PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Strategy and Study Selection
2.2. Radiomics Methodology and Study Quality
3. Results
3.1. Radiomics Assessment
3.2. Baseline PET for the Prediction of Biomarker Expression
3.3. The Prediction of Response to Immunotherapy
3.4. The Prediction of Adverse Events Correlated with Immunotherapy by [18F]FDG PET/CT and Radiomics
4. Discussion
4.1. Clinical Assessment
4.2. Radiomics Evaluation
4.3. Limitations
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Abate, D.; Abbasi, N. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar]
- Revels, S.L.; Lee, J.M. Anti-angiogenic therapy in nonsquamous non-small cell lung cancer (NSCLC) with tyrosine kinase in-hibition (TKI) that targets the VEGF receptor (VEGFR): Perspective on phase III clinical trials. J. Thorac. Dis. 2018, 10, 617–620. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Liu, L.; Chen, Z.; Fan, Y.; Zhou, Y.; Yuan, Z.; Zhang, W. Current treatments for non-small cell lung cancer. Front. Oncol. 2022, 12, 3862. [Google Scholar] [CrossRef] [PubMed]
- Mithoowani, H.; Febbraro, M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onoi, K.; Chihara, Y.; Uchino, J.; Shimamoto, T.; Morimoto, Y.; Iwasaku, M.; Kaneko, Y.; Yamada, T.; Takayama, K. Immune Checkpoint Inhibitors for Lung Cancer Treatment: A Review. J. Clin. Med. 2020, 9, 1362. [Google Scholar] [CrossRef]
- Blons, H.; Garinet, S.; Laurent-Puig, P.; Oudart, J.-B. Molecular markers and prediction of response to immunotherapy in non-small cell lung cancer, an update. J. Thorac. Dis. 2019, 11, S25–S36. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.-P.; Du, X.-J.; Liu, J.-Q.; Huang, C.-L.; Chen, L.; Zhou, G.-Q.; Li, W.-F.; Mao, Y.-P.; Hsu, C.; et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018, 363, k4226. [Google Scholar] [CrossRef]
- Rowe, S.P.; Pomper, M.G. Molecular imaging in oncology: Current impact and future directions. CA Cancer J. Clin. 2021, 72, 333–352. [Google Scholar] [CrossRef]
- Evangelista, L.; Cuppari, L.; Menis, J.; Bonanno, L.; Reccia, P.; Frega, S.; Pasello, G. 18F-FDG PET/CT in non-small-cell lung cancer patients. Nucl. Med. Commun. 2019, 40, 802–807. [Google Scholar] [CrossRef]
- Kudura, K.; Ritz, N.; Kutzker, T.; Hoffmann, M.H.K.; Templeton, A.J.; Foerster, R.; Kreissl, M.C.; Antwi, K. Predictive Value of Baseline FDG-PET/CT for the Durable Response to Immune Checkpoint Inhibition in NSCLC Patients Using the Morphological and Metabolic Features of Primary Tumors. Cancers 2022, 14, 6095. [Google Scholar] [CrossRef]
- Bianconi, F.; Palumbo, I.; Fravolini, M.L.; Rondini, M.; Minestrini, M.; Pascoletti, G.; Nuvoli, S.; Spanu, A.; Scialpi, M.; Aristei, C.; et al. Form Factors as Potential Imaging Bi-omarkers to Differentiate Benign vs. Malignant Lung Lesions on CT Scans. Sensors 2022, 22, 5044. [Google Scholar] [CrossRef]
- Aide, N.; Weyts, K.; Lasnon, C. Prediction of the Presence of Targetable Molecular Alteration(s) with Clinico-Metabolic 18 F-FDG PET Radiomics in Non-Asian Lung Adenocarcinoma Patients. Diagnostics 2022, 12, 2448. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.-H.; Zhou, S.-H.; Xia, W.-Y.; Zhang, Y.; Zhang, J.-P.; Fu, X.-L.; Yu, W. PET-based radiomics visualizes tumor-infiltrating CD8 T cell exhaustion to optimize radiotherapy/immunotherapy combination in mouse models of lung cancer. Biomark. Res. 2023, 11, 10. [Google Scholar] [CrossRef]
- Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E. The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J. Clin. Med. 2022, 11, 1740. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.; Aerts, H.J.; Mak, R.H. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit. Health 2019, 1, e106–e107. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, F.; Palumbo, I.; Spanu, A.; Nuvoli, S.; Fravolini, M.L.; Palumbo, B. PET/CT Radiomics in Lung Cancer: An Overview. Appl. Sci. 2020, 10, 1718. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Sun, D.; Guo, Y.; Guo, Y.; Xiao, J.; Wang, L.; Yao, X. Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Nonsmall Cell Lung Cancer Patients: An Initial Result. Acad. Radiol. 2019, 27, 171–179. [Google Scholar] [CrossRef]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Mu, W.; Tunali, I.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18 F Fluorodeoxyglucose PET/CT Images Predicts Severe Im-mune-related Adverse Events in Patients with NSCLC. Radiol. Artif. Intell. 2020, 2, e190063. [Google Scholar] [CrossRef]
- Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Na, K.J.; Choi, H.; Ock, C.-Y.; Ha, S.; Kim, M.; Park, S.; Keam, B.; Kim, T.M.; Paeng, J.C.; et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Theranostics 2020, 10, 10838–10848. [Google Scholar] [CrossRef]
- Valentinuzzi, D.; Vrankar, M.; Boc, N.; Ahac, V.; Zupancic, Z.; Unk, M.; Skalic, K.; Zagar, I.; Studen, A.; Simoncic, U.; et al. [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol. Oncol. 2020, 54, 285–294. [Google Scholar] [CrossRef]
- Li, J.; Ge, S.; Sang, S.; Hu, C.; Deng, S. Evaluation of PD-L1 Expression Level in Patients with Non-Small Cell Lung Cancer by 18F-FDG PET/CT Radiomics and Clinicopathological Characteristics. Front. Oncol. 2021, 11, 789014. [Google Scholar] [CrossRef]
- Mu, W.; Katsoulakis, E.; Whelan, C.J.; Gage, K.L.; Schabath, M.B.; Gillies, R.J. Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors. Br. J. Cancer 2021, 125, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Jiang, L.; Shi, Y.; Tunali, I.; Gray, J.E.; Katsoulakis, E.; Tian, J.; Gillies, R.J.; Schabath, M.B. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J. Immunother. Cancer 2021, 9, e002118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zou, S.; Kuang, D.; Yan, J.; Zhao, J.; Zhu, X. A Novel Approach Using FDG-PET/CT-Based Radiomics to Assess Tumor Immune Phenotypes in Patients with Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 769272. [Google Scholar] [CrossRef]
- Tankyevych, O.; Trousset, F.; Latappy, C.; Berraho, M.; Dutilh, J.; Tasu, J.P.; Lamour, C.; Le Rest, C.C. Development of Radiomic-Based Model to Predict Clinical Outcomes in Non-Small Cell Lung Cancer Patients Treated with Immunotherapy. Cancers 2022, 14, 5931. [Google Scholar] [CrossRef]
- Tong, H.; Sun, J.; Fang, J.; Zhang, M.; Liu, H.; Xia, R.; Zhou, W.; Liu, K.; Chen, X. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study. Front. Immunol. 2022, 13, 859323. [Google Scholar] [CrossRef]
- Cui, Y.; Lin, Y.; Zhao, Z.; Long, H.; Zheng, L.; Lin, X. Comprehensive 18F-FDG PET-based radiomics in elevating the pathological response to neoadjuvant immunochemotherapy for resectable stage III non-small-cell lung cancer: A pilot study. Front. Immunol. 2022, 13, 994917. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, X.; Liu, H.; Qiu, B.; Liu, S.; Zheng, C.; Fu, J.; Mo, Y.; Chen, N.; Zhou, R.; et al. Assessing dynamic metabolic heterogeneity in non-small cell lung cancer patients via ultra-high sensitivity total-body [18F]FDG PET/CT imaging: Quantitative analysis of [18F]FDG uptake in primary tumors and metastatic lymph nodes. Eur. J. Nucl. Med. 2022, 49, 4692–4704. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Shao, Y.; He, W.; Hu, W.; Xu, Y.; Chen, J.; Wu, C.; Jiang, J. Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: A Meta-Analysis. Cell. Physiol. Biochem. 2015, 37, 1560–1571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Y.; Zhang, J.; Zhang, Z.; Liu, L.; Zhao, X. Predicting PD-L1 expression status in patients with non-small cell lung cancer using [18F]FDG PET/CT radiomics. EJNMMI Res. 2023, 13, 4. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to im-mune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, H.J.; Han, Y.B.; Park, S.Y.; Kim, E.S.; Kim, S.H.; Kim, Y.J.; Lee, J.S.; Chung, J.H. Increased CD3+ T cells with a low FOXP3+/CD8+ T cell ratio can predict anti-PD-1 therapeutic response in non-small cell lung cancer patients. Mod. Pathol. 2019, 32, 367–375. [Google Scholar] [CrossRef]
- Tisdale, M.J. Cachexia in cancer patients. Nat. Rev. Cancer 2002, 2, 862–871. [Google Scholar] [CrossRef]
- Papadimitroulas, P.; Brocki, L.; Chung, N.C.; Marchadour, W.; Vermet, F.; Gaubert, L.; Eleftheriadis, V.; Plachouris, D.; Visvikis, D.; Kagadis, G.C.; et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys. Med. 2021, 83, 108–121. [Google Scholar] [CrossRef]
- Astaraki, M.; Yang, G.; Zakko, Y.; Toma-Dasu, I.; Smedby, Ö.; Wang, C. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Front. Oncol. 2021, 11, 5355. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiz, F.; Viganò, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk, A.; Cavinato, L.; Sollini, M.; Politi, L.S.; Chiti, A.; et al. Radiomics of Liver Metastases: A Systematic Review. Cancers 2020, 12, 2881. [Google Scholar] [CrossRef]
- Dercle, L.; McGale, J.; Sun, S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Mokrane, F.-Z.; Farwell, M.; Ammari, S.; Schoder, H.; et al. Artificial intelligence and radiomics: Fundamentals, applications, and challenges in immunotherapy. J. Immunother. Cancer 2022, 10, e005292. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Laudicella, R.; Comelli, A.; Liberini, V.; Vento, A.; Stefano, A.; Spataro, A.; Crocè, L.; Baldari, S.; Bambaci, M.; Deandreis, D.; et al. [68Ga]DOTATOC PET/CT Radiomics to Predict the Response in GEP-NETs Undergoing [177Lu]DOTATOC PRRT: The “Theragnomics” Concept. Cancers 2022, 14, 984. [Google Scholar] [CrossRef]
- Binczyk, F.; Prazuch, W.; Bozek, P.; Polanska, J. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer Res. 2021, 10, 1186–1199. [Google Scholar] [CrossRef]
- Zhao, B. Understanding Sources of Variation to Improve the Reproducibility of Radiomics. Front. Oncol. 2021, 11, 826. [Google Scholar] [CrossRef]
- Rao, S.X.; Lambregts, D.M.; Schnerr, R.S.; Beckers, R.C.; Maas, M.; Albarello, F.; Riedl, R.G.; Dejong, C.H.; Martens, M.H.; Heijnen, L.A.; et al. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy? United Eur. Gastroenterol. J. 2016, 4, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, J.; Wherry, E.J. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2016, 44, 1052–1068. [Google Scholar] [CrossRef] [Green Version]
- Wherry, E.J.; Ha, S.J.; Kaech, S.M.; Haining, W.N.; Sarkar, S.; Kalia, V.; Subramaniam, S.; Blattman, J.N.; Barber, D.L.; Ahmed, R. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007, 27, 670–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 2015, 6, 6692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengsch, B.; Johnson, A.L.; Kurachi, M.; Odorizzi, P.M.; Pauken, K.E.; Attanasio, J.; Stelekati, E.; McLane, L.M.; Paley, M.A.; Delgoffe, G.M.; et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8+ T Cell Exhaustion. Immunity 2016, 45, 358–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Ref | Year of Pub. | Design | Sample Size | Histology | Type of ICIs | Histopathology Correlation | Software | Model | External Validation Cohort | Outcome Measures | Relevant Radiomics Indexes | RQS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jiang et al. [20] | 2019 | R | 399 | NSCLC (SCC and adenocarcinoma) | Atezolizumab and Nivolumab | Yes | ITK V. 3.6.1 | Logistic regression and random forest | Na | PD-L1 expression | Shape, IQR, GLCM_ JointAverage, median, NGTDM_contrast | 22 (33.3%) |
Polverari et al. [21] | 2020 | R | 57 | Mixed histologies | Mixed | Yes | LifeX | Univariate analysis | Na | PD-L1 expression; progression status | Coarseness, GLZLM_ ZLNU, kurtosis, skewness, GLZLM_ LZE, GLRLM_RP/SRE/HGRE, GLCM_Homogeneity | 13 (19.7%) |
Mu et al. [22] | 2020 | R/P | 146 (R), 48 (P) | NSCLC (123 ADC and 71 SCC) | N/S | Yes | In-house software | Logistic regression and Cox multivariate regression | Na | Durable clinical benefit, PFS, and OS | P/R radiomics signatures | 28 (42.4%) |
Mu et al. [23] | 2020 | R/P | 146 (R), 48 (P) | NSCLC (123 ADC and 71 SCC) | Multiple | Na | In-house software | Multivariable regression analysis | Na | Immune-related adverse events | Radiomic signature (KLD_ SZLGE and KLD_ SRLGE) | 26 (39.39%) |
Park et al. [24] | 2020 | R | 29 | NSCLC (ADC) | Pembrolizumab (10), Nivolumab (18), Atezolizumab (1) | Yes | LifeX v 4 | Deep learning | Yes | Cytolytic activity; tumor response, PFS, and OS | N/S | 16 (26.23%) * |
Valentinuzzi et al. [25] | 2020 | P | 30 | NSCLC (17 ADC, 8 SCC, and 5 other) | Pembrolizumab | Na | In-house software | Univariate analysis and Cox regression model | Na | OS | GLRLM_ SRE | 22 (33.3%) |
Li et al. [26] | 2021 | R | 255 | NSCLC (SCC and adenocarcinoma) | N/S | Yes | LifeX v 7 | Logistic regression | Na | PD-L1 expression (>1% and >50%) | N/S (12 and 3 feature for >1% and >50%, respectively) | 20 (30.3%) |
Mu et al. [27] | 2021 | R | 210 | NSCLC (109 ADC and 66 SCC) | N/S (anti PD-1 and anti PD-L1) | N | MatLab 2020.a | Uni/multivariable regression analysis | Yes | Cachexia; durable clinical benefit, PFS, and OS | Radiomic signature (SRHGE and LZLGE) | 26 (39.39%) |
Mu et al. [28] | 2021 | R/P | 648 (R), 49 (P) | NSCLC (531 ADC and 166 SCC) | N/S | Y | ITK | Small residual convolutional network (SResCNN) | Yes | PD-L1 expression; durable clinical benefit, PFS, and OS | N/S | 26 (42.6%) |
Zhou et al. [29] | 2021 | R | 103 | 28 SCC and 75 other | N/S | Y | LifeX v 5.1 | Univariate analysis and logistic regression | Na | PD-L1 and CD8 expression | GLRLM_ LRHGE, GLZLM_ SZE, SUVmax, NGLDM_Contrast | 23 (34.85%) |
Tankyevych et al. [30] | 2022 | R | 83 | Mixed histologies | Mixed | Y | PyRadiomics | Multivariate model | Na | Survival, progression, and durable clinical benefit | Skewness, median, NGTDM_Complexity, GLCM_Autocorrelation and GLCM_imc1 | 25 (37.9%) |
Tong et al. [31] | 2022 | R | 221 | NSCLC (N/S) | N/S | Y | ITK V. 3.8 | Clinical-radiomics models; machine learning | Na | CD-8 expression | GLCM_ IMC1, GLSZM_ SZLGE, GLTDM_ LGE, histogram energy, GLTDM_Entropy | 24 (36.36%) |
Cui et al. [32] | 2022 | P | 29 | NSCLC (mixed histologies) | Toripalimab | Y | PyRadiomics | Logistic regression | Na | Pathological response of the primary | Delta SUV-indices; EOT SUV indices; EOT MTV/TLG, EOT uniformity, and EOT GLDM_ LDHGLE | 21 (31.82%) |
Wang et al. [33] | 2022 | P | 30 | NSCLC (16 ADC, 12 SCC, and 2 other) | None ** | Y | N/S | Univariate analysis | Yes | Heterogeneity and immune infiltrate | Entropy | 16 (24.24%) |
Zhao et al. [34] | 2023 | R | 334 | NSCLC (163 ADC, 59 SCC, and 112 other) | Pembrolizumab | Y | LifeX v 7 | Univariate analysis and logistic regression | Na | PD-L1 expression | GLRLM_RP | 20 (30.30%) |
Authors (PMID) | Rater | |||
---|---|---|---|---|
F.B. | F.F. | L.M. | Consensus | |
Jiang et al. [20] | 22 | 22 | 22 | 22 |
Polverari et al. [21] | 13 | 13 | 15 | 13 |
Mu et al. [30] | 23 | 26 | 26 | 28 |
Mu et al. [23] | 24 | 25 | 23 | 26 |
Park et al. [24] * | 14 | 16 | 15 | 16 |
Valentinuzzi et al. [25] | 26 | 27 | 27 | 22 |
Li et al. [26] | 20 | 20 | 20 | 20 |
Mu et al. [27] | 27 | 25 | 25 | 26 |
Mu et al. [28] * | 27 | 27 | 26 | 26 |
Zhou et al. [29] | 20 | 24 | 20 | 23 |
Tankyevych et al. [30] | 24 | 25 | 23 | 25 |
Tong et al. [31] | 33 | 21 | 30 | 24 |
Cui et al. [32] | 21 | 21 | 21 | 21 |
Wang et al. [33] | 23 | 18 | 18 | 16 |
Zhao et al. [35] | 27 | 22 | 22 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelista, L.; Fiz, F.; Laudicella, R.; Bianconi, F.; Castello, A.; Guglielmo, P.; Liberini, V.; Manco, L.; Frantellizzi, V.; Giordano, A.; et al. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers 2023, 15, 3258. https://doi.org/10.3390/cancers15123258
Evangelista L, Fiz F, Laudicella R, Bianconi F, Castello A, Guglielmo P, Liberini V, Manco L, Frantellizzi V, Giordano A, et al. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers. 2023; 15(12):3258. https://doi.org/10.3390/cancers15123258
Chicago/Turabian StyleEvangelista, Laura, Francesco Fiz, Riccardo Laudicella, Francesco Bianconi, Angelo Castello, Priscilla Guglielmo, Virginia Liberini, Luigi Manco, Viviana Frantellizzi, Alessia Giordano, and et al. 2023. "PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature" Cancers 15, no. 12: 3258. https://doi.org/10.3390/cancers15123258
APA StyleEvangelista, L., Fiz, F., Laudicella, R., Bianconi, F., Castello, A., Guglielmo, P., Liberini, V., Manco, L., Frantellizzi, V., Giordano, A., Urso, L., Panareo, S., Palumbo, B., & Filippi, L. (2023). PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers, 15(12), 3258. https://doi.org/10.3390/cancers15123258