Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients Cohort and Validation Cohort
2.2. Sample Procedure and DNA Extraction
2.3. Cytogenetics and FISH
2.4. Next-Generation Sequencing
2.5. Statistical Analysis
3. Results
3.1. MDS with Isolated Trisomy 8 Have a Differential Mutational Pattern
3.2. Mutational Profile Allows the Distinction of a Worse Prognosis High-Risk-Like Subgroup in MDS with Isolated Trisomy 8
3.3. Mutational Status of STAG2, SRSF2 and/or RUNX1 Is an Independent Prognostic Factor Associated with Shorter Time to Progression to AML and Overall Survival in MDS with Isolated Trisomy 8
3.4. The Newly Defined Prognostic Mutations Could Refine Prognosis of Patients with Isolated Trisomy 8 within the IPSS-R and the IPSS-M Systems
3.5. STAG2, SRSF2 and RUNX1 Differentiate a Subgroup of Isolated Trisomy 8 MDS with Worse Outcome in an Independent Validation Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haferlach, T.; Nagata, Y.; Grossmann, V.; Okuno, Y.; Bacher, U.; Nagae, G.; Schnittger, S.; Sanada, M.; Kon, A.; Alpermann, T.; et al. Landscape of Genetic Lesions in 944 Patients with Myelodysplastic Syndromes. Leukemia 2014, 28, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaemmanuil, E.; Gerstung, M.; Malcovati, L.; Tauro, S.; Gundem, G.; Van Loo, P.; Yoon, C.J.; Ellis, P.; Wedge, D.C.; Pellagatti, A.; et al. Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes. Blood 2013, 122, 3616–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Solé, F.; Luño, E.; Sanzo, C.; Espinet, B.; Sanz, G.F.; Cervera, J.; Calasanz, M.J.; Cigudosa, J.C.; Millà, F.; Ribera, J.M.; et al. Identification of Novel Cytogenetic Markers with Prognostic Significance in a Series of 968 Patients with Primary Myelodysplastic Syndromes. Haematologica 2005, 90, 1168–1178. [Google Scholar] [PubMed]
- Haase, D.; Germing, U.; Schanz, J.; Pfeilstöcker, M.; Nösslinger, T.; Hildebrandt, B.; Kundgen, A.; Lübbert, M.; Kunzmann, R.; Giagounidis, A.A.N.; et al. New Insights into the Prognostic Impact of the Karyotype in MDS and Correlation with Subtypes: Evidence from a Core Dataset of 2124 Patients. Blood 2007, 110, 4385–4395. [Google Scholar] [CrossRef]
- Cazzola, M.; Della Porta, M.G.; Malcovati, L. The Genetic Basis of Myelodysplasia and Its Clinical Relevance. Blood 2013, 122, 4021–4034. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef] [Green Version]
- Schanz, J.; Tüchler, H.; Solé, F.; Mallo, M.; Luño, E.; Cervera, J.; Granada, I.; Hildebrandt, B.; Slovak, M.L.; Ohyashiki, K.; et al. New Comprehensive Cytogenetic Scoring System for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia after MDS Derived from an International Database Merge. J. Clin. Oncol. 2012, 30, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arango Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Solé, F.; Espinet, B.; Sanz, G.F.; Cervera, J.; Calasanz, M.J.; Luño, E.; Prieto, F.; Granada, I.; Hernández, J.M.A.; Cigudosa, J.C.; et al. Incidence, Characterization and Prognostic Significance of Chromosomal Abnormalities in 640 Patients with Primary Myelodysplastic Syndromes. Br. J. Haematol. 2000, 108, 346–356. [Google Scholar] [CrossRef]
- Paulsson, K.; Säll, T.; Fioretos, T.; Mitelman, F.; Johansson, B. The Incidence of Trisomy 8 as a Sole Chromosomal Aberration in Myeloid Malignancies Varies in Relation to Gender, Age, Prior Iatrogenic Genotoxic Exposure, and Morphology. Cancer Genet. Cytogenet. 2001, 130, 160–165. [Google Scholar] [CrossRef]
- Drevon, L.; Marceau, A.; Maarek, O.; Cuccuini, W.; Clappier, E.; Eclache, V.; Cluzeau, T.; Richez, V.; Berkaoui, I.; Dimicoli-Salazar, S.; et al. Myelodysplastic Syndrome (MDS) with Isolated Trisomy 8: A Type of MDS Frequently Associated with Myeloproliferative Features? A Report by the Groupe Francophone Des Myélodysplasies. Br. J. Haematol. 2018, 182, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Kim, K.; Hwang, B.; Im, K.; Park, S.N.; Kim, J.A.; Hwang, S.M.; Bang, D.; Lee, D.S. The High Frequency of the U2AF1 S34Y Mutation and Its Association with Isolated Trisomy 8 in Myelodysplastic Syndrome in Asians, but Not in Caucasians. Leuk. Res. 2017, 61, 96–103. [Google Scholar] [CrossRef]
- Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Matteuzzi, T.; Sala, C.; Mosca, E.; Chiereghin, C.; Di Nanni, N.; Gnocchi, M.; Zampini, M.; et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1223–1233. [Google Scholar] [CrossRef]
- Xu, F.; Wu, L.Y.; He, Q.; Wu, D.; Zhang, Z.; Song, L.X.; Zhao, Y.S.; Su, J.Y.; Zhou, L.Y.; Guo, J.; et al. Exploration of the Role of Gene Mutations in Myelodysplastic Syndromes through a Sequencing Design Involving a Small Number of Target Genes. Sci. Rep. 2017, 7, srep43113. [Google Scholar] [CrossRef] [Green Version]
- International Standard Committee on Human Cytogenetic Nomenclature; McGowan-Jordan, J.; Hastings, R.J.; Moore, S. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020); Karger: Basel, Switzerland, 2020; ISBN 9783318067040. [Google Scholar]
- Martín-Izquierdo, M.; Abáigar, M.; Hernández-Sánchez, J.M.; Tamborero, D.; López-Cadenas, F.; Ramos, F.; Lumbreras, E.; Madinaveitia-Ochoa, A.; Megido, M.; Labrador, J.; et al. Co-Occurrence of Cohesin Complex and Ras Signaling Mutations during Progression from Myelodysplastic Syndromes to Secondary Acute Myeloid Leukemia. Haematologica 2021, 106, 2215–2223. [Google Scholar] [CrossRef]
- Petrova-Drus, K.; Hasserjian, R.; Pozdnyakova, O.; Dal Cin, P.; Mathew, S.; Margolskee, E.; Orazi, A.; Geyer, J.T. Clinicopathologic Evaluation of Cytopenic Patients with Isolated Trisomy 8: A Detailed Comparison between Idiopathic Cytopenia of Unknown Significance and Low-Grade Myelodysplastic Syndrome. Leuk. Lymphoma 2017, 58, 569–577. [Google Scholar] [CrossRef]
- Saumell, S.; Florensa, L.; Luño, E.; Sanzo, C.; Cañizo, C.; Hernández, J.M.; Cervera, J.; Gallart, M.A.; Carbonell, F.; Collado, R.; et al. Prognostic Value of Trisomy 8 as a Single Anomaly and the Influence of Additional Cytogenetic Aberrations in Primary Myelodysplastic Syndromes. Br. J. Haematol. 2012, 159, 311–321. [Google Scholar] [CrossRef]
- Malcovati, L.; Stevenson, K.; Papaemmanuil, E.; Neuberg, D.; Bejar, R.; Boultwood, J.; Bowen, D.T.; Campbell, P.J.; Ebert, B.L.; Fenaux, P.; et al. SF3B1-Mutant MDS as a Distinct Disease Subtype: A Proposal from the International Working Group for the Prognosis of MDS. Blood 2020, 136, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Malcovati, L.; Karimi, M.; Papaemmanuil, E.; Ambaglio, I.; Jädersten, M.; Jansson, M.; Elena, C.; Gallì, A.; Walldin, G.; Porta, M.G.D.; et al. SF3B1 Mutation Identifies a Distinct Subset of Myelodysplastic Syndrome with Ring Sideroblasts. Blood 2015, 126, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janusz, K.; Izquierdo, M.M.; Cadenas, F.L.; Ramos, F.; Sánchez, J.M.H.; Lumbreras, E.; Robledo, C.; del Real, J.S.; Caballero, J.C.; Collado, R.; et al. Clinical, Biological, and Prognostic Implications of SF3B1 Co-Occurrence Mutations in Very Low/Low- and Intermediate-Risk MDS Patients. Ann. Hematol. 2021, 100, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Haferlach, T.; Meggendorfer, M.; Hutter, S.; Hoermann, G.; Baer, C.; Kern, W.; Haferlach, C. SF3B1 Mutated MDS: Blast Count, Genetic Co-Abnormalities and Their Impact on Classification and Prognosis. Leukemia 2022, 36, 2894–2902. [Google Scholar] [CrossRef]
- Jädersten, M.; Saft, L.; Smith, A.; Kulasekararaj, A.; Pomplun, S.; Göhring, G.; Hedlund, A.; Hast, R.; Schlegelberger, B.; Porwit, A.; et al. TP53 Mutations in Low-Risk Myelodysplastic Syndromes with Del(5q) Predict Disease Progression. J. Clin. Oncol. 2011, 29, 1971–1979. [Google Scholar] [CrossRef]
- Haase, D.; Stevenson, K.E.; Neuberg, D.; Maciejewski, J.P.; Nazha, A.; Sekeres, M.A.; Ebert, B.L.; Garcia-Manero, G.; Haferlach, C.; Haferlach, T.; et al. TP53 Mutation Status Divides Myelodysplastic Syndromes with Complex Karyotypes into Distinct Prognostic Subgroups. Leukemia 2019, 33, 1747–1758. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Nannya, Y.; Hasserjian, R.P.; Devlin, S.M.; Tuechler, H.; Medina-Martinez, J.S.; Yoshizato, T.; Shiozawa, Y.; Saiki, R.; Malcovati, L.; et al. Implications of TP53 Allelic State for Genome Stability, Clinical Presentation and Outcomes in Myelodysplastic Syndromes. Nat. Med. 2020, 26, 1549–1556. [Google Scholar] [CrossRef]
- Makishima, H.; Yoshizato, T.; Yoshida, K.; Sekeres, M.A.; Radivoyevitch, T.; Suzuki, H.; Przychodzen, B.J.; Nagata, Y.; Meggendorfer, M.; Sanada, M.; et al. Dynamics of Clonal Evolution in Myelodysplastic Syndromes. Nat. Genet. 2017, 49, 204–212. [Google Scholar] [CrossRef]
- Malcovati, L.; Hellström-Lindberg, E.; Bowen, D.; Adès, L.; Cermak, J.; Del Cañizo, C.; Della Porta, M.G.; Fenaux, P.; Gattermann, N.; Germing, U.; et al. Diagnosis and Treatment of Primary Myelodysplastic Syndromes in Adults: Recommendations from the European LeukemiaNet. Blood 2013, 122, 2943–2964. [Google Scholar] [CrossRef] [Green Version]
- Cutler, C.S.; Lee, S.J.; Greenberg, P.; Deeg, H.J.; Párez, W.S.; Anasetti, C.; Bolwell, B.J.; Cairo, M.S.; Gale, R.P.; Klein, J.P.; et al. A Decision Analysis of Allogeneic Bone Marrow Transplantation for the Myelodysplastic Syndromes: Delayed Transplantation for Low-Risk Myelodysplasia Is Associated with Improved Outcome. Blood 2004, 104, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Komrokji, R.; Al Ali, N.; Padron, E.; Lancet, J.; Nazha, A.; Steensma, D.; DeZern, A.; Roboz, G.; Garcia-Manero, G.; Sekeres, M.A.; et al. What Is the Optimal Time to Initiate Hypomethylating Agents (HMAs) in Higher Risk Myelodysplastic Syndromes (MDSs)? Leuk. Lymphoma 2021, 62, 2762–2767. [Google Scholar] [CrossRef]
- Konuma, T.; Miyazaki, Y.; Uchida, N.; Ohashi, K.; Kondo, T.; Nakamae, H.; Takahashi, S.; Mori, T.; Ozawa, Y.; Kato, C.; et al. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients with Myelodysplastic Syndrome Harboring Trisomy 8. Biol. Blood Marrow Transplant. 2017, 23, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, P.T.; Symeonidis, A.; Pappa, V.; Kotsianidis, I.; Galanopoulos, A.; Pontikoglou, C.; Anagnostopoulos, A.; Vassilopoulos, G.; Zikos, P.; Hatzimichael, E.; et al. The Effect of 5-Azacytidine Treatment Delays and Dose Reductions on the Prognosis of Patients with Myelodysplastic Syndrome: How to Optimize Treatment Results and Outcomes. Br. J. Haematol. 2021, 192, 978–987. [Google Scholar] [CrossRef]
MDS with Isolated +8 (n = 94) | |
---|---|
Demographics | |
Age at diagnosis, years (range) | 75 (33–94) |
Gender, n (%) | |
Female | 30 (31.9%) |
Male | 64 (68.1%) |
MDS diagnosis and risk stratification | |
2017 WHO classification, n (%) | |
MDS-SLD | 3 (3.3%) |
MDS-MLD | 29 (31.5%) |
MDS-RS | 11 (12%) |
MDS-del(5q) | 0 (0%) |
MDS-EB-1 | 27 (29.3%) |
MDS-EB-2 | 19 (20.6%) |
Hypoplastic MDS | 3 (3.3%) |
Cytogenetic risk, n (%) | |
Intermediate | 94 (100%) |
IPSS-R category, n (%) | |
Low | 24 (32.9%) |
Intermediate 1–2 | 21 (28.8%) |
High | 21 (28.8%) |
Very high | 7 (9.6%) |
Blood and bone marrow counts at diagnosis | |
Hemoglobin, g/dL (range) | 9.9 (5.4–14.6) |
Platelets | 95 (2–520) |
Neutrophils | 1.7 (0.2–11.8) |
Bone marrow blasts, % | 4 (0–16) |
Circulating blasts, % | 0 (0–13) |
Ring sideroblasts, % | 0 (0–72) |
NGS data, n (%) | 79 (84%) |
AML Progression | ||
---|---|---|
Variable | Hazard Ratio (Range) | p Value |
Presence of mutations (STAG2, SRSF2 and/or RUNX1) | 15.46 (2.7–88.7) | 0.002 ** |
Age (≥75 years) | 0.28 (0.07–1.1) | 0.075 |
BM blasts (≥5%) | 0.75 (0.2–3) | 0.685 |
Number of cytopenias (>2) | 1.72 (0.4–7.3) | 0.462 |
OS | ||
Variable | Hazard ratio (range) | p value |
Presence of mutations (STAG2, SRSF2 and/or RUNX1) | 3.1 (1.3–7.7) | 0.012 * |
Age (≥75 years) | 1.6 (0.7–3.6) | 0.243 |
BM blasts (≥5%) | 1.3 (0.5–3.6) | 0.586 |
Number of cytopenias (>2) | 1.2 (0.4–3.1) | 0.743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toribio-Castelló, S.; Castaño, S.; Villaverde-Ramiro, Á.; Such, E.; Arnán, M.; Solé, F.; Díaz-Beyá, M.; Díez-Campelo, M.; del Rey, M.; González, T.; et al. Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8. Cancers 2023, 15, 3822. https://doi.org/10.3390/cancers15153822
Toribio-Castelló S, Castaño S, Villaverde-Ramiro Á, Such E, Arnán M, Solé F, Díaz-Beyá M, Díez-Campelo M, del Rey M, González T, et al. Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8. Cancers. 2023; 15(15):3822. https://doi.org/10.3390/cancers15153822
Chicago/Turabian StyleToribio-Castelló, Sofía, Sandra Castaño, Ángela Villaverde-Ramiro, Esperanza Such, Montserrat Arnán, Francesc Solé, Marina Díaz-Beyá, María Díez-Campelo, Mónica del Rey, Teresa González, and et al. 2023. "Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8" Cancers 15, no. 15: 3822. https://doi.org/10.3390/cancers15153822