Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Efficacy and Safety of Immunotherapy in Chordoma Patients
3.4. PD-1/PD-L1 Immune Checkpoint Inhibitors
3.5. CTLA-4 Immune Checkpoint Inhibitor
3.6. Cancer Vaccine
3.7. Other Immunomodulatory Drugs
4. Discussion
4.1. Indications and Evaluation Criteria for Immunotherapy
4.2. Cancer Vaccines
4.3. Immune Checkpoint Inhibitor
4.3.1. PD-1/PD-L1
4.3.2. CTLA-4
4.3.3. Other Targets
4.3.4. Prediction of ICIs Response
4.4. Cell Therapy
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boriani, S.; Bandiera, S.; Biagini, R.; Bacchini, P.; Boriani, L.; Cappuccio, M.; Chevalley, F.; Gasbarrini, A.; Picci, P.; Weinstein, J.N. Chordoma of the mobile spine: Fifty years of experience. Spine 2006, 31, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Stiller, C.A.; Trama, A.; Serraino, D.; Rossi, S.; Navarro, C.; Chirlaque, M.D.; Casali, P.G.; Group, R.W. Descriptive epidemiology of sarcomas in Europe: Report from the RARECARE project. Eur. J. Cancer 2013, 49, 684–695. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Classification of Tumours of Soft Tissue and Bone: WHO Classification of Tumours; World Health Organization: Geneva, Switzerland, 2013; Volume 5.
- McMaster, M.L.; Goldstein, A.M.; Bromley, C.M.; Ishibe, N.; Parry, D.M. Chordoma: Incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 2001, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Walcott, B.P.; Nahed, B.V.; Mohyeldin, A.; Coumans, J.V.; Kahle, K.T.; Ferreira, M.J. Chordoma: Current concepts, management, and future directions. Lancet Oncol. 2012, 13, e69–e76. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, S.; Sommer, J.; Chordoma Global Consensus, G. Building a global consensus approach to chordoma: A position paper from the medical and patient community. Lancet Oncol. 2015, 16, e71-83. [Google Scholar] [CrossRef]
- Varga, P.P.; Szövérfi, Z.; Fisher, C.G.; Boriani, S.; Gokaslan, Z.L.; Dekutoski, M.B.; Chou, D.; Quraishi, N.A.; Reynolds, J.J.; Luzzati, A.J.E.S.J. Surgical treatment of sacral chordoma: Prognostic variables for local recurrence and overall survival. Eur. Spine J. 2015, 24, 1092–1101. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Gronchi, A.; Fossati, P.; Akiyama, T.; Alapetite, C.; Baumann, M.; Blay, J.Y.; Bolle, S.; Boriani, S.; Bruzzi, P.; et al. Best practices for the management of local-regional recurrent chordoma: A position paper by the Chordoma Global Consensus Group. Ann. Oncol. 2017, 28, 1230–1242. [Google Scholar] [CrossRef]
- MacCarty, C.S.; Waugh, J.M.; Coventry, M.B.; Cope, W.F., Jr. Surgical treatment of sacral and presacral tumors other than sacrococcygeal chordoma. J. Neurosurg. 1965, 22, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Hillmann, A.; Winkelmann, W. Surgical Treatment of sacrococcygeal chordoma. J. Surg. Oncol. 1997, 64, 274–279. [Google Scholar] [CrossRef]
- Magrini, S.M.; Papi, M.G.; Marletta, F.; Tomaselli, S.; Cellai, E.; Mungai, V.; Biti, G.J.A.O. Chordoma-natural history, treatment and prognosis the Florence radiotherapy department experience (1956–1990) and a critical review of the literature. Acta Oncol. 1992, 31, 847–851. [Google Scholar] [CrossRef]
- Radaelli, S.; Stacchiotti, S.; Ruggieri, P.; Donati, D.; Casali, P.G.; Palmerini, E.; Collini, P.; Gambarotti, M.; Porcu, L.; Boriani, S.J.S. Sacral chordoma: Long-term outcome of a large series of patients surgically treated at two reference centers. Spine 2016, 41, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Friedman, E.R.; Richards, J.; Tsang, K.Y.; Heery, C.R.; Schlom, J.; Hodge, J.W. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 2016, 7, 33498–33511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.S.; Schwab, J.H. Immunotherapy as a Potential Treatment for Chordoma: A Review. Curr. Oncol. Rep. 2016, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Bilusic, M.; Heery, C.R.; Collins, J.M.; Donahue, R.N.; Palena, C.; Madan, R.A.; Karzai, F.; Marte, J.L.; Strauss, J.; Gatti-Mays, M.E.; et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 2019, 7, 240. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Penel, N.; Ray-Coquard, I.L.; Cousin, S.; Bertucci, F.; Bompas, E.; Eymard, J.-C.; Saada-Bouzid, E.; Soulie, P.; Boudou-Rouquette, P. High clinical activity of pembrolizumab in chordoma, alveolar soft part sarcoma (ASPS) and other rare sarcoma histotypes: The French AcSé pembrolizumab study from Unicancer. J. Clin. Oncol. 2021, 39, 11520. [Google Scholar] [CrossRef]
- Collins, J.M.; Donahue, R.N.; Tsai, Y.T.; Manu, M.; Palena, C.; Gatti-Mays, M.E.; Marte, J.L.; Madan, R.A.; Karzai, F.; Heery, C.R.; et al. Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors. Oncologist 2020, 25, 560-e1006. [Google Scholar] [CrossRef] [Green Version]
- DeMaria, P.J.; Bilusic, M.; Park, D.; Heery, C.R.; Madan, R.A.; Strauss, J.; Donahue, R.N.; Marte, J.; Gilbert, M.R.; Steinberg, S.M.; et al. A randomized, double-blind, phase II clinical trial of GI-6301 (yeast-brachyury vaccine) versus placebo in combination with standard of care definitive radiotherapy in locally advanced, unresectable, chordoma. J. Clin. Oncol. 2020, 38, 11527. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Bilusic, M.; Park, D.M.; Heery, C.R.; Donahue, R.N.; Madan, R.A.; Bagheri, M.H.; Strauss, J.; Shen, V.; Marte, J.L.; et al. Randomized, Double-Blind, Placebo-Controlled Phase II Study of Yeast-Brachyury Vaccine (GI-6301) in Combination with Standard-of-Care Radiotherapy in Locally Advanced, Unresectable Chordoma. Oncologist 2021, 26, E847–E858. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Lee-Wisdom, K.; Donahue, R.N.; Madan, R.A.; Karzai, F.; Schwab, A.; Palena, C.; Jochems, C.; Floudas, C.; Strauss, J.; et al. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J. Immunother. Cancer 2021, 9, e003238. [Google Scholar] [CrossRef]
- Dredge, K.; Brennan, T.V.; Hammond, E.; Lickliter, J.D.; Lin, L.; Bampton, D.; Handley, P.; Lankesheer, F.; Morrish, G.; Yang, Y.; et al. A Phase i study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br. J. Cancer 2018, 118, 1035–1041. [Google Scholar] [CrossRef]
- Heery, C.R.; O’Sullivan-Coyne, G.; Madan, R.A.; Cordes, L.; Rajan, A.; Rauckhorst, M.; Lamping, E.; Oyelakin, I.; Marté, J.L.; Lepone, L.M.; et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): A phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017, 18, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Heery, C.R.; Palena, C.; McMahon, S.; Donahue, R.N.; Lepone, L.M.; Grenga, I.; Dirmeier, U.; Cordes, L.; Marte, J.; Dahut, W.; et al. Phase I study of a poxviral TRICOM-based vaccine directed against the transcription factor brachyury. Clin. Cancer Res. 2017, 23, 6833–6845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heery, C.R.; Singh, B.H.; Rauckhorst, M.; Marte, J.L.; Donahue, R.N.; Grenga, I.; Rodell, T.C.; Dahut, W.; Arlen, P.M.; Madan, R.A.; et al. Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301) Targeting the Transcription Factor Brachyury. Cancer Immunol. Res. 2015, 3, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, M.; Hu, J.S.; Whalen, G.F.; Thomas, J.S.; El-Khoueiry, A.B.; Hanna, D.L.; Olszanski, A.J.; Meyer, C.F.; Azad, N.S.; Mahmood, S. Early results of intratumoral INT230-6 alone or in combination with ipilimumab in subjects with advanced sarcomas. J. Clin. Oncol. 2021, 39, 15. [Google Scholar] [CrossRef]
- Janku, F.; Zhang, H.H.; Pezeshki, A.; Goel, S.; Murthy, R.; Wang-Gillam, A.; Shepard, D.R.; Helgason, T.; Masters, T.; Hong, D.S. Intratumoral Injection of Clostridium novyi-NT Spores in Patients with Treatment-refractory Advanced Solid TumorsPhase I Study of Intratumoral Clostridium novyi-NT. Clin. Cancer Res. 2021, 27, 96–106. [Google Scholar] [CrossRef]
- Streby, K.A.; Geller, J.I.; Currier, M.A.; Warren, P.S.; Racadio, J.M.; Towbin, A.J.; Vaughan, M.R.; Triplet, M.; Ott-Napier, K.; Dishman, D.J.; et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin. Cancer Res. 2017, 23, 3566–3574. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.J.; Amini, B.; Lin, H.; Raza, S.M.; Patel, S.; Grosshans, D.R.; Ghia, A.; Farooqi, A.; Guadagnolo, B.A.; Mitra, D.; et al. Immune Checkpoint Inhibitors Have Clinical Activity in Patients With Recurrent Chordoma. J. Immunother. 2022, 45, 374–378. [Google Scholar] [CrossRef]
- Jagersberg, M.; El Rahal, A.; Dammann, P.; Merkler, D.; Weber, D.C.; Schaller, K. Clival chordoma: A single-centre outcome analysis. Acta Neurochir. 2017, 159, 1815–1823. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Maria, A.; Suárez-Almazor, M.E.; Lambotte, O.; Fisher, B.A.; Hernández-Molina, G.; Guilpain, P.; Pundole, X.; Flores-Chávez, A.; Baldini, C.; et al. Sicca/Sjögren’s syndrome triggered by PD-1/PD-L1 checkpoint inhibitors. Data from the International Immunocancer Registry (ICIR). Clin. Exp. Rheumatol. 2019, 37, 114–122. [Google Scholar]
- Chen, Y.; Jia, Y.; Liu, Q.; Shen, Y.; Zhu, H.; Dong, X.; Huang, J.; Lu, J.; Yin, Q. Myocarditis related to immune checkpoint inhibitors treatment: Two case reports and literature review. Ann. Palliat. Med. 2021, 10, 8512–8517. [Google Scholar] [CrossRef]
- Gounder, M.M.; Zhu, G.; Roshal, L.; Lis, E.; Daigle, S.R.; Blakemore, S.J.; Michaud, N.R.; Hameed, M.; Hollmann, T.J. ImmunologicCorrelates of the Abscopal Effect in a SMARCB1/INI1-negative Poorly Differentiated Chordoma after EZH2 Inhibition and Radiotherapy. Clin. Cancer Res. 2019, 25, 2064–2071. [Google Scholar] [CrossRef] [PubMed]
- Ibodeng, G.O.E.; Alkharabsheh, O.; Thanikachalam, K. A case of refractory chordoma of the clivus with a review of therapeutic targets. Curr. Probl. Cancer Case Rep. 2022, 8, 100194. [Google Scholar] [CrossRef]
- Migliorini, D.; Mach, N.; Aguiar, D.; Vernet, R.; Landis, B.N.; Becker, M.; McKee, T.; Dutoit, V.; Dietrich, P.Y. First report of clinical responses to immunotherapy in 3 relapsing cases of chordoma after failure of standard therapies. Oncoimmunology 2017, 6, e1338235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, L.M.; Rive, C.M.; Di Francesco, D.; Titmuss, E.; Chun, H.E.; Brown, S.D.; Milne, K.; Pleasance, E.; Lee, A.F.; Yip, S.; et al. Clinical response to nivolumab in an INI1-deficient pediatric chordoma correlates with immunogenic recognition of brachyury. NPJ Precis Oncol. 2021, 5, 103. [Google Scholar] [CrossRef]
- Wu, X.; Lin, X.; Chen, Y.; Kong, W.; Xu, J.; Yu, Z. Response of metastatic chordoma to the immune checkpoint inhibitor pembrolizumab: A case report. Front. Oncol. 2020, 10, 565945. [Google Scholar] [CrossRef]
- Somaiah, N.; Conley, A.P.; Parra, E.R.; Lin, H.; Amini, B.; Solis Soto, L.; Salazar, R.; Barreto, C.; Chen, H.; Gite, S.; et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: A single-centre phase 2 trial. Lancet Oncol. 2022, 23, 1156–1166. [Google Scholar] [CrossRef]
- Choi, H.; Charnsangavej, C.; Faria, S.C.; Macapinlac, H.A.; Burgess, M.A.; Patel, S.R.; Chen, L.L.; Podoloff, D.A.; Benjamin, R.S. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria. J. Clin. Oncol. 2007, 25, 1753–1759. [Google Scholar] [CrossRef]
- Traylor, J.I.; Pernik, M.N.; Plitt, A.R.; Lim, M.; Garzon-Muvdi, T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers 2021, 13, 2408. [Google Scholar] [CrossRef]
- Akinduro, O.O.; Suarez-Meade, P.; Garcia, D.; Brown, D.A.; Sarabia-Estrada, R.; Attia, S.; Gokaslan, Z.L.; Quinones-Hinojosa, A. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Target. Oncol. 2021, 16, 325–337. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Y.H.; Zhang, H.; Li, S.Y.; Zhou, J.D.; Shen, J. The Roles of Embryonic Transcription Factor BRACHYURY in Tumorigenesis and Progression. Front. Oncol. 2020, 10, 961. [Google Scholar] [CrossRef]
- Colia, V.; Stacchiotti, S. Medical treatment of advanced chordomas. Eur. J. Cancer 2017, 83, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Shen, J.; Gao, Y.; Liao, Y.F.; Cote, G.; Choy, E.; Chebib, I.; Mankin, H.; Hornicek, F.; Duan, Z.F. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget 2015, 6, 11139–11149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanindratarn, P.; Dean, D.C.; Nelson, S.D.; Hornicek, F.J.; Duan, Z.F. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J. Bone Oncol. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Dridi, M.; Krebs-Drouot, L.; Meyronet, D.; Dumollard, J.M.; Vassal, F.; Jouanneau, E.; Jacquesson, T.; Barrey, C.; Grange, S.; Boutonnat, J.; et al. The Immune Microenvironment of Chordomas: An Immunohistochemical Analysis. Cancers 2021, 13, 3335. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Fowkes, M.; Shrivastava, R.K. Emerging Therapeutic Targets in Chordomas: A Review of the Literature in the Genomic Era. Neurosurgery 2020, 86, E118–E123. [Google Scholar] [CrossRef]
- Fujii, R.; Schlom, J.; Hodge, J.W. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J. Neurosurg. 2018, 128, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.; Rath, B. Avelumab: Combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin. Biol. Ther. 2017, 17, 515–523. [Google Scholar] [CrossRef]
- He, G.; Liu, X.; Pan, X.; Ma, Y.; Liu, X. Cytotoxic T lymphocyte antigen-4 (CTLA-4) expression in chordoma and tumor-infiltrating lymphocytes (TILs) predicts prognosis of spinal chordoma. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2020, 22, 2324–2332. [Google Scholar] [CrossRef]
- Hoke, A.T.K.; Padget, M.R.; Fabian, K.P.; Nandal, A.; Gallia, G.L.; Bilusic, M.; Soon-Shiong, P.; Hodge, J.W.; London, N.R., Jr. Combinatorial Natural Killer Cell-based Immunotherapy Approaches Selectively Target Chordoma Cancer Stem Cells. Cancer Res. Commun. 2021, 1, 127–139. [Google Scholar] [CrossRef]
- Cogdill, A.P.; Andrews, M.C.; Wargo, J.A. Hallmarks of response to immune checkpoint blockade. Br. J. Cancer 2017, 117, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meftahpour, V.; Aghebati-Maleki, A.; Fotouhi, A.; Safarzadeh, E.; Aghebati-Maleki, L. Prognostic significance and therapeutic potentials of immune checkpoints in osteosarcoma. Excli J. 2022, 21, 250–268. [Google Scholar] [CrossRef] [PubMed]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Huang, W.; Chen, Y.-L.; Fu, H.-B.; Tang, M.; Zhang, T.-L.; Li, J.; Lv, G.-H.; Yan, Y.-G.; Ouyang, Z.-H.; et al. Coexpression of HHLA2 and PD-L1 on Tumor Cells Independently Predicts the Survival of Spinal Chordoma Patients. Front. Immunol. 2022, 12, 797407. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.X.; Lv, G.H.; Wang, X.B.; Huang, W.; Li, J.; Jiang, Y.; She, X.L. Clinical Impact of the Immune Microenvironment in Spinal Chordoma: Immunoscore as an Independent Favorable Prognostic Factor. Neurosurgery 2019, 84, E318–E333. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.P.; Jiang, Y.; Zhang, H.Y.; Chen, L.; Luo, P.; Li, L.; Zhao, J.S.; Lv, F.; Zou, D.; Zhang, Y.; et al. Clinicopathological implications of TIM3(+) tumor-infiltrating lymphocytes and the miR-455-5p/Galectin-9 axis in skull base chordoma patients. Cancer Immunol. Immunother. 2019, 68, 1157–1169. [Google Scholar] [CrossRef]
- Dancsok, A.R.; Gao, D.X.; Lee, A.N.F.; Steigen, S.E.; Blay, J.Y.; Thomas, D.M.; Maki, R.G.; Nielsen, T.O.; Demicco, E.G. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology 2020, 9, 1747340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushlinskii, N.E.; Kovaleva, O.V.; Kuzmin, Y.B.; Korotkova, E.A.; Gershtein, E.S.; Boulytcheva, I.V.; Kozlova, E.V.; Kudlay, D.A.; Podlesnaya, P.A.; Gratchev, A.N.; et al. Clinical and prognostic significance of the soluble form of the VISTA immunity control point in patients with primary bone tumors. Klin. Lab. Diagn. 2021, 66, 533–538. [Google Scholar] [CrossRef]
- Court, C.; Briand, S.; Mir, O.; Le Pechoux, C.; Lazure, T.; Missenard, G.; Bouthors, C. Management of chordoma of the sacrum and mobile spine. Orthop. Traumatol.-Surg. Res. 2022, 108, 103169. [Google Scholar] [CrossRef]
- Keung, E.Z.; Burgess, M.; Salazar, R.; Parra, E.R.; Rodrigues-Canales, J.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Attia, S.; Riedel, R.F. Correlative Analyses of the SARC028 Trial Reveal an Association Between Sarcoma-Associated Immune Infiltrate and Response to PembrolizumabSarcoma-Associated Immune Infiltrate and Anti-PD1 Therapy. Clin. Cancer Res. 2020, 26, 1258–1266. [Google Scholar] [CrossRef]
- Zou, M.X.; Pan, Y.; Huang, W.; Zhang, T.L.; Escobar, D.; Wang, X.B.; Jiang, Y.; She, X.L.; Lv, G.H.; Li, J. A four-factor immune risk score signature predicts the clinical outcome of patients with spinal chordoma. Clin. Transl. Med. 2020, 10, 224–237. [Google Scholar] [CrossRef]
- Williamson, L.; Rive, C.; Di Francesco, D.; Titmuss, E.; Chun, E.; Brown, S.; Milne, K.; Pleasance, E.; Lee, A.F.; Yip, S.; et al. Response to nivolumab in a pediatric chordoma with overexpression of brachyury. Cancer Res. 2021, 81, 630. [Google Scholar] [CrossRef]
- Quiroga, D.; Liebner, D.A.; Philippon, J.S.; Hoffman, S.; Tan, Y.; Chen, J.L.; Lenobel, S.; Wakely, P.E., Jr.; Pollock, R.; Tinoco, G. Activity of PD1 inhibitor therapy in advanced sarcoma: A single-center retrospective analysis. BMC Cancer 2020, 20, 527. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killian, J.K.; Yang, X.R.; Danziger, N.; Elvin, J.A.; Vergilio, J.-A.; Lin, D.I.; Williams, E.A.; Ramkissoon, S.H.; Severson, E.A.; Hemmerich, A. Differential genomic landscape of clinically advanced/metastatic chordomas (mChor) based on primary tumor site. J. Clin. Oncol. 2020, 38, 11521. [Google Scholar] [CrossRef]
- Abro, B.; Kaushal, M.; Chen, L.; Wu, R.; Dehner, L.P.; Pfeifer, J.D.; He, M.J.P.-R.; Practice. Tumor mutation burden, DNA mismatch repair status and checkpoint immunotherapy markers in primary and relapsed malignant rhabdoid tumors. Pathol.-Res. Pract. 2019, 215, 152395. [Google Scholar] [CrossRef]
- Forrest, S.J.; Al-Ibraheemi, A.; Doan, D.; Ward, A.; Clinton, C.M.; Putra, J.; Pinches, R.S.; Kadoch, C.; Chi, S.N.; DuBois, S.G. Genomic and immunologic characterization of INI1-deficient pediatric cancers. Clin. Cancer Res. 2020, 26, 2882–2890. [Google Scholar] [CrossRef] [Green Version]
- Jelinic, P.; Ricca, J.; Van Oudenhove, E.; Olvera, N.; Merghoub, T.; Levine, D.A.; Zamarin, D. Immune-active microenvironment in small cell carcinoma of the ovary, hypercalcemic type: Rationale for immune checkpoint blockade. JNCI J. Natl. Cancer Inst. 2018, 110, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Forrest, S.J.; Yi, J.; Kline, C.; Cash, T.; Reddy, A.T.; Cote, G.M.; Merriam, P.; Czaplinski, J.; Bhushan, K.; DuBois, S.G. Phase II study of nivolumab and ipilimumab in children and young adults with INI1-negative cancers. J. Clin. Oncol. 2021, 39, 15. [Google Scholar] [CrossRef]
- Patel, S.S.; Nota, S.P.; Sabbatino, F.; Nielsen, G.P.; Deshpande, V.; Wang, X.; Ferrone, S.; Schwab, J.H. Defective HLA Class I Expression and Patterns of Lymphocyte Infiltration in Chordoma Tumors. Clin. Orthop. Relat. Res. 2021, 479, 1373–1382. [Google Scholar] [CrossRef]
- Bourbon, E.; Ghesquières, H.; Bachy, E.J. CAR-T cells, from principle to clinical applications. Bull. Cancer 2021, 108, S4–S17. [Google Scholar] [CrossRef]
- Schwab, J.H.; Boland, P.J.; Agaram, N.P.; Socci, N.D.; Guo, T.; O’Toole, G.C.; Wang, X.; Ostroumov, E.; Hunter, C.J.; Block, J.A.; et al. Chordoma and chondrosarcoma gene profile: Implications for immunotherapy. Cancer Immunol. Immunother. CII 2009, 58, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Wang, X.; Wang, Y.; Hornicek, F.J.; Nielsen, G.P.; Duan, Z.; Ferrone, S.; Schwab, J.H. CSPG4 as a prognostic biomarker in chordoma. Spine J. 2016, 16, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Yu, L.; Sakakura, K.; Visus, C.; Schwab, J.H.; Ferrone, C.R.; Favoino, E.; Koya, Y.; Campoli, M.R.; et al. CSPG4 in cancer: Multiple roles. Curr. Mol. Med. 2010, 10, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Beard, R.E.; Zheng, Z.; Lagisetty, K.H.; Burns, W.R.; Tran, E.; Hewitt, S.M.; Abate-Daga, D.; Rosati, S.F.; Fine, H.A.; Ferrone, S.; et al. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer 2014, 2, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Li, G.; Zhang, C.; Jiang, T.; Li, Y.; Duan, X.; Zhong, G. B7-H3 as a Target for CAR-T Cell Therapy in Skull Base Chordoma. Front. Oncol. 2021, 11, 659662. [Google Scholar] [CrossRef]
Year | Study Design | Levels of Evidence | Sample Size | Tumor Site | Treatment History | Drug | Median Treatment Time (m) | AEs | Choi’s Criteria | RECIST/irRECIST | Median PFS (m) | Median OS (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
022 | case series | IV | 9 | 2 clival 5 spine, and 10 sacrum, | radiotherapy | pembrolizumab 200 mg | 12 | dermatologic (n = 2), endocrine (n = 2), or Sicca syndrome related (n = 2). grade 3 myocarditis and myositis (n = 1), grade 4 potentially attributable pneumonitis versus infectious reaction (n = 1) | 1CR,6SD,2PR, | 14 (95% CI, 5–17) | 1-year OS was 87% | |
2 | FAZ053 | 2SD | ||||||||||
1 | Nivolumab + bempegaldesleukin | PD | ||||||||||
2021 | phase2 | V | 34 | pembrolizumab 200mg |
The side effect profile of pembrolizumab was similar to other tumor type | 3PR | 6.6 | not reached | ||||
2022 | case report | V | 1 | clival | Surgery and radiotherapy | Pembrolizumab (200mg) | 3 | hypotension, severe fatigue, and dyspnea | ||||
2020 | case report | V | 1 | sacrum | surgery | pembrolizumab | grades 1–2, liver function and hyperglycemia | PR | 9.3 | |||
2017 | case report | V | 1 | spine | Surgery and radiotherapy | Pembrolizumab 200 mg | vitiligo | controlled for 6 months | ||||
1 | clival | Surgery and radiotherapy | Nivolumab 3 mg/kg | controlled for 9 months | ||||||||
2019 | case report | V | 1 | sacrum | radiotherapy | nivolumab, followed by nivolumab + ipilimumab | >4 | |||||
2017 | case series | IV | 2 | clival | radiotherapy | pazopanib + nivolumab | 161 | |||||
2021 | case report | V | 1 | clival | nivolumab | PR | ||||||
2021 | case report | V | 1 | sacrum | Surgery and radiotherapy | sintilimab + anlotinib | ICIs-related myocarditis | <1 | ||||
2017 | phase1 | V | 1 | avelumab (1,3,10,20mg/kg) | grade1/grade2 | |||||||
2019 | case series | IV | 1 | Durvalumab | Sicca/Sjögren’s syndrome | |||||||
2022 | phase2 | V | 5 | durvalumab + tremelimumab | Colitis, pneumonitis, abdominal pain, myocarditis | 1PR+CR,3SD,1PD | 13.57 (2.76, 17.81) |
Year | Study Design | Levels of Evidence | Sample Size | Tumor Site | Treatment History | Drug | Median Treatment Time (m) | AEs | Choi’s Criteria | RECIST/irRECIST | Median PFS (m) | Median OS (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
22 | case series | IV | 5 | Durvalumab + tremelimumab | 12 | Colitis, pneumonitis, abdominal pain, myocarditis | 1PD,3SD,1PR | |||||
21 | phase1/2 | V | 1 | INT230-6 + ipilimumab | grade1/grade2, anemia, colitis | |||||||
19 | case report | V | 1 | sacrum | Radiotherapy | Nivolumab, followed by nivolumab + ipilimumab | >4 |
Year | Study Design | Levels of Evidence | Sample Size | Tumor Site | Treatment History | Drug | Median Treatment Time (m) | AEs | Choi’s Criteria | RECIST/irRECIST | Median PFS (m) | Median OS (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | phase1 | IV | 3 | MVA-brachyury s.c., 8 × 108 infectious units (IU), followed by FPV-brachyury s.c., 1 × 109 IU, | 24 | grade1/grade2, injection-site reaction, fever, fatigue | 2SD, 1PD | one patient for 52 weeks | ||||
20 | phase2 | III | 11 | 5 clival, 3 spine and 3 sacrum | GI-6301 (yeast-brachyury vaccine) +RT | injection-site reaction, lymphocyte count decreased, fever | 5PD,3SD,1 PR, | 20.6 | 37.5 | |||
21 | phase1 | IV | 10 | MVA-BN-brachyury-TRICOM vaccine (1 × 107, 1 × 108, 1 × 109) | grade1/grade2, injection-site reaction, fever | 4SD,5PD,1PR | 253 day | |||||
17 | phase1 | IV | 13 | MVA-brachyury-TRICOM (5 × 108, 1 × 109, 2 × 109) | grade1/grade2 (fever, diarrhea) injection-site reaction, lymphocyte count decreased, flu-like symptoms, fever, and diarrhea | |||||||
15 | phase1 | IV | 11 | 3 clival, 2 spine and 6 sacrum. | Surgery and radiotherapy | GI-6301 (yeast-brachyury vaccine) (4, 16, 40, and 80 yeast units (YU)) | grade1/grade2, injection-site reaction, fever | 3PD,1PR,1mixed response, 5SD | 8.3 |
Year | Study Design | Levels of Evidence | Sample Size | Tumor Site | Treatment History | Drug | Median Treatment Time (m) | AEs | Choi’s Criteria | RECIST/irRECIST | Median PFS (m) | Median OS(m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | phase1 | V | 5 | HuMax-IL8 (4, 8, 16, 32mg/kg) | 6 | constipation (33.3%), nausea (26.7%) and anemia (26.7%) | SD = 4, PD = 1 | 5.5 | ||||
2018 | phase1 | V | 1 | PG545 150mg | Hypertension, Chills, Fatigue | SD | ||||||
2021 | phase1 | V | 1 | C. novyi NT spores 1 × 106 | Pyrexia | SD | ||||||
2017 | case series | IV | 1 | clival | Surgery and radiotherapy | MVX-ONCO-1 | controlled >19 months | |||||
2017 | phase1 | V | 1 | clival | radiotherapy | HSV1716 (2 × 106 i.u.) | fever, chills, anemia and leukopenia | SD | 14day | 2.5 |
Clinical Trial | Trial registration Number | Phase | Medical Condition: | Sites | Status |
---|---|---|---|---|---|
Talimogene Laherparepvec, Nivolumab and Trabectedin for Sarcoma | NCT03886311 | 2 | Talimogene Laherparepvec, Nivolumab, Trabectedin | USA | Recruiting |
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors | NCT02834013 | 2 | Ipilimumab, Nivolumab | USA | Recruiting |
Study of Nivolumab and Ipilimumab in Children and Young Adults With INI1-Negative Cancers | NCT04416568 | 2 | Ipilimumab, Nivolumab | USA | Recruiting |
Multi-Arm Study to Test the Efficacy of Immunotherapeutic Agents in Multiple Sarcoma Subtypes | NCT02815995 | 2 | Durvalumab, Tremelimumab | USA | Active, not recruiting |
A randomised, comparative, prospective, multicentre study of the efficacy of nivolumab + ipilimumab versus pazopanib alone in patients with metastatic or unresectable advanced sarcoma of rare subtype | EudraCT2020-002821-28 | 2 | nivolumab + ipilimumab versus pazopanib | France | Ongoing |
A randomized phase II study of Durvalumab (MEDI4736) and Tremelimumab compared to doxorubicin in patients with advanced or metastatic soft tissue sarcoma. | EudraCT 2016-004750-15 | 2 | Durvalumab (MEDI4736) and Tremelimumab compared to doxorubicin | Germany | Ongoing |
Multi-Arm Study to Test the Efficacy of Immunotherapeutic Agents in Multiple Sarcoma Subtypes | NCT02815995 | 2 | Durvalumab, Tremelimumab | USA | Active, not recruiting |
Nivolumab and Relatlimab in Treating Participants With Advanced Chordoma | NCT03623854 | 2 | Nivolumab, Relatlimab | USA | Recruiting |
Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors | NCT05286801 | 2 | Atezolizumab, Tiragolumab | USA | Recruiting |
Phase II trial of the immune checkpoint inhibitor nivolumab in patients with select rare CNS cancers | NCT03173950 | 2 | nivolumab | USA | Recruiting |
Phase I safety study of stereotactic radiosurgery with concurrent and adjuvant PD-1 antibody nivolumab in subjects with recurrent or advanced chordoma | NCT02989636 | 1 | nivolumab | USA | Recruiting |
TAEK-VAC-HerBy Vaccine for Brachyury and HER2 Expressing Cancer | NCT04246671 | 1 | TAEK-VAC-HerBy Vaccine | Recruiting | |
BN Brachyury and Radiation in Chordoma | NCT03595228 | 2 | BN-Brachyury plus radiation | ||
A Study of FAZ053 Single Agent and in Combination with PDR001 in Patients With Advanced Malignancies. | NCT02936102 | 1 | FAZ053 PDR001 | Completed Active, not recruiting | |
Nivolumab (Opdivo®) Plus ABI-009 (Nab-rapamycin) for Advanced Sarcoma and Certain Cancers | NCT03190174 | 2 | Nab-Rapamycin Nivolumab | Completed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, Z.; Li, B.; Fan, J.; Xu, W.; Xiao, J. Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review. Cancers 2023, 15, 264. https://doi.org/10.3390/cancers15010264
Wang X, Chen Z, Li B, Fan J, Xu W, Xiao J. Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review. Cancers. 2023; 15(1):264. https://doi.org/10.3390/cancers15010264
Chicago/Turabian StyleWang, Xiang, Zhaoyu Chen, Bo Li, Jiefu Fan, Wei Xu, and Jianru Xiao. 2023. "Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review" Cancers 15, no. 1: 264. https://doi.org/10.3390/cancers15010264
APA StyleWang, X., Chen, Z., Li, B., Fan, J., Xu, W., & Xiao, J. (2023). Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review. Cancers, 15(1), 264. https://doi.org/10.3390/cancers15010264