PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Treatment Procedure
4. End-Points and Statistics
5. Results
5.1. Patients’ Characteristics
5.2. Local Control
5.3. Distant Progression and Polymetastatic Disease
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Prim. 2020, 6, 83. [Google Scholar] [CrossRef]
- Teunissen, S.; Wesker, W.; Kruitwagen, C.; de Haes, H.; Voest, E.E.; de Graeff, A. Symptom prevalence in patients with incurable cancer: A systematic review. J. Pain Symptom Manag. 2007, 34, 94–104. [Google Scholar] [CrossRef]
- Harrow, S.; Palma, D.A.; Olson, R.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SABR-COMET): Extended Long-Term Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Nicosia, L.; Mazzola, R.; Rigo, M.; Figlia, V.; Giaj-Levra, N.; Napoli, G.; Ricchetti, F.; Corradini, S.; Ruggieri, R.; Alongi, F. Moderate versus extreme hypofractionated radiotherapy: A toxicity comparative analysis in low- and favorable intermediate-risk prostate cancer patients. J. Cancer Res. Clin. Oncol. 2019, 145, 2547–2554. [Google Scholar] [CrossRef]
- Cox, B.W.; Spratt, D.E.; Lovelock, M.; Bilsky, M.H.; Lis, E.; Ryu, S.; Sheehan, J.; Gerszten, P.C.; Chang, E.; Gibbs, I.; et al. International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e597–e605. [Google Scholar] [CrossRef]
- de la Pinta, C.; LaTorre, R.G.; Martínez-Lorca, A.; Fernández, E.; Hernanz, R.; Martín, M.; Domínguez, J.A.; Muñóz, T.; Canales, E.; Vallejo, C.; et al. Interobserver variability in gross tumor volume contouring in non-spine bone metastases. J. Clin. Transl. Res. 2022, 8, 465–469. [Google Scholar]
- Wang, Z.; Li, L.; Yang, X.; Teng, H.; Wu, X.; Chen, Z.; Wang, Z.; Chen, G. Efficacy and safety of stereotactic body radiotherapy for painful bone metastases: Evidence from randomized controlled trials. Front. Oncol. 2022, 12, 979201. [Google Scholar] [CrossRef]
- Zhou, J.; Gou, Z.; Wu, R.; Yuan, Y.; Yu, G.; Zhao, Y. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A systematic review and meta-analysis. Skeletal Radiol. 2019, 48, 1915–1924. [Google Scholar] [CrossRef]
- Mazzola, R.; Francolini, G.; Triggiani, L.; Napoli, G.; Cuccia, F.; Nicosia, L.; Livi, L.; Magrini, S.M.; Salgarello, M.; Alongi, F. Metastasis-directed Therapy (SBRT) Guided by PET-CT 18F-CHOLINE Versus PET-CT 68Ga-PSMA in Castration-sensitive Oligorecurrent Prostate Cancer: A Comparative Analysis of Effectiveness. Clin. Genitourin. Cancer 2021, 19, 230–236. [Google Scholar] [CrossRef]
- Henkenberens, C.; Derlin, T.; Bengel, F.; Ross, T.L.; Kuczyk, M.A.; Giordano, F.A.; Sarria, G.R.; Schmeel, L.C.; Christiansen, H.; von Klot, C.A.J. Efficacy of PSMA PET-Guided Radiotherapy for Oligometastatic Castrate-Resistant Prostate Cancer. Front. Oncol. 2021, 11, 664225. [Google Scholar] [CrossRef]
- Mirels, H. Metastatic disease in long bones: A proposed scoring system for diagnosing impending pathologic fractures. 1989. Clin. Orthop. Relat. Res. 2003, 415, S4–S13. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; Nandita, M.D.; Dingemans, A.M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [PubMed]
- Dibs, K.; Palmer, J.D.; Prasad, R.N.; Olausson, A.; Bourekas, E.C.; Boulter, D.; Ayan, A.S.; Cochran, E.; Marras, W.S.; Mageswaran, P.; et al. Feasibility, safety, and efficacy of circumferential spine stereotactic body radiotherapy. Front. Oncol. 2022, 12, 912799. [Google Scholar] [CrossRef] [PubMed]
- Py, J.F.; Salleron, J.; Vogin, G.; Courrech, F.; Teixeira, P.; Colnat-Coulbois, S.; Baumard, F.; Thureau, S.; Supiot, S.; Peiffert, D.; et al. Could conventionally fractionated radiation therapy coupled with stereotactic body radiation therapy improve local control in bone oligometastases? Cancer Radiother. 2023, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Franzese, C.; Mazzola, R.; Franceschini, D.; Rigo, M.; D’agostino, G.; Corradini, S.; Alongi, F.; Scorsetti, M. Recurrence pattern of stereotactic body radiotherapy in oligometastatic prostate cancer: A multi-institutional analysis. Strahlenther. Onkol. 2020, 196, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.; Hoskin, P.; Mitera, G.; Zeng, L.; Lutz, S.; Roos, D.; Hahn, C.; van der Linden, Y.; Hartsell, W.; International Bone Metastases Consensus Working Party; et al. Update of the International consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1730–1737. [Google Scholar] [CrossRef]
- Mazzola, R.; Cuccia, F.; Pastorello, E.; Salgarello, M.; Francolini, G.; Livi, L.; Triggiani, L.; Magrini, S.M.; Ingrosso, G.; Aristei, C.; et al. PSMA-guided metastases directed therapy for bone castration sensitive oligometastatic prostate cancer: A multi-institutional study. Clin. Exp. Metastasis 2022, 39, 443–448. [Google Scholar] [CrossRef]
- Ratnakumaran, R.; van As, N.; Khoo, V.; McDonald, F.; Tait, D.; Ahmed, M.; Taylor, H.; Griffin, C.; Dunne, E.M.; Tree, A.C. Patterns of Failure After Stereotactic Body Radiotherapy to Sacral Metastases. Clin. Oncol. (R. Coll. Radiol.) 2023, 35, 339–346. [Google Scholar] [CrossRef]
- Erler, D.; Brotherston, D.; Sahgal, A.; Cheung, P.; Loblaw, A.; Chu, W.; Soliman, H.; Chung, H.; Kiss, A.; Chow, E.; et al. Local control and fracture risk following stereotactic body radiation therapy for non-spine bone metastases. Radiother. Oncol. 2018, 127, 304–309. [Google Scholar] [CrossRef]
- Owen, D.; Laack, N.N.; Mayo, C.S.; Garces, Y.I.; Park, S.S.; Bauer, H.J.; Nelson, K.; Miller, R.W.; Brown, P.D.; Olivier, K.R. Outcomes and toxicities of stereotactic body radiation therapy for non-spine bone oligometastases. Pract. Radiat. Oncol. 2014, 4, e143–e149. [Google Scholar] [CrossRef]
- Ito, K.; Yamaguchi, T.; Ogawa, H.; Nakajima, Y.; Karasawa, K. Stereotactic body radiotherapy for bone metastases in patients with colorectal cancer. Jpn. J. Clin. Oncol. 2020, 50, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Kam, T.Y.; Chan, O.S.H.; Hung, A.W.M.; Yeung, R.M.W. Utilization of stereotactic ablative radiotherapy in oligometastatic & oligoprogressive skeletal metastases: Results and pattern of failure. Asia Pac. J. Clin. Oncol. 2019, 15 (Suppl. S2), 14–19. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, N.; Benson, K.R.; Kumar, K.A.; Eyben, R.V.; Chang, D.T.; Gibbs, I.C.; Hancock, S.L.; Meola, A.; Chang, S.D.; Li, G.; et al. Local control and toxicity outcomes of stereotactic radiosurgery for spinal metastases of gastrointestinal origin. J. Neurosurg. Spine 2020, 33, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Sahgal, A.; Weinberg, V.; Ma, L.; Chang, E.; Chao, S.; Muacevic, A.; Gorgulho, A.; Soltys, S.; Gerszten, P.C.; Ryu, S.; et al. Probabilities of radiation myelopathy specifc to stereotactic body radiation therapy to guide safe practice. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 341–347. [Google Scholar] [CrossRef]
- Lopez-Campos, F.; Cacicedo, J.; Couñago, F.; García, R.; Leaman-Alcibar, O.; Navarro-Martin, A.; Pérez-Montero, H.; Conde-Moreno, A. SEOR SBRT-SG stereotactic body radiation therapy consensus guidelines for non-spine bone metastasis. Clin. Transl. Oncol. 2022, 24, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.; Sahgal, A.; Dagan, R.; Eppinga, W.; Guckenberger, M.; Kim, J.H.; Lo, S.S.; Redmond, K.J.; Siva, S.; Stish, B.J.; et al. Stereotactic Body Radiation Therapy for Nonspine Bone Metastases: International Practice Patterns to Guide Treatment Planning. Pract. Radiat. Oncol. 2020, 10, e452–e460. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Choi, C.W.; Kim, K.S. Treatment outcomes of stereotactic ablative radiation therapy for non-spinal bone metastases: Focus on response assessment and treatment indication. Br. J. Radiol. 2019, 92, 20181048. [Google Scholar] [CrossRef]
- Triggiani, L.; Alongi, F.; Buglione, M.; Detti, B.; Santoni, R.; Bruni, A.; Maranzano, E.; Lohr, F.; D’Angelillo, R.; Magli, A.; et al. Efficacy of stereotactic body radiotherapy in oligorecurrent and in oligoprogressive prostate cancer: New evidence from a multicentric study. Br. J. Cancer 2017, 116, 1520–1525. [Google Scholar] [CrossRef]
- Paul, S.; Ohri, N.; Velten, C.; Brodin, P.; Mynampati, D.; Tomé, W.; Mao, S.P.H.; Kabarriti, R.; Garg, M.; Fox, J. The effect of low-dose radiation spillage during stereotactic radiosurgery for brain metastases on the development of de novo metastases. Clin. Transl. Radiat. Oncol. 2021, 28, 79–84. [Google Scholar] [CrossRef]
- Chapman, E.R.; Nicholls, L.; Suh, Y.E.; Khoo, V.; Levine, D.; Ap Dafydd, D.; Van As, N. Interobserver variation in clinical target volume (CTV) delineation for stereotactic radiotherapy to non-spinal bone metastases in prostate cancer: CT, MRI and PET/CT fusion. Radiother. Oncol. 2023, 180, 109461. [Google Scholar] [CrossRef]
- Ilamurugu, A.; Chandrasekaran, A.; Ayyalusamy, A.; Prasanna Satpathy, S.; Reddy, J.M.; Arora, S.; Subramanian, S.; Velayudham, R. Volumetric and dosimetric impact of MRI in delineation of gross tumor volume of non-spinal vertebral metastases treated with stereotactic ablative radiation therapy. Cancer Radiother. 2021, 25, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Berwouts, D.; De Wolf, K.; De Neve, W.; Olteanu, L.A.; Lambert, B.; Speleers, B.; Goethals, I.; Madani, I.; Ost, P. Variations in target volume definition and dose to normal tissue using anatomic versus biological imaging (18F-FDG-PET) in the treatment of bone metastases: Results from a 3-arm randomized phase II trial. J. Med. Imaging Radiat. Oncol. 2017, 61, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Trapani, G.; Rigo, M.; Giaj-Levra, N.; Mazzola, R.; Pastorello, E.; Ricchetti, F.; Cuccia, F.; Figlia, V.; Fiorini, M.; et al. 1.5 T MR-Guided Daily Adapted SBRT on Lymph Node Oligometastases from Prostate Cancer. J. Clin. Med. 2022, 11, 6658. [Google Scholar] [CrossRef]
- Alongi, F.; Fersino, S.; Giaj Levra, N.; Mazzola, R.; Ricchetti, F.; Fiorentino, A.; Ruggieri, R.; Malfatti, V.; Cavalleri, S.; Salgarello, M. Impact of 18F-Choline PET/CT in the Decision-Making Strategy of Treatment Volumes in Definitive Prostate Cancer Volumetric Modulated Radiation Therapy. Clin. Nucl. Med. 2015, 40, e496–e500. [Google Scholar] [CrossRef]
- Nestle, U.; Kremp, S.; Schaefer-Schuler, A.; Sebastian-Welsch, C.; Hellwig, D.; Rübe, C.; Kirsch, C.M. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J. Nucl. Med. 2005, 46, 1342–1348. [Google Scholar]
Median age (range) | 70 (54–87) |
Oligometastases number | |
● 1 | 37 (39%) |
● 2 | 27 (28.5%) |
● 3 | 19 (20%) |
● 4 | 9 (9.5%) |
● 5 | 3 (3%) |
Median disease-free interval (months) (range) | 17 (0–228) |
Oligometastases type | |
● Oligorecurrence | 74 (77.8%) |
● Oligometastatic de novo | 13 (13.5%) |
● Oligoprogression | 8 (8.7%) |
Bone site (n = 150) | |
● Ileum | 50 (33.3%) |
● Rib | 34 (22.7%) |
● Sacrum | 20 (13.5%) |
● Pubis | 12 (8%) |
● Femur | 9 (6%) |
● Scapula | 8 (5.5%) |
● Sternum | 6 (4%) |
● Clavicle | 4 (2.5%) |
● Ischium | 4 (2.5%) |
● Omerus | 3 (2%) |
Concurrent hormone therapy | |
● Yes | 49 (51.5%) |
● No | 46 (48.5%) |
Median SBRT total dose (Gy) (range) | 35 (30–35) |
Median dose per fraction (Gy) (range) | 7 (6–7) |
Median follow-up months (range) | 26 (8–71) |
SBRT: stereotactic body radiotherapy |
1 Year | 2 Year | 3 Year | |
---|---|---|---|
LPFS | 96.3% | 91.8% | 89% |
DPFS | 50% | 31% | 20.5% |
PMD | 86.2% | 71.7% | 64% |
OS | 98.2% | 98.2% | 98.2% |
Covariates | Univariate | Multivariate |
---|---|---|
Bone site (base = pelvic bone) | 0.163 | Flat bone: 0.945 |
Long bone: 0.95 | ||
Concomitant systemic therapy | 0.318 | - |
BED ≥ 198 Gy1.5 | 0.007 | 0.031 (HR 0.224; 95%CI 0.058–0.875) |
DPFS | ||
Univariate | Multivariate | |
DFI < 48 months | 0.45 | - |
Oligometastases number | 0.83 | - |
Bone site (base = pelvic bone) | 0.42 | - |
Oligometastases type (base = oligorecurrent) | 0.65 | - |
BED ≥ 198 Gy1.5 | 0.45 | - |
Concomitant systemic therapy | 0.21 | - |
PMD | ||
Univariate | Multivariate | |
Oligometastases type (base = oligorecurrent) | 0.003 | De novo: 0.001 (HR 0.155; 95%CI 0.052–0.466) |
Oligoprogressive: 0.007 (HR 0.121; 95%CI 0.026–0.566) | ||
Bone site (base = pelvic bone) | 0.49 | - |
Concomitant systemic therapy | 0.07 | 0.024 (HR 2.969; 95%CI 1.157–7.624) |
Oligometastases number | 0.34 | - |
BED ≥ 198 Gy1.5 | 0.12 | 0.24 (HR 0.610; 95%CI 0.264–1.414) |
Local control | 0.44 | - |
DFI < 48 months | 0.14 | 0.15 (HR 0.530; 95%CI 0.223–1.258) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorello, E.; Nicosia, L.; Cuccia, F.; Olivari, L.; Fiorini, M.; Giaj Levra, N.; Mazzola, R.; Ricchetti, F.; Rigo, M.; Ravelli, P.; et al. PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer. Cancers 2023, 15, 2800. https://doi.org/10.3390/cancers15102800
Pastorello E, Nicosia L, Cuccia F, Olivari L, Fiorini M, Giaj Levra N, Mazzola R, Ricchetti F, Rigo M, Ravelli P, et al. PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer. Cancers. 2023; 15(10):2800. https://doi.org/10.3390/cancers15102800
Chicago/Turabian StylePastorello, Edoardo, Luca Nicosia, Francesco Cuccia, Laura Olivari, Matilde Fiorini, Niccolò Giaj Levra, Rosario Mazzola, Francesco Ricchetti, Michele Rigo, Paolo Ravelli, and et al. 2023. "PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer" Cancers 15, no. 10: 2800. https://doi.org/10.3390/cancers15102800
APA StylePastorello, E., Nicosia, L., Cuccia, F., Olivari, L., Fiorini, M., Giaj Levra, N., Mazzola, R., Ricchetti, F., Rigo, M., Ravelli, P., D’Alessandro, S., Salgarello, M., Ruggieri, R., & Alongi, F. (2023). PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer. Cancers, 15(10), 2800. https://doi.org/10.3390/cancers15102800