Patient-Derived Ex Vivo Cultures and Endpoint Assays with Surrogate Biomarkers in Functional Testing for Prediction of Therapeutic Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient-Derived Ex Vivo Cultures
2.1. Patient-Derived 2D Cultures
2.2. Patient-Derived Spheroids
2.3. Patient-Derived Cancer Organoids (PDCOs)
2.4. Patient-Derived Explants (PDEs)
2.5. Microfluid-Based Culture (Organs on Chips)
2.6. Micro-Organospheres (MOSs)
3. Endpoint Assays for Functional Testing
3.1. ATP-Based Bulk Assay
3.2. Dynamic BH3 Profiling (DBP)
3.3. Optical Metabolic Imaging (OMI) and Fluorescence Lifetime Imaging Microscopy (FLIM) Based on Metabolite Autofluorescence
3.4. Fluorescent Dyes (Calcein-AM, Hoechst and Propidium Iodide)
3.5. Mass Accumulation Rate (MAR) Assay Using a Suspended Microchannel Resonator (SMR)
3.6. Live Cell Imaging-Based Endpoint Assay
3.7. Immunostaining-Based Endpoint Assays
3.8. Immunofluorescence Detection of Drug-Specific Response Biomarkers
4. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matsuda, S.; Kitagawa, Y.; Takemura, R.; Okui, J.; Okamura, A.; Kawakubo, H.; Muto, M.; Kakeji, Y.; Takeuchi, H.; Watanabe, M.; et al. Real-world Evaluation of the Efficacy of Neoadjuvant DCF Over CF in Esophageal Squamous Cell Carcinoma: Propensity Score-matched Analysis From 85 Authorized Institutes for Esophageal Cancer in Japan. Ann. Surg. 2023, 278, e35–e42. [Google Scholar] [CrossRef]
- Matsuda, S.; Kawakubo, H.; Okamura, A.; Takahashi, K.; Toihata, T.; Takemura, R.; Mayanagi, S.; Takeuchi, H.; Watanabe, M.; Kitagawa, Y. Prognostic Significance of Stratification Using Pathological Stage and Response to Neoadjuvant Chemotherapy for Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 8438–8447. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kawakubo, H.; Okamura, A.; Takahashi, K.; Toihata, T.; Takemura, R.; Mayanagi, S.; Hirata, K.; Irino, T.; Hamamoto, Y.; et al. Distribution of Residual Disease and Recurrence Patterns in Pathological Responders After Neoadjuvant Chemotherapy for Esophageal Squamous Cell Carcinoma. Ann. Surg. 2022, 276, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov. 2017, 7, 462–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwaederle, M.; Zhao, M.; Lee, J.J.; Lazar, V.; Leyland-Jones, B.; Schilsky, R.L.; Mendelsohn, J.; Kurzrock, R. Association of Biomarker-Based Treatment Strategies With Response Rates and Progression-Free Survival in Refractory Malignant Neoplasms: A Meta-analysis. JAMA Oncol. 2016, 2, 1452–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamburger, A.W.; Salmon, S.E. Primary bioassay of human tumor stem cells. Science 1977, 197, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Mangu, P.B.; Somerfield, M.R.; Schrag, D.; Samson, D.; Holt, L.; Zelman, D.; Ajani, J.A.; American Society of Clinical, O. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 2011, 29, 3328–3330. [Google Scholar] [CrossRef]
- Schrag, D.; Garewal, H.S.; Burstein, H.J.; Samson, D.J.; Von Hoff, D.D.; Somerfield, M.R.; Sensitivity, A.W.G.o.C.; Resistance, A. American Society of Clinical Oncology Technology Assessment: Chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 2004, 22, 3631–3638. [Google Scholar] [CrossRef] [Green Version]
- Selby, P.; Buick, R.N.; Tannock, I. A critical appraisal of the “human tumor stem-cell assay”. N. Engl. J. Med. 1983, 308, 129–134. [Google Scholar] [CrossRef]
- Kondo, T.; Kubota, T.; Tanimura, H.; Yamaue, H.; Akiyama, S.; Maehara, Y.; Tanigawa, N.; Kitajima, M.; Takagi, H. Cumulative results of chemosensitivity tests for antitumor agents in Japan. Japan Research Society for Appropriate Cancer Chemotherapy. Anticancer Res. 2000, 20, 2389–2392. [Google Scholar]
- Scherer, W.F.; Syverton, J.T.; Gey, G.O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 1953, 97, 695–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cree, I.A.; Petty, R.D.; Kurbacher, C.M.; Untch, M. Tumor chemosensitivity and chemoresistance assays. Cancer 1996, 78, 2031–2032. [Google Scholar] [CrossRef]
- Andreotti, P.E.; Cree, I.A.; Kurbacher, C.M.; Hartmann, D.M.; Linder, D.; Harel, G.; Gleiberman, I.; Caruso, P.A.; Ricks, S.H.; Untch, M.; et al. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: Clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 1995, 55, 5276–5282. [Google Scholar] [PubMed]
- Hunter, E.M.; Sutherland, L.A.; Cree, I.A.; Dewar, J.A.; Preece, P.E.; Wood, R.A.; Linder, D.; Andreotti, P.E. Heterogeneity of chemosensitivity in human breast carcinoma: Use of an adenosine triphosphate (ATP) chemiluminescence assay. Eur. J. Surg. Oncol. 1993, 19, 242–249. [Google Scholar]
- Von Hoff, D.D.; Clark, G.M.; Stogdill, B.J.; Sarosdy, M.F.; O’Brien, M.T.; Casper, J.T.; Mattox, D.E.; Page, C.P.; Cruz, A.B.; Sandbach, J.F. Prospective clinical trial of a human tumor cloning system. Cancer Res. 1983, 43, 1926–1931. [Google Scholar]
- Kobayashi, H.; Tanisaka, K.; Doi, O.; Kodama, K.; Higashiyama, M.; Nakagawa, H.; Miyake, M.; Taki, T.; Hara, S.; Yasutomi, M.; et al. An in vitro chemosensitivity test for solid human tumors using collagen gel droplet embedded cultures. Int. J. Oncol. 1997, 11, 449–455. [Google Scholar] [CrossRef]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.H.; Rogatto, S.R.; Lindebjerg, J.; Havelund, B.; Abildgaard, C.; do Canto, L.M.; Vagn-Hansen, C.; Dam, C.; Rafaelsen, S.; Hansen, T.F. Precision medicine applied to metastatic colorectal cancer using tumor-derived organoids and in-vitro sensitivity testing: A phase 2, single-center, open-label, and non-comparative study. J. Exp. Clin. Cancer Res. 2023, 42, 115. [Google Scholar] [CrossRef]
- Ooft, S.N.; Weeber, F.; Schipper, L.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van de Haar, J.; Prevoo, W.; van Werkhoven, E.; Snaebjornsson, P.; et al. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open 2021, 6, 100103. [Google Scholar] [CrossRef]
- Freeman, A.E.; Hoffman, R.M. In vivo-like growth of human tumors in vitro. Proc. Natl. Acad. Sci. USA 1986, 83, 2694–2698. [Google Scholar] [CrossRef]
- Furukawa, T.; Kubota, T.; Hoffman, R.M. Clinical applications of the histoculture drug response assay. Clin. Cancer Res. 1995, 1, 305–311. [Google Scholar]
- Majumder, B.; Baraneedharan, U.; Thiyagarajan, S.; Radhakrishnan, P.; Narasimhan, H.; Dhandapani, M.; Brijwani, N.; Pinto, D.D.; Prasath, A.; Shanthappa, B.U.; et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 2015, 6, 6169. [Google Scholar] [CrossRef] [Green Version]
- Karekla, E.; Liao, W.J.; Sharp, B.; Pugh, J.; Reid, H.; Quesne, J.L.; Moore, D.; Pritchard, C.; MacFarlane, M.; Pringle, J.H. Ex Vivo Explant Cultures of Non-Small Cell Lung Carcinoma Enable Evaluation of Primary Tumor Responses to Anticancer Therapy. Cancer Res. 2017, 77, 2029–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, B.; Junkin, M.; Kashaf, S.S.; Romero-Calvo, I.; Kirby, K.; Matthews, J.; Weber, C.R.; Rzhetsky, A.; White, K.P.; Tay, S. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 2020, 11, 5271. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Aref, A.R.; Lizotte, P.H.; Ivanova, E.; Stinson, S.; Zhou, C.W.; Bowden, M.; Deng, J.; Liu, H.; Miao, D.; et al. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov. 2018, 8, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Hsu, C.; Wang, Z.; Natesh, N.R.; Millen, R.; Negrete, M.; Giroux, N.; Rivera, G.O.; Dohlman, A.; Bose, S.; et al. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 2022, 29, 905–917.e6. [Google Scholar] [CrossRef]
- Wang, Z.; Boretto, M.; Millen, R.; Natesh, N.; Reckzeh, E.S.; Hsu, C.; Negrete, M.; Yao, H.; Quayle, W.; Heaton, B.E.; et al. Rapid tissue prototyping with micro-organospheres. Stem Cell Rep. 2022, 17, 1959–1975. [Google Scholar] [CrossRef]
- Sachs, N.; Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 2014, 24, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Weaver, V.M.; Lelievre, S.; Lakins, J.N.; Chrenek, M.A.; Jones, J.C.; Giancotti, F.; Werb, Z.; Bissell, M.J. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002, 2, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Solomon, F.D. 3D cell culture systems: Advantages and applications. J. Cell Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef]
- Baba, H.; Takeuchi, H.; Inutsuka, S.; Yamamoto, M.; Endo, K.; Ohno, S.; Maehara, Y.; Sugimachi, K. Clinical value of SDI test for predicting effect of postoperative chemotherapy for patients with gastric cancer. Semin. Surg. Oncol. 1994, 10, 140–144. [Google Scholar] [CrossRef]
- Bellamy, W.T. Prediction of response to drug therapy of cancer. A review of in vitro assays. Drugs 1992, 44, 690–708. [Google Scholar] [CrossRef]
- Bosanquet, A.G. In vitro drug sensitivity testing for the individual patient: An ideal adjunct to current methods of treatment choice. Clin. Oncol. (R. Coll. Radiol. (Great Br.)) 1993, 5, 195–197. [Google Scholar] [CrossRef]
- Kurbacher, C.M.; Nagel, W.; Mallmann, P.; Kurbacher, J.A.; Sass, G.; Hubner, H.; Andreotti, P.E.; Krebs, D. In vitro activity of titanocenedichloride in human renal cell carcinoma compared to conventional antineoplastic agents. Anticancer Res. 1994, 14, 1529–1533. [Google Scholar]
- Untch, M.; Sevin, B.U.; Perras, J.P.; Angioli, R.; Untch, A.; Hightower, R.D.; Koechli, O.; Averette, H.E. Evaluation of paclitaxel (taxol), cisplatin, and the combination paclitaxel-cisplatin in ovarian cancer in vitro with the ATP cell viability assay. Gynecol. Oncol. 1994, 53, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Frappart, P.O.; Hofmann, T.G. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers 2020, 12, 2750. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Cowan, J.; Harris, G.; Reisdorf, G. Human tumor cloning: Feasibility and clinical correlations. Cancer Chemother. Pharmacol. 1981, 6, 265–271. [Google Scholar] [CrossRef]
- Bertelsen, C.A.; Sondak, V.K.; Mann, B.D.; Korn, E.L.; Kern, D.H. Chemosensitivity testing of human solid tumors. A review of 1582 assays with 258 clinical correlations. Cancer 1984, 53, 1240–1245. [Google Scholar] [CrossRef]
- Kobayashi, H.; Higashiyama, M.; Minamigawa, K.; Tanisaka, K.; Takano, T.; Yokouchi, H.; Kodama, K.; Hata, T. Examination of in vitro chemosensitivity test using collagen gel droplet culture method with colorimetric endpoint quantification. Jpn. J. Cancer Res. 2001, 92, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Chen, X.; Li, R.; Zhao, H.; Wang, X.; Shao, Z.; Shang, Z. Phenotype transition of fibroblasts incorporated into patient-derived oral carcinoma organoids. Oral Dis. 2023, 29, 913–922. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Wang, L.; Li, M.; Ge, Z.; Noordam, L.; Lieshout, R.; Verstegen, M.M.A.; Ma, B.; Su, J.; et al. Cancer-Associated Fibroblasts Provide a Stromal Niche for Liver Cancer Organoids That Confers Trophic Effects and Therapy Resistance. Cell Mol. Gastroenterol. Hepatol. 2021, 11, 407–431. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, E.; Shang, Z. 3D Co-culture of Cancer-Associated Fibroblast with Oral Cancer Organoids. J. Dent. Res. 2021, 100, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Giannakou, A.; Wyman, S.; Gruzas, J.; Golas, J.; Zhong, W.; Loreth, C.; Sridharan, L.; Yamin, T.T.; Damelin, M.; et al. Cancer-associated fibroblasts suppress SOX2-induced dysplasia in a lung squamous cancer coculture. Proc. Natl. Acad. Sci. USA 2018, 115, E11671–E11680. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.; McOlash, L.; Palen, K.; Johnson, B.; Duris, C.; Yang, Q.; Dwinell, M.B.; Hunt, B.; Evans, D.B.; Gershan, J.; et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 2018, 18, 335. [Google Scholar] [CrossRef]
- Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell 2018, 174, 1586–1598.e1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcon, F.; Zuo, J.; Pearce, H.; Nicol, S.; Margielewska-Davies, S.; Farhat, M.; Mahon, B.; Middleton, G.; Brown, R.; Roberts, K.J.; et al. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology 2020, 9, 1845424. [Google Scholar] [CrossRef]
- Chakrabarti, J.; Koh, V.; So, J.B.Y.; Yong, W.P.; Zavros, Y. A Preclinical Human-Derived Autologous Gastric Cancer Organoid/Immune Cell Co-Culture Model to Predict the Efficacy of Targeted Therapies. J. Vis. Exp. 2021, e61443. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Xie, S.; Gray, G.K.; Dezfulian, M.H.; Li, W.; Huang, L.; Akshinthala, D.; Ferrer, E.; Conahan, C.; Perea Del Pino, S.; et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J. Immunother. Cancer 2021, 9, e003213. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.S.; Ewald, A.J. Organoid Co-culture Methods to Capture Cancer Cell-Natural Killer Cell Interactions. Methods Mol. Biol. 2022, 2463, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Lieshout, R.; van Tienderen, G.S.; de Ruiter, V.; van Royen, M.E.; Boor, P.P.C.; Magre, L.; Desai, J.; Koten, K.; Kan, Y.Y.; et al. Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. Br. J. Cancer 2022, 127, 649–660. [Google Scholar] [CrossRef]
- Lau, A.N.; Li, Z.; Danai, L.V.; Westermark, A.M.; Darnell, A.M.; Ferreira, R.; Gocheva, V.; Sivanand, S.; Lien, E.C.; Sapp, K.M.; et al. Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. eLife 2020, 9, e56782. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chu, T.Y.; Ding, D.C. Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation. J. Biomed. Sci. 2020, 27, 32. [Google Scholar] [CrossRef] [Green Version]
- da Silva, B.; Mathew, R.K.; Polson, E.S.; Williams, J.; Wurdak, H. Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion. SLAS Discov. 2018, 23, 862–868. [Google Scholar] [CrossRef] [Green Version]
- Ooft, S.N.; Weeber, F.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van Werkhoven, E.; Schipper, L.; Hoes, L.; Vis, D.J.; van de Haar, J.; et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019, 11, eaay2574. [Google Scholar] [CrossRef]
- Veninga, V.; Voest, E.E. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell 2021, 39, 1190–1201. [Google Scholar] [CrossRef]
- Kubota, T.; Sasano, N.; Abe, O.; Nakao, I.; Kawamura, E.; Saito, T.; Endo, M.; Kimura, K.; Demura, H.; Sasano, H.; et al. Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin. Cancer Res. 1995, 1, 1537–1543. [Google Scholar]
- Chang, S.G.; Chai, S.E.; Kim, E.S.; Yoon, C.; Joo, H.Z.; Hoffman, R.M. The measurement of glucose consumption in histoculture to determine effects of doxorubicin and cisplatinum on human gastric carcinoma. Anticancer Res. 1993, 13, 1303–1310. [Google Scholar] [PubMed]
- Hirano, Y.; Ushiyama, T.; Suzuki, K.; Fujita, K. Clinical application of an in vitro chemosensitivity test, the Histoculture Drug Response Assay, to urological cancers: Wide distribution of inhibition rates in bladder cancer and renal cell cancer. Urol. Res. 1999, 27, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Ohie, S.; Udagawa, Y.; Kozu, A.; Komuro, Y.; Aoki, D.; Nozawa, S.; Moossa, A.R.; Hoffman, R.M. Cisplatin sensitivity of ovarian cancer in the histoculture drug response assay correlates to clinical response to combination chemotherapy with cisplatin, doxorubicin and cyclophosphamide. Anticancer Res. 2000, 20, 2049–2054. [Google Scholar] [PubMed]
- Furukawa, T.; Kubota, T.; Tanino, H.; Oura, S.; Yuasa, S.; Murate, H.; Morita, K.; Kozakai, K.; Yano, T.; Hoffman, R.M. Chemosensitivity of breast cancer lymph node metastasis compared to the primary tumor from individual patients tested in the histoculture drug response assay. Anticancer Res. 2000, 20, 3657–3658. [Google Scholar]
- Kang, H.J.; Ko, C.D.; Yoon, H.S.; Kim, M.B.; Ahn, S.H. The Reliability of Histoculture Drug Response Assay (HDRA) in Chemosensitivity Tests for Breast Cancer. Cancer Res. Treat. 2001, 33, 392–397. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Goto, M.; Hanai, N.; Ijichi, K.; Adachi, M.; Terada, A.; Hyodo, I.; Ogawa, T.; Furukawa, T. Evaluation of optimal drug concentration in histoculture drug response assay in association with clinical efficacy for head and neck cancer. Oral Oncol. 2007, 43, 749–756. [Google Scholar] [CrossRef]
- Fujita, Y.; Hiramatsu, M.; Kawai, M.; Nishimura, H.; Miyamoto, A.; Tanigawa, N. Histoculture drug response assay predicts the postoperative prognosis of patients with esophageal cancer. Oncol. Rep. 2009, 21, 499–505. [Google Scholar] [PubMed]
- Kato, R.; Hasegawa, K.; Achiwa, Y.; Okamoto, H.; Torii, Y.; Oe, S.; Udagawa, Y. Predicting nedaplatin sensitivity of cervical cancer using the histoculture drug response assay. Eur. J. Gynaecol. Oncol. 2011, 32, 381–386. [Google Scholar]
- Lee, S.W.; Kim, Y.M.; Kim, M.B.; Kim, D.Y.; Kim, J.H.; Nam, J.H.; Kim, Y.T. In vitro chemosensitivity using the histoculture drug response assay in human epithelial ovarian cancer. Acta Med. Okayama 2012, 66, 271–277. [Google Scholar] [CrossRef]
- Shinden, Y.; Kijima, Y.; Hirata, M.; Arima, H.; Nakajyo, A.; Tanoue, K.; Maemura, K.; Natsugoe, S. Clinical Significance of the Histoculture Drug Response Assay in Breast Cancer. Anticancer Res. 2016, 36, 6173–6178. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.M. Clinical Correlation of the Histoculture Drug Response Assay in Gastrointestinal Cancer. Methods Mol. Biol. 2018, 1760, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Rodolfo, M.; Huber, V.; Cossa, M.; Gallino, G.; Leone, B.E.; Vallacchi, V.; Rivoltini, L.; Vergani, E. 3D tumor explant as a novel platform to investigate therapeutic pathways and predictive biomarkers in cancer patients. Front. Immunol. 2022, 13, 1068091. [Google Scholar] [CrossRef] [PubMed]
- Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mongare, M.M.; Gould, J.; Frederick, D.T.; et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012, 487, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.R.; Fridlyand, J.; Yan, Y.; Penuel, E.; Burton, L.; Chan, E.; Peng, J.; Lin, E.; Wang, Y.; Sosman, J.; et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012, 487, 505–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voabil, P.; de Bruijn, M.; Roelofsen, L.M.; Hendriks, S.H.; Brokamp, S.; van den Braber, M.; Broeks, A.; Sanders, J.; Herzig, P.; Zippelius, A.; et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 2021, 27, 1250–1261. [Google Scholar] [CrossRef]
- Homan, K.A.; Gupta, N.; Kroll, K.T.; Kolesky, D.B.; Skylar-Scott, M.; Miyoshi, T.; Mau, D.; Valerius, M.T.; Ferrante, T.; Bonventre, J.V.; et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 2019, 16, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, P.; Zeng, S.; Son, K.J.; Vu, T.; Ma, A.H.; Dall’Era, M.A.; Yap, S.A.; de Vere White, R.W.; Pan, C.X.; Revzin, A. Microchamber Cultures of Bladder Cancer: A Platform for Characterizing Drug Responsiveness and Resistance in PDX and Primary Cancer Cells. Sci. Rep. 2017, 7, 12277. [Google Scholar] [CrossRef] [Green Version]
- Pinho, D.; Santos, D.; Vila, A.; Carvalho, S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. Micromachines 2021, 12, 497. [Google Scholar] [CrossRef]
- Haque, M.R.; Wessel, C.R.; Leary, D.D.; Wang, C.; Bhushan, A.; Bishehsari, F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst. Nanoeng. 2022, 8, 36. [Google Scholar] [CrossRef]
- Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 2019, 19, 65–81. [Google Scholar] [CrossRef]
- Jeon, J.S.; Zervantonakis, I.K.; Chung, S.; Kamm, R.D.; Charest, J.L. In vitro model of tumor cell extravasation. PLoS ONE 2013, 8, e56910. [Google Scholar] [CrossRef] [Green Version]
- Bersini, S.; Jeon, J.S.; Dubini, G.; Arrigoni, C.; Chung, S.; Charest, J.L.; Moretti, M.; Kamm, R.D. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 2014, 35, 2454–2461. [Google Scholar] [CrossRef]
- Zervantonakis, I.K.; Hughes-Alford, S.K.; Charest, J.L.; Condeelis, J.S.; Gertler, F.B.; Kamm, R.D. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. USA 2012, 109, 13515–13520. [Google Scholar] [CrossRef]
- Dadgar, N.; Gonzalez-Suarez, A.M.; Fattahi, P.; Hou, X.; Weroha, J.S.; Gaspar-Maia, A.; Stybayeva, G.; Revzin, A. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst. Nanoeng. 2020, 6, 93. [Google Scholar] [CrossRef]
- Ngan Ngo, T.K.; Kuo, C.H.; Tu, T.Y. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. Biomicrofluidics 2023, 17, 011501. [Google Scholar] [CrossRef]
- Shirure, V.S.; Bi, Y.; Curtis, M.B.; Lezia, A.; Goedegebuure, M.M.; Goedegebuure, S.P.; Aft, R.; Fields, R.C.; George, S.C. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab. Chip 2018, 18, 3687–3702. [Google Scholar] [CrossRef] [PubMed]
- Miles, G.J.; Powley, I.; Mohammed, S.; Howells, L.; Pringle, J.H.; Hammonds, T.; MacFarlane, M.; Pritchard, C. Evaluating and comparing immunostaining and computational methods for spatial profiling of drug response in patient-derived explants. Lab. Investig. 2021, 101, 396–407. [Google Scholar] [CrossRef]
- Montero, J.; Sarosiek, K.A.; DeAngelo, J.D.; Maertens, O.; Ryan, J.; Ercan, D.; Piao, H.; Horowitz, N.S.; Berkowitz, R.S.; Matulonis, U.; et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015, 160, 977–989. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, B.; Vander Steen, T.; Espinoza, I.; Venkatapoorna, C.M.K.; Hu, Z.; Silva, F.M.; Regan, K.; Cuyas, E.; Meng, X.W.; Verdura, S.; et al. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis. 2021, 12, 977. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Munoz, A.; Yeste, J.; Ortega, M.A.; Martin, F.; Lopez, A.; Rosell, J.; Castro, S.; Serrano, C.; Samitier, J.; Ramon-Azcon, J.; et al. Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy. NPJ Precis. Oncol. 2022, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Bhola, P.D.; Ahmed, E.; Guerriero, J.L.; Sicinska, E.; Su, E.; Lavrova, E.; Ni, J.; Chipashvili, O.; Hagan, T.; Pioso, M.S.; et al. High-throughput dynamic BH3 profiling may quickly and accurately predict effective therapies in solid tumors. Sci. Signal. 2020, 13, eaay1451. [Google Scholar] [CrossRef] [PubMed]
- Pasch, C.A.; Favreau, P.F.; Yueh, A.E.; Babiarz, C.P.; Gillette, A.A.; Sharick, J.T.; Karim, M.R.; Nickel, K.P.; DeZeeuw, A.K.; Sprackling, C.M.; et al. Patient-Derived Cancer Organoid Cultures to Predict Sensitivity to Chemotherapy and Radiation. Clin. Cancer Res. 2019, 25, 5376–5387. [Google Scholar] [CrossRef]
- Morelli, M.; Lessi, F.; Barachini, S.; Liotti, R.; Montemurro, N.; Perrini, P.; Santonocito, O.S.; Gambacciani, C.; Snuderl, M.; Pieri, F.; et al. Metabolic-imaging of human glioblastoma live tumors: A new precision-medicine approach to predict tumor treatment response early. Front. Oncol. 2022, 12, 969812. [Google Scholar] [CrossRef]
- Yan, Y.; Xing, F.; Cao, J.; Hu, Y.; Li, L.; Gao, Z.; Jia, H.; Miao, K.; Shao, F.; Deng, C.X.; et al. Fluorescence intensity and lifetime imaging of lipofuscin-like autofluorescence for label-free predicting clinical drug response in cancer. Redox Biol. 2023, 59, 102578. [Google Scholar] [CrossRef]
- Li, X.; Fu, G.; Zhang, L.; Guan, R.; Tang, P.; Zhang, J.; Rao, X.; Chen, S.; Xu, X.; Zhou, Y.; et al. Assay establishment and validation of a high-throughput organoid-based drug screening platform. Stem Cell Res. Ther. 2022, 13, 219. [Google Scholar] [CrossRef]
- Bode, K.J.; Mueller, S.; Schweinlin, M.; Metzger, M.; Brunner, T. A fast and simple fluorometric method to detect cell death in 3D intestinal organoids. Biotechniques 2019, 67, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockslager, M.A.; Malinowski, S.; Touat, M.; Yoon, J.C.; Geduldig, J.; Mirza, M.; Kim, A.S.; Wen, P.Y.; Chow, K.H.; Ligon, K.L.; et al. Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models. Cell Rep. 2021, 37, 109788. [Google Scholar] [CrossRef]
- Stevens, M.M.; Maire, C.L.; Chou, N.; Murakami, M.A.; Knoff, D.S.; Kikuchi, Y.; Kimmerling, R.J.; Liu, H.; Haidar, S.; Calistri, N.L.; et al. Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat. Biotechnol. 2016, 34, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Stockslager, M.A.; Olcum, S.; Knudsen, S.M.; Kimmerling, R.J.; Cermak, N.; Payer, K.R.; Agache, V.; Manalis, S.R. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution. Rev. Sci. Instrum. 2019, 90, 085004. [Google Scholar] [CrossRef]
- Deben, C.; De La Hoz, E.C.; Compte, M.L.; Van Schil, P.; Hendriks, J.M.H.; Lauwers, P.; Yogeswaran, S.K.; Lardon, F.; Pauwels, P.; Van Laere, S.; et al. OrBITS: Label-free and time-lapse monitoring of patient derived organoids for advanced drug screening. Cell. Oncol. 2023, 46, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; et al. Multiparametric Tumor Organoid Drug Screening Using Widefield Live-Cell Imaging for Bulk and Single-Organoid Analysis. J. Vis. Exp. 2022, e64434. [Google Scholar] [CrossRef]
- Herpers, B.; Eppink, B.; James, M.I.; Cortina, C.; Canellas-Socias, A.; Boj, S.F.; Hernando-Momblona, X.; Glodzik, D.; Roovers, R.C.; van de Wetering, M.; et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. Nat. Cancer 2022, 3, 418–436. [Google Scholar] [CrossRef]
- Kodack, D.P.; Farago, A.F.; Dastur, A.; Held, M.A.; Dardaei, L.; Friboulet, L.; von Flotow, F.; Damon, L.J.; Lee, D.; Parks, M.; et al. Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care. Cell Rep. 2017, 21, 3298–3309. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.; Miles, G.J.; Powley, I.R.; Hew, R.; Pringle, J.H.; MacFarlane, M.; Pritchard, C.; Moss, E.L. Development of a patient-derived explant model for prediction of drug responses in endometrial cancer. Gynecol. Oncol. 2021, 160, 557–567. [Google Scholar] [CrossRef]
- Hill, S.J.; Decker, B.; Roberts, E.A.; Horowitz, N.S.; Muto, M.G.; Worley, M.J., Jr.; Feltmate, C.M.; Nucci, M.R.; Swisher, E.M.; Nguyen, H.; et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov. 2018, 8, 1404–1421. [Google Scholar] [CrossRef] [Green Version]
- Compadre, A.J.; van Biljon, L.N.; Valentine, M.C.; Llop-Guevara, A.; Graham, E.; Fashemi, B.; Herencia-Ropero, A.; Kotnik, E.N.; Cooper, I.; Harrington, S.P.; et al. RAD51 foci as a biomarker predictive of platinum chemotherapy response in ovarian cancer. Clin. Cancer Res. 2023, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, Y.; Kurogi, S.; Shibata, T.; Suzuki, K.; Hirashita, Y.; Fumoto, S.; Yano, S.; Yanagihara, K.; Nakada, C.; Mieno, F.; et al. Enhanced phosphorylation of c-Jun by cisplatin treatment as a potential predictive biomarker for cisplatin response in combination with patient-derived tumor organoids. Lab. Investig. 2022, 102, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Hirashita, Y.; Tsukamoto, Y.; Kudo, Y.; Kakisako, D.; Kurogi, S.; Hijiya, N.; Nakada, C.; Uchida, T.; Hirashita, T.; Hiratsuka, T.; et al. Early response in phosphorylation of ribosomal protein S6 is associated with sensitivity to trametinib in colorectal cancer cells. Lab. Investig. 2021, 101, 1036–1047. [Google Scholar] [CrossRef] [PubMed]
- Crouch, S.P.; Kozlowski, R.; Slater, K.J.; Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 1993, 160, 81–88. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Yang, L.; Zhu, J.; Wan, J.; Shen, L.; Xia, F.; Fu, G.; Deng, Y.; Pan, M.; et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell 2020, 26, 17–26.e16. [Google Scholar] [CrossRef]
- Riss, T.; O’Brien, M.; Moravec, R. Choosing the Right Cell-Based Assay for Your Research. Cell Notes 2003, 1, 6–12. [Google Scholar]
- de Bruin, E.C.; Medema, J.P. Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat. Rev. 2008, 34, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.S.; Du, R.; Bhola, P.; Bueno, R.; Letai, A. Dynamic BH3 profiling identifies active BH3 mimetic combinations in non-small cell lung cancer. Cell Death Dis. 2021, 12, 741. [Google Scholar] [CrossRef]
- Trinh, A.L.; Chen, H.; Chen, Y.; Hu, Y.; Li, Z.; Siegel, E.R.; Linskey, M.E.; Wang, P.H.; Digman, M.A.; Zhou, Y.H. Tracking Functional Tumor Cell Subpopulations of Malignant Glioma by Phasor Fluorescence Lifetime Imaging Microscopy of NADH. Cancers 2017, 9, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukonin, I.; Zinner, M.; Liberali, P. Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 2021, 53, 1495–1502. [Google Scholar] [CrossRef]
- Choo, N.; Ramm, S.; Luu, J.; Winter, J.M.; Selth, L.A.; Dwyer, A.R.; Frydenberg, M.; Grummet, J.; Sandhu, S.; Hickey, T.E.; et al. High-Throughput Imaging Assay for Drug Screening of 3D Prostate Cancer Organoids. SLAS Discov. 2021, 26, 1107–1124. [Google Scholar] [CrossRef]
- Ovejero-Sanchez, M.; Gonzalez-Sarmiento, R.; Herrero, A.B. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers 2023, 15, 448. [Google Scholar] [CrossRef]
- Venugopala, K.N. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment. Pharmaceuticals 2022, 15, 1475. [Google Scholar] [CrossRef]
- O’Connor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell 2015, 60, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Groelly, F.J.; Fawkes, M.; Dagg, R.A.; Blackford, A.N.; Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 2023, 23, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Hirashita, Y.; Tsukamoto, Y.; Yanagihara, K.; Fumoto, S.; Hijiya, N.; Nakada, C.; Uchida, T.; Matsuura, K.; Kodama, M.; Okimoto, T.; et al. Reduced phosphorylation of ribosomal protein S6 is associated with sensitivity to MEK inhibition in gastric cancer cells. Cancer Sci. 2016, 107, 1919–1928. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, R.B.; Rothenberg, S.M.; Hata, A.N.; Faber, A.C.; Piris, A.; Nazarian, R.M.; Brown, R.D.; Godfrey, J.T.; Winokur, D.; Walsh, J.; et al. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Sci. Transl. Med. 2013, 5, 196ra198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-David, U.; Ha, G.; Tseng, Y.Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 2017, 49, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 2018, 560, 325–330. [Google Scholar] [CrossRef]
- Ben-David, U.; Beroukhim, R.; Golub, T.R. Genomic evolution of cancer models: Perils and opportunities. Nat. Rev. Cancer 2019, 19, 97–109. [Google Scholar] [CrossRef]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ex Vivo Cultures | Heterogeneity a | Co-Culture b | Medium And ECM Gels | Success Rate for Primary Culture c | Expansion for Biobank d | Key Articles e |
---|---|---|---|---|---|---|
Patient-derived 2D cultures | Low | Exogeneous components | Serum-based | High, but depending on the tissue type | Yes | Scherer et al., 1953 [11] Cree et al., 1996 [12] Andreotti et al., 1995 [13] Hunter et al., 1993 [14] |
Patient-derived spheroids | Low | Exogeneous components | Serum-based medium with ECM gel, such as collagen and soft agar | High, but depending on the tissue type | No | Hamburger et al., 1977 [6] Von Hoff et al., 1983 [15] Kobayashi et al., 1997 [16] |
Patient-derived cancer organoids (PDCOs) | High | Exogeneous and patient-derived components | Stem cell culture-based medium with ECM gel, such as Matrigel and collagen | High, but depending on the tissue type | Yes | Sato et al., 2011 [17] Vlachogiannis et al., 2018 [18] Jensen et al., 2023 [19] Ooft et al., 2021 [20] |
Patient-derived explants (PDEs), Histoculture | Very high | Patient-derived components | Serum-based medium with scaffold, such as sponge and transwell | High, but depending on the tissue type | No | Freeman et al., 1986 [21] Furukawa et al., 1995 [22] Majumder et al., 2015 [23] Karekla et al., 2017 [24] |
Microfluid-based culture (Organs on chips) | - | Exogeneous components | Microfluidic medium with a few compartments for co-culture | High, but depending on the tissue type | No | Huh et al., 2010 [25] Schuster et al., 2020 [26] Jenkins et al., 2018 [27] |
Micro-organospheres (MOSs) | High | Patient-derived components | Stem cell culture-based medium with Matrigel | High, but depending on the tissue type | Yes | Ding et al., 2022 [28] Wang., 2022 [29] |
Study Title | NCT Number | Phases | Enrollment | Start Date | Study Status |
---|---|---|---|---|---|
PTCs-based Precision Treatment Strategy on Recurrent High-grade Gliomas | NCT05473923 | EARLY_PHASE1 | 30 | 2022/8/12 | RECRUITING |
[18F]Fluoroestradiol-PET/CT Companion Imaging Study to the FORESEE Trial | NCT04727632 | EARLY_PHASE1 | 6 | 2021/3/31 | RECRUITING |
Pilot Trial for Treatment of Recurrent Glioblastoma | NCT05432518 | EARLY_PHASE1 | 10 | 2023/6/27 | RECRUITING |
Modulation of Ciliogenesis in Glioma Stem Cells | NCT05772767 | NA | 80 | 2021/2/15 | RECRUITING |
Patient-derived Organoids Drug Screen in Pancreatic Cancer | NCT05351983 | NA | 50 | 2022/9/22 | RECRUITING |
Evaluation and Comparison of the Growth Rate of Pancreatic Cancer Patient-derived Organoids | NCT03990675 | NA | 50 | 2018/12/1 | UNKNOWN |
CPCT-05 Biopsy Protocol Patient Selection | NCT01904916 | NA | 195 | 2014/1 | TERMINATED |
Systemic Neoadjuvant and Adjuvant Control by Precision Medicine in Rectal Cancer | NCT04842006 | NA | 93 | 2021/12/20 | RECRUITING |
Selecting Chemotherapy With High-throughput Drug Screen Assay Using Patient Derived Organoids in Patients With Refractory Solid Tumours (SCORE) | NCT04279509 | NA | 35 | 2019/5/29 | UNKNOWN |
Individualized Precision Treatment Based on Ovarian Cancer Organoid Model | NCT05813509 | NA | 30 | 2022/12/1 | RECRUITING |
OPPOSITE: Outcome Prediction Of Systemic Treatment in Esophagogastric Carcinoma | NCT03429816 | NA | 40 | 2018/4/15 | ACTIVE_NOT_ RECRUITING |
Organoids From Metastases of Prostate Cancer | NCT03952793 | NA | 1 | 2019/12/4 | TERMINATED |
The Safety and Feasibility of Costal Bone Marrow Aspiration During Thoracic Surgery | NCT05251805 | NA | 10 | 2023/3/20 | RECRUITING |
Establishing Organoids From Metastatic Pancreatic Cancer Patients, the OPT-I Study. | NCT03500068 | NA | 30 | 2017/9/4 | UNKNOWN |
Establishment of Pancreas Cancer and Cancer-associated Fibroblast Using EUS-guided Biopsy Samples | NCT05571956 | NA | 50 | 2020/7/1 | RECRUITING |
Evaluation of ex Vivo Drug Combination Optimization Platform in Recurrent High Grade Astrocytic Glioma | NCT05532397 | NA | 10 | 2023/2/17 | RECRUITING |
Clinical Study on Drug Sensitivity Verification or Prediction of Therapy for Breast Cancer by Patient-Derived Organoid Model | NCT03544047 | NA | 50 | 2019/1/1 | UNKNOWN |
In Vitro Organoid Drug Sensitivity-Guided Treatment for Metastatic Pancreatic and Gastric Cancer | NCT05842187 | NA | 20 | 2023/3/3 | RECRUITING |
Primary Organoid Models and Combined Nucleic Acids Therapeutics for Anti-HPV Treatments | NCT04278326 | NA | 50 | 2020/3/6 | RECRUITING |
Functional Precision Oncology for Metastatic Breast Cancer | NCT04450706 | NA | 15 | 2021/2/16 | RECRUITING |
Record Voxel Rate Nonlinear Optical Microscope to Unravel Brain Connectome and Signaling-Establish Reliably Electrophysiological Readouts From Human-induced Pluripotent Stem Cells (hiPSCs)-Derived Cerebral Organoids and Surgically Dissected Human Live Brains | NCT05921786 | NA | 500 | 2023/5/1 | RECRUITING |
UZ/KU Leuven Program for Post-mortem Tissue Donation to Enhance Research | NCT04531696 | NA | 100 | 2020/11/30 | RECRUITING |
Stereotactic Body Radiation Therapy for Unresectable Perihilar Cholangiocarcinoma | NCT03307538 | NA | 6 | 2017/11/6 | COMPLETED |
The Clinical Efficacy of Drug Sensitive Neoadjuvant Chemotherapy Based on Organoid Versus Traditional Neoadjuvant Chemotherapy in Advanced Rectal Cancer | NCT05352165 | NA | 192 | 2023/1/1 | NOT_YET_ RECRUITING |
A Platform of Patient Derived Xenografts (PDX) and 2D/3D Cell Cultures of Soft Tissue Sarcomas (STS) | NCT02910895 | NA | 40 | 2017/9/9 | RECRUITING |
Markers to Evaluate the Efficacy of PH-based Regimen as a Neoadjuvant Therapy for Operable HER2 Positive Breast Cancer | NCT04281641 | NA | 94 | 2020/4/21 | RECRUITING |
Patient-Derived Organoids for Rectal Cancer | NCT04371198 | NA | 20 | 2020/9/18 | COMPLETED |
Precision Chemotherapy Based on Organoid Drug Sensitivity for Colorectal Cancer | NCT05832398 | NA | 186 | 2023/5/1 | RECRUITING |
Grafts of GSCs Into Brain Organoids for Testing Anti-invasion Drugs | NCT05772741 | NA | 160 | 2018/12/3 | RECRUITING |
Prospective Multicenter Study Evaluating Feasibility and Efficacy of Tumor Organoid-based Precision Medicine in Patients With Advanced Refractory Cancers | NCT05267912 | NA | 1919 | 2022/1/19 | RECRUITING |
Engineering Immune Organoids to Study Pediatric Cancer | NCT05890781 | NA | 44 | 2023/5/12 | RECRUITING |
TCR-T Cell Immunotherapy of Lung Cancer and Other Solid Tumors | NCT03778814 | PHASE1 | 30 | 2018/12/1 | RECRUITING |
Testing ONC201 to Prevent Colorectal Cancer | NCT05630794 | PHASE1 | 24 | 2023/5/13 | NOT_YET_ RECRUITING |
Quadratic Phenotypic Optimisation Platform (QPOP) Utilisation to Enhance Selection of Patient Therapy Through Patient Derived Organoids in Breast Cancer | NCT05177432 | PHASE1 | 26 | 2021/12/6 | RECRUITING |
Birinapant and Carboplatin in Treating Patients With Recurrent High Grade Ovarian, Fallopian Tube, or Primary Peritoneal Cancer | NCT02756130 | PHASE1|PHASE2 | 0 | 2018/8/1 | WITHDRAWN |
Optimizing and Personalising Azacitidine Combination Therapy for Treating Solid Tumours QPOP and CURATE.AI | NCT05381038 | PHASE1|PHASE2 | 10 | 2022/6 | NOT_YET_ RECRUITING |
Cancer Preventive Vaccine Nous-209 for Lynch Syndrome Patients | NCT05078866 | PHASE1|PHASE2 | 45 | 2022/11/10 | RECRUITING |
Cisplatinum and Everolimus in Patients With Metastatic or Unresectable NEC of Extrapulmonary Origin | NCT02695459 | PHASE2 | 39 | 2016/3/30 | UNKNOWN |
Pancreatic Adenocarcinoma Signature Stratification for Treatment | NCT04469556 | PHASE2 | 150 | 2020/10/14 | RECRUITING |
Treatment of Newly Diagnosed Patient’s With Wilm’s Tumor Requiring Abdominal Radiation Delivered With Proton Beam Irradiation | NCT04968990 | PHASE2 | 95 | 2021/8/19 | RECRUITING |
Trifluridine/Tipiracil and Irinotecan for the Treatment of Advanced Refractory Biliary Tract Cancer | NCT04072445 | PHASE2 | 28 | 2019/10/18 | ACTIVE_NOT_ RECRUITING |
Functional Precision Oncology to Predict, Prevent, and Treat Early Metastatic Recurrence of TNBC | NCT05464082 | PHASE2 | 80 | 2023/1/6 | RECRUITING |
A Trial With Chemotherapy, Immunotherapy, and Radiotherapy for Patients With Newly Diagnosed Stage IV Small Cell Lung Cancer | NCT04951115 | PHASE2 | 42 | 2021/7/12 | RECRUITING |
Niraparib Maintenance Treatment in mCRC With a Partial Complete Response After Oxaliplatin-based Induction Therapy | NCT05412706 | PHASE2 | 46 | 2023/6/1 | NOT_YET_ RECRUITING |
Oral Iloprost for the Prevention of Lung Cancer In Former Smokers | NCT05411107 | PHASE2 | 80 | 2023/12/1 | NOT_YET_ RECRUITING |
Patient-derived-organoid (PDO) Guided Versus Conventional Therapy for Advanced Inoperable Abdominal Tumors | NCT05378048 | PHASE2 | 0 | 2022/7/4 | WITHDRAWN |
Atezolizumab + Cabozantinib in Patients w/ Metastatic, Refractory Pancreatic Cancer | NCT04820179 | PHASE2 | 29 | 2021/10/12 | RECRUITING |
Organoids Predict Therapeutic Response in Patients With Multi-line Drug-resistant Non-small Cell Lung Cancer | NCT05669586 | PHASE2 | 50 | 2023/2/1 | RECRUITING |
The Study of Gemcitabine Plus Nab-Paclitaxel in Combination With Pegvorhyaluronidase Alfa (PVHA; PEGPH20) and Pembrolizumab as Front-line Treatment for Metastatic Pancreatic Adenocarcinoma. | NCT04045730 | PHASE2 | 0 | 2019/11/15 | WITHDRAWN |
High Dose Vitamin C Intravenous Infusion in Patients With Resectable or Metastatic Solid Tumor Malignancies | NCT03146962 | PHASE2 | 61 | 2017/3/29 | COMPLETED |
Liposomal iRInotecan, Carboplatin or oXaliplatin for Esophagogastric Cancer | NCT03764553 | PHASE2 | 310 | 2019/5/1 | RECRUITING |
Imatinib as Pre-operative Anti-Colon Cancer Targeted Therapy | NCT02685046 | PHASE2 | 5 | 2016/4 | TERMINATED |
PaTcH Study: A Phase 2 Study of Trametinib and Hydroxychloroquine in Patients With Metastatic Refractory Pancreatic Cancer | NCT05518110 | PHASE2 | 22 | 2023/5/31 | RECRUITING |
Early-Line Anti-EGFR Therapy to Facilitate Retreatment for Select Patients With mCRC | NCT04587128 | PHASE2 | 110 | 2020/10/19 | RECRUITING |
Guiding Instillation in Non Muscle-invasive Bladder Cancer Based on Drug Screens in Patient Derived Organoids | NCT05024734 | PHASE2 | 33 | 2022/11/17 | RECRUITING |
Study to Investigate Outcome of Individualized Treatment in Patients With Metastatic Colorectal Cancer | NCT05725200 | PHASE2 | 40 | 2022/9/27 | RECRUITING |
Organoid-Guided Adjuvant Chemotherapy for Pancreatic Cancer | NCT04931394 | PHASE3 | 200 | 2021/6/1 | RECRUITING |
Precise Therapy for Refractory HER2 Positive Advanced Breast Cancer | NCT05429684 | PHASE3 | 120 | 2021/1/1 | RECRUITING |
Individualized Locoregional Treatment of Initially Biopsy-proven Node-positive Breast Cancer After Primary Systemic Therapy | NCT04281355 | PHASE3 | 0 | 2021/1/1 | WITHDRAWN |
Organoid-Guided Chemotherapy for Advanced Pancreatic Cancer | NCT04931381 | PHASE3 | 100 | 2021/6/1 | RECRUITING |
Endpoint Assays | Surrogate Biomarkers for Drug Efficacy | Bulk or Individual Cells a | Serially Detectable b | Detection Method | Use Specific Equipment | Unique Points | Key Papers |
---|---|---|---|---|---|---|---|
ATP-based bulk assay | ATP | Bulk | No | Luminometer | No | Sensitive, most widely used among the endpoint assays | Ooft et al., 2019 [58] Yao et al., 2020 [80] van de Wetering et al., 2015 [87] |
Dynamic BH3 profiling (DBP) | Mitochondrial depolarization c | Bulk | No | Fluorescent detector | Yes (e.g., MACSQuant and MetaXpress) | Detect early apoptotic event | Montero et al., 2015 [88] Schroeder et al., 2021 [89] Manzano-Munoz et al., 2022 [90] Bhola et al., 2020 [91] |
Optical metabolic imaging (OMI) and fluorescence lifetime imaging microscopy (FLIM) | Metabolites’ autofluorescence, such as NAD(P)H, FAD and lipofuscin | Individual cells | Yes | Fluorescent detector | Yes (e.g, titanium:sapphire laser, custamized filter cube, SPC-150 [Becker & Hickl], SPCImage) | Detectable over time at single cell level | Pasch et al., 2019 [92] Morelli et al., 2022 [93] Yan et al., 2022 [94] |
Fluorescent dye-based assay | Fluorescence of Calcein-AM, Hoechst and PI | Individual cells | Yes | Fluorescent detector | No | Cost effective | Li et al., 2022 [95] Bode et al., 2019 [96] |
Mass accumulation rate (MAR) assay by suspended microchannel resonator (SMR) | Buoyant mass | Individual cells | No (but non-invasive) | Single cell mass measurement by resonance frequency signal | Yes (homemade SMR) | Expansion of culture is not required. | Stevens et al., 2016 [97] Stockslager et al., 2019 [98] Stockslager et al, 2021 [99] |
Live cell imaging based assay | Live cell images | Individual cells | Yes | Microscope | Yes (e.g., BioTek Cytation 5 Cell Imaging Multimode Reader, CellProfiler, ImageXpress Micro XLS system) | Adapted for PDCOs | Deben et al., 2023 [100] Le Compte et al., 2022 [101] Herpers et al., 2022 [102] |
Immunostaining-based assay | Cytokeratin, cPARP, Ki67 | Individual cells | No | Microscope | No | ICI efficacy can be evaluated | Kodack et al., 2017 [103] Collins et al., 2021 [104] Miles et al., 2021 [87] |
Immunostaining for drug specific response biomarkers | RAD51 foci, γH2AX and p-c-Jun for DNA damaging agents. pS6 for MEK inhibitor. | Individual cells | No | microscope | No | Use small amount of ex vivo culture | Hill et al., 2018 [105] Compadre et al., 2023 [106] Tsukamoto et al., 2022 [107] Hirashita et al., 2021 [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukamoto, Y.; Hirashita, Y.; Shibata, T.; Fumoto, S.; Kurogi, S.; Nakada, C.; Kinoshita, K.; Fuchino, T.; Murakami, K.; Inomata, M.; et al. Patient-Derived Ex Vivo Cultures and Endpoint Assays with Surrogate Biomarkers in Functional Testing for Prediction of Therapeutic Response. Cancers 2023, 15, 4104. https://doi.org/10.3390/cancers15164104
Tsukamoto Y, Hirashita Y, Shibata T, Fumoto S, Kurogi S, Nakada C, Kinoshita K, Fuchino T, Murakami K, Inomata M, et al. Patient-Derived Ex Vivo Cultures and Endpoint Assays with Surrogate Biomarkers in Functional Testing for Prediction of Therapeutic Response. Cancers. 2023; 15(16):4104. https://doi.org/10.3390/cancers15164104
Chicago/Turabian StyleTsukamoto, Yoshiyuki, Yuka Hirashita, Tomotaka Shibata, Shoichi Fumoto, Shusaku Kurogi, Chisato Nakada, Keisuke Kinoshita, Takafumi Fuchino, Kazunari Murakami, Masafumi Inomata, and et al. 2023. "Patient-Derived Ex Vivo Cultures and Endpoint Assays with Surrogate Biomarkers in Functional Testing for Prediction of Therapeutic Response" Cancers 15, no. 16: 4104. https://doi.org/10.3390/cancers15164104
APA StyleTsukamoto, Y., Hirashita, Y., Shibata, T., Fumoto, S., Kurogi, S., Nakada, C., Kinoshita, K., Fuchino, T., Murakami, K., Inomata, M., Moriyama, M., & Hijiya, N. (2023). Patient-Derived Ex Vivo Cultures and Endpoint Assays with Surrogate Biomarkers in Functional Testing for Prediction of Therapeutic Response. Cancers, 15(16), 4104. https://doi.org/10.3390/cancers15164104