A Potential Biomarker of Dynamic Change in Peripheral CD45RA−CD27+CD127+ Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Peripheral Blood Samples Collection
2.2. Neutrophil-to-Lymphocyte Ratio
2.3. Flow Cytometry
2.4. Gating Methods
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Statistical Analysis
3. Results
3.1. Higher Frequency of Exhausted T Cells in cStage IV Patients with ESCC
3.2. Lower TCM and Higher Exhausted T-Cell Frequencies after CRT
3.3. Frequency of TCM in Patients with Progressive Disease Decreased during the Nivolumab Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Tachimori, Y.; Oyama, T.; Toh, Y.; Matsubara, H.; Ueno, M.; Kono, K.; Uno, T.; Ishihara, R.; Muro, K.; et al. Comprehensive registry of esophageal cancer in Japan, 2013. Esophagus 2021, 18, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Otake, R.; Kozuki, R.; Toihata, T.; Takahashi, K.; Okamura, A.; Imamura, Y. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg. Today 2020, 50, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, K.; Ando, N.; Watanabe, H.; Ide, H.; Nagai, K.; Aoyama, N.; Takiyama, W.; Ishida, K.; Isono, K.; Makuuchi, H.; et al. Phase II evaluation of protracted infusion of cisplatin and 5-fluorouracil in advanced squamous cell carcinoma of the esophagus: A Japan Esophageal Oncology Group (JEOG) Trial (JCOG9407). Jpn. J. Clin. Oncol. 2001, 31, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hironaka, S.; Tsubosa, Y.; Mizusawa, J.; Kii, T.; Kato, K.; Tsushima, T.; Chin, K.; Tomori, A.; Okuno, T.; Taniki, T.; et al. Phase I/II trial of 2-weekly docetaxel combined with cisplatin plus fluorouracil in metastatic esophageal cancer (JCOG0807). Cancer Sci. 2014, 105, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Doki, Y.; Ogata, T.; Motoyama, S.; Kawakami, H.; Ueno, M.; Kojima, T.; Shirakawa, Y.; Okada, M.; Ishihara, R.; et al. First-line nivolumab plus ipilimumab or chemotherapy versus chemotherapy alone in advanced esophageal squamous cell carcinoma: A Japanese subgroup analysis of open-label, phase 3 trial (CheckMate 648/ONO-4538-50). Esophagus 2023, 20, 291–301. [Google Scholar] [CrossRef]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef] [Green Version]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Hwang, W.L.; Pike, L.R.G.; Royce, T.J.; Mahal, B.A.; Loeffler, J.S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 2018, 15, 477–494. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mimura, K.; Yoshimoto, Y.; Watanabe, M.; Ohkubo, Y.; Izawa, S.; Murata, K.; Fujii, H.; Nakano, T.; Kono, K. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 2012, 72, 3967–3976. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Sarantopoulos, J.; Bedard, P.L.; Lin, C.C.; Hodi, F.S.; et al. Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3620–3629. [Google Scholar] [CrossRef] [PubMed]
- Maecker, H.T.; McCoy, J.P.; Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 2012, 12, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Sun, Z.; Chen, L. Memory T cells: Strategies for optimizing tumor immunotherapy. Protein Cell 2020, 11, 549–564. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.D.; Badovinac, V.P. Defining Memory CD8 T Cell. Front. Immunol. 2018, 9, 2692. [Google Scholar] [CrossRef] [Green Version]
- Galletti, G.; De Simone, G.; Mazza, E.M.C.; Puccio, S.; Mezzanotte, C.; Bi, T.M.; Davydov, A.N.; Metsger, M.; Scamardella, E.; Alvisi, G.; et al. Two subsets of stem-like CD8(+) memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 2020, 21, 1552–1562. [Google Scholar] [CrossRef]
- Fairfax, B.P.; Taylor, C.A.; Watson, R.A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahé, E.A.; Cooper, R.; Woodcock, V.; Traill, Z.; et al. Peripheral CD8(+) T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 2020, 26, 193–199. [Google Scholar] [CrossRef]
- Gerlach, C.; Moseman, E.A.; Loughhead, S.M.; Alvarez, D.; Zwijnenburg, A.J.; Waanders, L.; Garg, R.; de la Torre, J.C.; von Andrian, U.H. The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity 2016, 45, 1270–1284. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Hoki, T.; Oba, T.; Jain, V.; Chen, H.; Attwood, K.; Battaglia, S.; George, S.; Chatta, G.; Puzanov, I.; et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 1402. [Google Scholar] [CrossRef]
- Lötscher, J.; Martí, I.L.A.A.; Kirchhammer, N.; Cribioli, E.; Giordano Attianese, G.M.P.; Trefny, M.P.; Lenz, M.; Rothschild, S.I.; Strati, P.; Künzli, M.; et al. Magnesium sensing via LFA-1 regulates CD8(+) T cell effector function. Cell 2022, 185, 585–602.e29. [Google Scholar] [CrossRef] [PubMed]
- Ancel, J.; Dormoy, V.; Raby, B.N.; Dalstein, V.; Durlach, A.; Dewolf, M.; Gilles, C.; Polette, M.; Deslée, G. Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors. Front. Immunol. 2023, 14, 1171649. [Google Scholar] [CrossRef] [PubMed]
- Osa, A.; Uenami, T.; Koyama, S.; Fujimoto, K.; Okuzaki, D.; Takimoto, T.; Hirata, H.; Yano, Y.; Yokota, S.; Kinehara, Y.; et al. Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight 2018, 3, e59125. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Ito, M.; Srirat, T.; Kondo, T.; Yoshimura, A. Memory T cell, exhaustion, and tumor immunity. Immunol. Med. 2020, 43, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, Y.; Ueno, M.; Iizuka, T.; Haruta, S.; Tanaka, T.; Udagawa, H. Factors Predicting Effectiveness of Neoadjuvant Therapy for Esophageal Squamous Cell Carcinoma. Medicine 2016, 95, e3365. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Qian, D.; Guan, Y.; Wang, Y.; Zhang, H.; Er, P.; Yan, C.; Li, Y.; Ren, X.; et al. Chemoradiotherapy-Induced CD4(+) and CD8(+) T-Cell Alterations to Predict Patient Outcomes in Esophageal Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Krieg, C.; Nowicka, M.; Guglietta, S.; Schindler, S.; Hartmann, F.J.; Weber, L.M.; Dummer, R.; Robinson, M.D.; Levesque, M.P.; Becher, B. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 2018, 24, 144–153. [Google Scholar] [CrossRef]
- Spassova, I.; Ugurel, S.; Terheyden, P.; Sucker, A.; Hassel, J.C.; Ritter, C.; Kubat, L.; Habermann, D.; Farahpour, F.; Saeedghalati, M.; et al. Predominance of Central Memory T Cells with High T-Cell Receptor Repertoire Diversity is Associated with Response to PD-1/PD-L1 Inhibition in Merkel Cell Carcinoma. Clin. Cancer Res. 2020, 26, 2257–2267. [Google Scholar] [CrossRef]
- Wang, X.; Berger, C.; Wong, C.W.; Forman, S.J.; Riddell, S.R.; Jensen, M.C. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011, 117, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Berger, C.; Jensen, M.C.; Lansdorp, P.M.; Gough, M.; Elliott, C.; Riddell, S.R. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Investig. 2008, 118, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, J.J.; Bendell, J.C.; Funke, R.; Sznol, M.; Korski, K.; Jones, S.; Hernandez, G.; Mier, J.; He, X.; Hodi, F.S.; et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 7, 12624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Cao, S.; Liu, X.; Harrington, S.M.; Bindeman, W.E.; Adjei, A.A.; Jang, J.S.; Jen, J.; Li, Y.; Chanana, P.; et al. CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight 2018, 3, e97828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | N (% or Median Range) | ||
---|---|---|---|
Sex | |||
Male | 42 | (76.4) | |
Female | 13 | (22.6) | |
Age (years) | 70 | (43–81) | |
TNM stage * | |||
I | 9 | (16.4) | |
II | 12 | (21.8) | |
III | 18 | (32.7) | |
IV | 16 | (29.1) | |
Tumor location | |||
Upper | 7 | (12.7) | |
Middle | 32 | (58.2) | |
Lower | 16 | (29.1) | |
Previous treatment | |||
No treatment | 9 | (16.4) | |
Chemotherapy | 23 | (41.8) | |
Chemoradiotherapy | 23 | (41.8) |
cStage | Neoadjuvant Therapy CT (Course) + RT (Gy) | Pathological Response to Neoadjuvant Therapy | cStage | First Line Treatment CT (Course) + RT (Gy) |
---|---|---|---|---|
II | CF (1) | 0 | IV | S-1 * (3) |
CF (2) + RT (40) | 1a | CF (12) | ||
CF (2) | 1b | CF (5) + RT (60) | ||
CF (1) | 1a | CF (1) + RT (40) | ||
CF (1) | 0 | CF (1) + RT (40) | ||
CF (2) | 0 | CF (5) + RT (60) | ||
CF (1) | 1a | CF (4) + RT (57) | ||
CF (2) | 1a | CF (6) | ||
CF (2) | 2 | CF (2) + RT (60) | ||
CF (1) + RT (40) | 3 | CF (1) + RT (42) | ||
CF (2) | 3 | CF (1) + RT (60) | ||
CF (2) | 2 | CF (1) + RT (39) | ||
III | CF (1) + RT (40) | 1a | CF (8) | |
CF (1) + RT (40) | 2 | S-1 ** (8) | ||
CF (1) + RT (40) | 1b | CF (2) + RT (60) | ||
CF (1) + RT (40) | 1a | CF (7) + RT (30) | ||
CF (2) | 1b | |||
CF (1) + RT (40) | 2 | RT; radiation therapy | ||
CF (1) + RT (40) | 1b | CF: 5-fluorouracil 700~800 mg/m2 on days 1 to 5, cisplatin 70~80 mg/m2 on day 1, every 3–4 weeks | ||
CF (2) | 1a | |||
CF (1) + RT (40) | 1b | |||
CF (1) | unevaluable | DCF: 5-fluorouracil 750 mg/m2 on days 1 to 5, cisplatin 70 mg/m2 on day 1, docetaxel 70 mg/m2 on day 1, every 3 weeks | ||
CF (1) + RT (40) | 2 | |||
CF (1) | 1a | |||
CF (1) + RT (40) | 1b | |||
CF (2) | unevaluable | S-1 *: 100 mg/day, orally on days 1 to 14, every 3 weeks | ||
CF (2) | 1a | |||
CF (2) + RT (40) | 2 | S-1 **: 100 mg/day, orally on days 1 to 28, every 6 weeks | ||
DCF (2) | 2 | |||
DadsCF (3) | 1a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakuma, M.; Mimura, K.; Nakajima, S.; Kaneta, A.; Kikuchi, T.; Nirei, A.; Tada, T.; Hanayama, H.; Okayama, H.; Sakamoto, W.; et al. A Potential Biomarker of Dynamic Change in Peripheral CD45RA−CD27+CD127+ Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma. Cancers 2023, 15, 3641. https://doi.org/10.3390/cancers15143641
Sakuma M, Mimura K, Nakajima S, Kaneta A, Kikuchi T, Nirei A, Tada T, Hanayama H, Okayama H, Sakamoto W, et al. A Potential Biomarker of Dynamic Change in Peripheral CD45RA−CD27+CD127+ Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma. Cancers. 2023; 15(14):3641. https://doi.org/10.3390/cancers15143641
Chicago/Turabian StyleSakuma, Mei, Kosaku Mimura, Shotaro Nakajima, Akinao Kaneta, Tomohiro Kikuchi, Azuma Nirei, Takeshi Tada, Hiroyuki Hanayama, Hirokazu Okayama, Wataru Sakamoto, and et al. 2023. "A Potential Biomarker of Dynamic Change in Peripheral CD45RA−CD27+CD127+ Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma" Cancers 15, no. 14: 3641. https://doi.org/10.3390/cancers15143641
APA StyleSakuma, M., Mimura, K., Nakajima, S., Kaneta, A., Kikuchi, T., Nirei, A., Tada, T., Hanayama, H., Okayama, H., Sakamoto, W., Saito, M., Momma, T., Saze, Z., & Kono, K. (2023). A Potential Biomarker of Dynamic Change in Peripheral CD45RA−CD27+CD127+ Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma. Cancers, 15(14), 3641. https://doi.org/10.3390/cancers15143641