54.4%) |
Hypopharynx | 42 (21.8%) |
Larynx | 19 (9.8%) |
Nasopharynx | 15 (7.8%) |
Oral cavity | 12 (6.2%) |
Primary tumor laterality | |
Left | 88 (45.6%) |
Right | 91 (47.2%) |
Bilateral | 14 (7.3%) |
Primary tumor stage | |
T1 | 14 (7.3%) |
T2 | 60 (31.1%) |
T3 | 31 (16.1%) |
T4 | 88 (45.6%) |
Nodal stage | |
N1 | 30 (15.5%) |
N2 | 132 (68.4%) |
N3 | 31 (16.1%) |
p16 status | |
Negative | 149 (77.2%) |
Positive | 44 (22.8%) |
Lymph Node Level | Deep Learning | Expert Correction | |||
---|---|---|---|---|---|
Expert 1 | Expert 2 | Expert 3 | Majority Voting | ||
Level 2 right | 137 (30.5%) | 136 (30.3%) | 137 (30.5%) | 136 (30.3%) | 137 (30.5%) |
Level 2 left | 128 (28.5%) | 128 (28.5%) | 128 (28.5%) | 128 (28.5%) | 128 (28.5%) |
Level 3 right | 51 (11.4%) | 53 (11.8%) | 51 (11.4%) | 51 (11.4%) | 51 (11.4%) |
Level 3 left | 52 (11.6%) | 52 (11.6%) | 52 (11.6%) | 52 (11.6%) | 52 (11.6%) |
Level 1b left | 17 (3.8%) | 18 (4.0%) | 17 (3.8%) | 17 (3.8%) | 17 (3.8%) |
Level 1b right | 17 (3.8%) | 17 (3.8%) | 17 (3.8%) | 17 (3.8%) | 17 (3.8%) |
Level 5 right | 12 (2.7%) | 12 (2.7%) | 12 (2.7%) | 13 (2.9%) | 12 (2.7%) |
Level 5 left | 11 (2.5%) | 11 (2.5%) | 11 (2.5%) | 11 (2.5%) | 11 (2.5%) |
Level 4a left | 7 (1.6%) | 7 (1.6%) | 7 (1.6%) | 7 (1.6%) | 7 (1.6%) |
Level 8 left | 6 (1.3%) | 5 (1.1%) | 6 (1.3%) | 6 (1.3%) | 6 (1.3%) |
Level 4a right | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) |
Level 6b | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) |
Level 7a | 1 (0.2%) | 2 (0.4%) | 1 (0.2%) | 1 (0.2%) | 1 (0.2%) |
Level 8 right | 3 (0.7%) | 2 (0.4%) | 3 (0.7%) | 3 (0.7%) | 3 (0.7%) |
Level 7b right | 1 (0.2%) | 0 (0.0%) | 1 (0.2%) | 1 (0.2%) | 1 (0.2%) |
Level 1a | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Level 4b left | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Level 4b right | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Level 6a | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Level 7b left | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weissmann, T.; Mansoorian, S.; May, M.S.; Lettmaier, S.; Höfler, D.; Deloch, L.; Speer, S.; Balk, M.; Frey, B.; Gaipl, U.S.; et al. Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design. Cancers 2023, 15, 4620. https://doi.org/10.3390/cancers15184620
Weissmann T, Mansoorian S, May MS, Lettmaier S, Höfler D, Deloch L, Speer S, Balk M, Frey B, Gaipl US, et al. Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design. Cancers. 2023; 15(18):4620. https://doi.org/10.3390/cancers15184620
Chicago/Turabian StyleWeissmann, Thomas, Sina Mansoorian, Matthias Stefan May, Sebastian Lettmaier, Daniel Höfler, Lisa Deloch, Stefan Speer, Matthias Balk, Benjamin Frey, Udo S. Gaipl, and et al. 2023. "Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design" Cancers 15, no. 18: 4620. https://doi.org/10.3390/cancers15184620
APA StyleWeissmann, T., Mansoorian, S., May, M. S., Lettmaier, S., Höfler, D., Deloch, L., Speer, S., Balk, M., Frey, B., Gaipl, U. S., Bert, C., Distel, L. V., Walter, F., Belka, C., Semrau, S., Iro, H., Fietkau, R., Huang, Y., & Putz, F. (2023). Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design. Cancers, 15(18), 4620. https://doi.org/10.3390/cancers15184620