Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patient Samples
2.2. DNA Extraction and Whole-Exome Sequencing
2.3. Data Alignment and Validation
2.4. Targeted Sequencing for FGFR Gene Fusions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, N.; Yao, Z.; Shang, G.; Ye, D.; Wang, H.; Zhang, H.; Qu, Y.; Xu, F.; Wang, Y.; Qin, Z.; et al. Integrated Proteogenomic Characterization of Urothelial Carcinoma of the Bladder. J. Hematol. Oncol. 2022, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Lobo, N.; Shariat, S.; Guo, C.; Fernandez, M.; Kassouf, W.; Choudhury, A.; Gao, J.; Williams, S.; Galsky, M.; Taylor, J.A., 3rd; et al. What is the significance of variant histology in urothelial carcinoma? Eur. Urol. Focus 2020, 6, 653–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netto, G.J.; Amin, M.; Berney, D.; Comperat, E.; Gill, A.; Hartmann, A.; Menon, S.; Raspollini, M.; Rubin, M.; Srigley, J.; et al. The 2022 world health organization classification of tumors of the urinary system and male genital organs-part b: Prostate and urinary tract tumors. Eur. Urol. 2022, 82, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Comperat, E.; McKenney, J.; Hartmann, A.; Hes, O.; Bertz, S.; Varinot, J.; Brimo, F. Large nested variant of urothelial carcinoma: A clinicopathological study of 36 cases. Histopathology 2017, 71, 703–710. [Google Scholar] [CrossRef]
- Weyerer, V.; Eckstein, M.; Comperat, E.; Juette, H.; Gaisa, N.; Allory, Y.; Stohr, R.; Wullich, B.; Roupret, M.; Hartmann, A.; et al. Pure large nested variant of urothelial carcinoma (lnuc) is the prototype of an fgfr3 mutated aggressive urothelial carcinoma with luminal-papillary phenotype. Cancers 2020, 12, 763. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.R.; Cheng, L. The expanding molecular and mutational landscape of nested variant of urothelial carcinoma. Histopathology 2020, 76, 638–639. [Google Scholar] [CrossRef]
- Linder, B.J.; Frank, I.; Cheville, J.; Thompson, R.; Thapa, P.; Tarrell, R.; Boorjian, S.A. Outcomes following radical cystectomy for nested variant of urothelial carcinoma: A matched cohort analysis. J. Urol. 2013, 189, 1670–1675. [Google Scholar] [CrossRef]
- Gontero, P.; Sylvester, R.; Pisano, F.; Joniau, S.; Eeckt, K.V.; Serretta, V.; Larre, S.; Di Stasi, S.; Van Rhijn, B.; Witjes, A.; et al. Prognostic factors and risk groups in t1g3 non-muscle-invasive bladder cancer patients initially treated with bacillus calmette-guerin: Results of a retrospective multicenter study of 2451 patients. Eur. Urol. 2015, 67, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Kardoust Parizi, M.; Margulis, V.; Lotan, Y.; Mori, K.; Shariat, S.F. Fibroblast growth factor receptor: A systematic review and meta-analysis of prognostic value and therapeutic options in patients with urothelial bladder carcinoma. Urol. Oncol. 2021, 39, 409–421. [Google Scholar] [CrossRef]
- Kacew, A.; Sweis, R.F. Fgfr3 alterations in the era of immunotherapy for urothelial bladder cancer. Front. Immunol. 2020, 11, 575258. [Google Scholar] [CrossRef]
- Guancial, E.A.; Werner, L.; Bellmunt, J.; Bamias, A.; Choueiri, T.; Ross, R.; Schutz, F.; Park, R.; O’Brien, R.J.; Hirsch, M.; et al. Fgfr3 expression in primary and metastatic urothelial carcinoma of the bladder. Cancer Med. 2014, 3, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Rezzola, S.; Ronca, R.; Loda, A.; Nawaz, M.; Tobia, C.; Paganini, G.; Maccarinelli, F.; Giacomini, A.; Semeraro, F.; Mor, M.; et al. The autocrine fgf/fgfr system in both skin and uveal melanoma: Fgf trapping as a possible therapeutic approach. Cancers 2019, 11, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Q.; Patel, V.; Galsky, M.D. Urothelial carcinoma: The development of fgfr inhibitors in combination with immune checkpoint inhibitors. Expert Rev. Anticancer Ther. 2020, 20, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; Elvin, J.; Kamath, S.; Ali, S.; Paintal, A.; Restrepo, A.; Berry, E.; Giles, F.; Johnson, M.L. Fgfr3-tacc3: A novel gene fusion in cervical cancer. Gynecol. Oncol. Rep. 2015, 13, 53–56. [Google Scholar] [CrossRef]
- Brunelli, M.; Tafuri, A.; Cima, L.; Cerruto, M.; Milella, M.; Zivi, A.; Buti, S.; Bersanelli, M.; Fornarini, G.; Vellone, V.; et al. Mdm2 gene amplification as selection tool for innovative targeted approaches in pd-l1 positive or negative muscle-invasive urothelial bladder carcinoma. J. Clin. Pathol. 2022, 75, 39–44. [Google Scholar] [CrossRef]
- King, G.; Javle, M. Fgfr Inhibitors: Clinical activity and development in the treatment of cholangiocarcinoma. Curr. Oncol. Rep. 2021, 23, 108. [Google Scholar] [CrossRef]
- Fukuta, K.; Izaki, H.; Shiozaki, K.; Nakanishi, R.; Inai, T.; Kataoka, H.; Kudo, E.; Kanda, K. Complete response to pembrolizumab in recurrent nested variant of urothelial carcinoma. IJU Case Rep. 2021, 4, 310–313. [Google Scholar] [CrossRef]
- Aragon-Ching, J.B. Pembrolizumab use in bladder cancer: A tale of two trials. Nat. Rev. Urol. 2021, 18, 577–578. [Google Scholar] [CrossRef]
- Al-Obaidy, K.I.; Cheng, L. Fibroblast growth factor receptor (fgfr) gene: Pathogenesis and treatment implications in urothelial carcinoma of the bladder. J. Clin. Pathol. 2021, 74, 491–495. [Google Scholar] [CrossRef]
- van Rhijn, B.W.G.; Mertens, L.; Mayr, R.; Bostrom, P.; Real, F.; Zwarthoff, E.; Boormans, J.; Abas, C.; van Leenders, G.; Gotz, S.; et al. Fgfr3 mutation status and fgfr3 expression in a large bladder cancer cohort treated by radical cystectomy: Implications for anti-fgfr3 treatment?(dagger). Eur. Urol. 2020, 78, 682–687. [Google Scholar] [CrossRef]
- Zengin, Z.B.; Chehrazi-Raffle, A.; Salgia, N.; Muddasani, R.; Ali, S.; Meza, L.; Pal, S.K. Targeted therapies: Expanding the role of fgfr3 inhibition in urothelial carcinoma. Urol. Oncol. 2022, 40, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Paner, G.P. Plasmacytoid urothelial carcinoma: An unusual variant that warrants aggressive management and critical distinction on transurethral resections. Arch. Pathol. Lab. Med. 2019, 143, 1562–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, M.Y.; Al-Ahmadie, H.; Seier, K.; Tully, C.; Regazzi, A.; Pietzak, E.; Solit, D.; Tickoo, S.; Reuter, V.; Cha, E.; et al. Correction: Natural history, response to systemic therapy, and genomic landscape of plasmacytoid urothelial carcinoma. Br. J. Cancer 2022, 126, 1236. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. Annovar: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Pietzak, E.J.; Bagrodia, A.; Cha, E.; Drill, E.; Iyer, G.; Isharwal, S.; Ostrovnaya, I.; Baez, P.; Li, Q.; Berger, M.; et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 2017, 72, 952–959. [Google Scholar] [CrossRef]
- Iyer, G.; Milowsky, M.I. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol. Oncol. 2013, 31, 303–311. [Google Scholar] [CrossRef]
- Downes, M.R.; Weening, B.; van Rhijn, B.; Have, C.; Treurniet, K.; van der Kwast, T.H. Analysis of papillary urothelial carcinomas of the bladder with grade heterogeneity: Supportive evidence for an early role of cdkn2a deletions in the fgfr3 pathway. Histopathology 2017, 70, 281–289. [Google Scholar] [CrossRef]
- Al-Ahmadie, H.A.; Iyer, G.; Janakiraman, M.; Lin, O.; Heguy, A.; Tickoo, S.; Fine, S.; Gopalan, A.; Chen, Y.; Balar, A.; et al. Somatic mutation of fibroblast growth factor receptor-3 (fgfr3) defines a distinct morphological subtype of high-grade urothelial carcinoma. J. Pathol. 2011, 224, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Pouessel, D.; Neuzillet, Y.; Mertens, L.; van der Heijden, M.; de Jong, J.; Sanders, J.; Peters, D.; Leroy, K.; Manceau, A.; Maille, P.; et al. Tumor heterogeneity of fibroblast growth factor receptor 3 (fgfr3) mutations in invasive bladder cancer: Implications for perioperative anti-fgfr3 treatment. Ann. Oncol. 2016, 27, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case | Sex | Age at the Time of Dx | Diagnosis | CIS | Stage at the Time of Dx | Initial Treatment | Progression |
---|---|---|---|---|---|---|---|
1 | M | 74 | Invasive high-grade urothelial carcinoma with features of large, nested variant | No | pT3 | Partial cystectomy and 4 cycles of cisplatin and gemcitabine back in January 2016 | Progression to stage IV with bone med in 2019 |
2 | M | 48 | Papillary and inverted urothelial carcinoma with features of large, nested variant of urothelial carcinoma | No | pT2b | Radical cystectomy | Progression with second primary LNVUC |
3 | M | 49 | High-grade papillary urothelial carcinoma of kidney | No | pTa | Bilateral nephroureterectomy | Ongoing treatment |
4 | M | 57 | High-grade, high volume invasive urothelial carcinoma, with nested areas (predominantly papillary) | Yes | Not done | Bladder preservation Chemotherapy (cisplatin) and radiation, 2018. Pembrolizumab from 2019 | No known progression |
5 | M | 61 | High-grade urothelial carcinoma, nested variant | No | pT2 | Neoadjuvant chemotherapy with cisplatin and gemcitabine November 2018–2019 cystectomy in 2020 | No known progression |
6 | F | 73 | Invasive urothelial carcinoma, large, nested variant | Yes | pT3a | Adjuvant chemotherapy Jan 2019 | No known progression |
Site of Metastasis | Primary Diagnosis | Age | Gender | Mutation | |
---|---|---|---|---|---|
1 | Lung | High-grade invasive urothelial carcinoma with focal sarcomatoid differentiation | 79 | M | Negative |
2 | Prostate | High-grade invasive urothelial carcinoma with features of large, nested variant infiltrating into muscularis propria and bladder neck | 60 | M | Negative |
3 | Penile | High-grade invasive urothelial carcinoma | 78 | M | Negative |
4 | Right humerus | Invasive high-grade urothelial carcinoma | 72 | F | Negative |
5 | Prostatic urethra | High-grade invasive urothelial carcinoma arising from the prostatic urethra | 61 | M | FGFR-3 S249C |
6 | Renal pelvis | Invasive high-grade papillary urothelial carcinoma, squamous differentiation present | 71 | M | FGFR-3 Y373C |
7 | Liver | Invasive high-grade papillary urothelial carcinoma | 88 | M | Negative |
8 | Lung | Noninvasive high-grade papillary urothelial carcinoma. | 71 | M | FGFR-3 G370C |
9 | Lymph node | High-grade invasive urothelial carcinoma | 68 | M | FGFR-3 Y373C |
10 | Lymph node | High-grade invasive urothelial carcinoma with extensive squamous differentiation | 60 | F | Negative |
11 | Kidney | High-grade urothelial carcinoma (HGUC) | 74 | M | Negative |
12 | Lung | Invasive high-grade urothelial carcinoma | 66 | M | Negative |
13 | Lymph node, bone, lung and liver | High-grade invasive urothelial carcinoma with focal sarcomatoid differentiation | 79 | M | Negative |
14 | Facial bone | Poorly differentiated malignant cells present, compatible with a poorly differentiated carcinoma | 49 | M | FGFR-3 Y373C |
15 | Lymph node and liver | High-grade papillary urothelial carcinoma with squamous differentiation | 65 | M | Negative |
16 | Lymph node | Urothelial carcinoma, with prominent intraductal spread | 77 | M | Negative |
17 | Prostate | High-grade invasive urothelial carcinoma with focal sarcomatoid differentiation, | 78 | M | FGFR-3 S249C |
18 | Lymph nodes and peritoneum | High-grade urothelial carcinoma with divergent differentiation | 74 | M | Negative |
19 | Bone | High-grade invasive urothelial carcinoma | 69 | F | Negative |
20 | Lymph node (para-aortic) | Invasive high-grade urothelial carcinoma | 61 | M | Negative |
21 | Lymph node (retroperitoneal) | High-grade invasive urothelial carcinoma arising from the prostatic | 66 | M | Negative |
22 | Kidney | Invasive high-grade papillary urothelial carcinoma, sarcomatoid differentiation present | 35 | F | Negative |
23 | Liver and bone | Invasive high-grade papillary urothelial carcinoma | 66 | M | Negative |
24 | Pelvic soft tissue | Noninvasive high-grade papillary urothelial carcinoma. | 64 | M | Negative |
25 | Retroperitoneal soft tissue | High-grade invasive urothelial carcinoma | 75 | F | Negative |
26 | Lung | High-grade invasive urothelial carcinoma with extensive squamous differentiation | 68 | M | Negative |
27 | Retroperitoneal soft tissue | High-grade urothelial carcinoma (HGUC): | 74 | M | Negative |
28 | Retroperitoneal soft tissue | Invasive high-grade urothelial carcinoma | 62 | M | Negative |
29 | Lymph node | High-grade invasive urothelial carcinoma with focal sarcomatoid | 59 | M | Negative |
30 | None (from the first series) | High-grade, high-volume invasive urothelial carcinoma, with nested areas (predominantly papillary) | 57 | M | Negative |
31 | None (from the first series) | High-grade urothelial carcinoma, nested variant | 61 | M | Negative |
32 | None (from the first series) | Invasive urothelial carcinoma, large, nested variant | 73 | F | Negative |
Genes | Frequency | Case 1 | Case 2 * | Case 3 * | Case 4 | Case 5 | Case 6 |
---|---|---|---|---|---|---|---|
FGFR-3 | 50% | ||||||
PIK3CA | 33% | ||||||
CDKN1B | 33% | ||||||
CDKN2A | 17% | ||||||
ARID1B | 17% | ||||||
ARID1A | 17% | ||||||
GNAS | 17% | ||||||
MRE11 | 17% | ||||||
KDM6A | 17% | ||||||
PPP2R1A | 17% | ||||||
BRD7 | 17% | ||||||
CCDC175 | 17% | ||||||
CFTR | 17% | ||||||
CNTLN | 17% | ||||||
CRHR2 | 17% | ||||||
FKBP15 | 17% | ||||||
GPRASP1 | 17% | ||||||
KCNQ3 | 17% | ||||||
KRTAP24-1 | 17% | ||||||
KRTAP24-1 | 17% | ||||||
LOC100129083 | 17% | ||||||
LRP8 | 17% | ||||||
MAGED1 | 17% | ||||||
MBD6 | 17% | ||||||
OR2T2 | 17% | ||||||
OR2T35 | 17% | ||||||
OR6P1 | 17% | ||||||
OR6P1 | 17% | ||||||
PRR30 | 17% | ||||||
PRR30 | 17% | ||||||
RABGGTA | 17% | ||||||
RBM10 | 17% | ||||||
RREB1 | 17% | ||||||
RYR1 | 17% | ||||||
SIPA1L1 | 17% | ||||||
SMOX | 17% | ||||||
STX10 | 17% | ||||||
TMC7 | 17% | ||||||
ZNF560 | 17% | ||||||
ZNF560 | 17% |
Study | Method Used | Patient Population | FGFR-3 Mutation |
---|---|---|---|
Our study | Whole-genome sequencing | Invasive LNVUC diagnosed on both TURB and cystectomy | 50% |
Target sequencing | Metastatic urothelial carcinoma regardless of variant | 16% | |
Pietrzak et al. [25] | Targeted NGS | Non-muscle-invasive UC | 49% |
The Cancer Genome Atlas (TCGA) 2014 [30] | Whole-exome sequencing | High-grade muscle-invasive urothelial bladder carcinomas | 13% |
Downes et al. [27] | PCR and SNaPshot methodology | Papillary urothelial carcinoma | 52% |
Iyer et al. [26] | Review article | Non-muscle-invasive UC | Activating mutation 70% |
Muscle-invasive UC | Overexpression 40% | ||
Al-Ahmadie et al. [28] | Sanger sequencing and MALDI–TOF mass spectrometry | HGUC | 17% |
LGUC | 84% | ||
Pouessel et al. [29] | PCR-SnaPshot method | T1-TURB UC | 38% |
T2-TURB UC | 30% | ||
LN + UC | 5% | ||
Weyerer et al. [5] | SnaPshot analysis | Pure LNVUC | 94% |
Mixed LNVUC | 14.2% | ||
Overall LNVUC | 73.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamallat, Y.; Afsharpad, M.; El Hallani, S.; Maher, C.A.; Alimohamed, N.; Hyndman, E.; Bismar, T.A. Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations. Cancers 2023, 15, 3167. https://doi.org/10.3390/cancers15123167
Gamallat Y, Afsharpad M, El Hallani S, Maher CA, Alimohamed N, Hyndman E, Bismar TA. Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations. Cancers. 2023; 15(12):3167. https://doi.org/10.3390/cancers15123167
Chicago/Turabian StyleGamallat, Yaser, Mitra Afsharpad, Soufiane El Hallani, Christopher A. Maher, Nimira Alimohamed, Eric Hyndman, and Tarek A. Bismar. 2023. "Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations" Cancers 15, no. 12: 3167. https://doi.org/10.3390/cancers15123167
APA StyleGamallat, Y., Afsharpad, M., El Hallani, S., Maher, C. A., Alimohamed, N., Hyndman, E., & Bismar, T. A. (2023). Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations. Cancers, 15(12), 3167. https://doi.org/10.3390/cancers15123167