Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. TNBC Classification
2.1. LAR Subtype
2.2. M and MSL Subtype
2.3. Basal-like Subtype
2.4. Immunomodulatory Subtype
2.5. Basal-like and Immunosuppressed Subtype (BLIS)
2.6. Basal-like Immune Activated (BLIA) Subtype
3. The Biological Role of Androgen Receptor
4. Substantiations Procured from the Clinical Trials
4.1. Seviteronel (SEVI)
4.2. Enobosarm
4.3. Bicalutamide
4.4. Enzalutamide
4.5. Abiraterone Acetate
4.6. Orteronel
4.7. CR1447
4.8. Finasteride and Dutasteride
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junnuthula, V.; Kolimi, P.; Nyavanandi, D.; Sampathi, S.; Vora, L.K.; Dyawanapelly, S.J.P. Polymeric micelles for breast cancer therapy: Recent updates. Clin. Transl. Regul. Consid. 2022, 14, 1860. [Google Scholar]
- Khadela, A.; Bhikadiya, V.; Vyas, B. Impact of oncology pharmacist services on humanistic outcome in patients with breast cancer. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2022, 28, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; et al. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017, 389, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.J.G.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Zagami, P.; Carey, L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef]
- Liman, A.A.; Kabir, B.; Abubakar, M.; Abdullahi, S.; Ahmed, S.A.; Shehu, S.M. Triple-Negative Breast Cancer (TNBC) and its Luminal Androgen Receptor (LAR) subtype: A clinicopathologic review of cases in a university hospital in Northwestern Nigeria. Niger. J. Clin. Pract. 2022, 25, 97–104. [Google Scholar] [CrossRef]
- Bou Zerdan, M.; Ghorayeb, T.; Saliba, F.; Allam, S.; Bou Zerdan, M.; Yaghi, M.; Bilani, N.; Jaafar, R.; Nahleh, Z. Triple Negative breast cancer: Updates on classification and treatment in 2021. Cancers 2022, 14, 1253. [Google Scholar] [CrossRef]
- Leon-Ferre, R.; Polley, M.-Y.; Liu, H.; Kalari, K.; Boughey, J.C.; Liu, M.C.; Cafourek, V.; Negron, V.; Ingle, J.N.; Thompson, K.; et al. Abstract P3-08-01: Characteristics, outcomes and prognostic factors of luminal androgen receptor (LAR) triple-negative breast cancer (TNBC). Cancer Res. 2019, 79, P3-08-01. [Google Scholar] [CrossRef]
- Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina 2021, 57, 62. [Google Scholar] [CrossRef]
- Culig, Z. Androgen receptor coactivators in regulation of growth and differentiation in prostate cancer. J. Cell. Physiol. 2016, 231, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Brumec, M.; Sobočan, M.; Takač, I.; Arko, D. Clinical implications of androgen-positive triple-negative breast cancer. Cancers 2021, 13, 1642. [Google Scholar] [CrossRef] [PubMed]
- Tozbikian, G.H.; Zynger, D.L. A combination of GATA3 and SOX10 is useful for the diagnosis of metastatic triple-negative breast cancer. Hum. Pathol. 2019, 85, 221–227. [Google Scholar] [CrossRef]
- Mehta, A.; Dogra, A. Androgen receptor: A new player in triple negative breast cancer management. J. Curr. Oncol. 2020, 3, 51. [Google Scholar] [CrossRef]
- Thompson, K.J.; Leon-Ferre, R.A.; Sinnwell, J.P.; Zahrieh, D.M.; Suman, V.J.; Metzger, F.O.; Asad, S.; Stover, D.G.; Carey, L.; Sikov, W.M.; et al. Luminal androgen receptor breast cancer subtype and investigation of the microenvironment and neoadjuvant chemotherapy response. NAR Cancer 2022, 4, zcac018. [Google Scholar] [CrossRef] [PubMed]
- Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev. 2018, 68, 102–110. [Google Scholar] [CrossRef]
- Christenson, J.L.; O’Neill, K.I.; Williams, M.M.; Spoelstra, N.S.; Jones, K.L.; Trahan, G.D.; Reese, J.; Van Patten, E.T.; Elias, A.; Eisner, J.R.; et al. Activity of combined androgen receptor antagonism and cell cycle inhibition in androgen receptor positive triple negative breast cancer. Mol. Cancer Ther. 2021, 20, 1062–1071. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PloS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 884–890. [Google Scholar] [CrossRef]
- Bittner, A.K.; Keup, C.; Hoffmann, O.; Hauch, S.; Kimmig, R.; Kasimir-Bauer, S. Molecular characterization of circulating tumour cells identifies predictive markers for outcome in primary, triple-negative breast cancer patients. J. Cell. Mol. Med. 2020, 24, 8405–8416. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uscanga-Perales, G.I.; Santuario-Facio, S.K.; Ortiz-López, R. Triple negative breast cancer: Deciphering the biology and heterogeneity. Med. Univ. 2016, 18, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Sporikova, Z.; Koudelakova, V.; Trojanec, R.; Hajduch, M. Genetic markers in triple-negative breast cancer. Clin. Breast Cancer 2018, 18, e841–e850. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. BCR 2020, 22, 61. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol. 2014, 232, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Vranic, S.; Gatalica, Z. An update on the molecular and clinical characteristics of apocrine carcinoma of the breast. Clin. Breast Cancer 2022, 22, e576–e585. [Google Scholar] [CrossRef]
- Barton, V.N.; D’Amato, N.C.; Gordon, M.A.; Christenson, J.L.; Elias, A.; Richer, J.K. Androgen receptor biology in triple negative breast cancer: A case for classification as AR+ or quadruple negative disease. Horm. Cancer 2015, 6, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.D.; Abramson, V.G.; Sanders, M.E.; Mayer, E.L.; Haddad, T.C.; Nanda, R.; Van Poznak, C.; Storniolo, A.M.; Nangia, J.R.; Gonzalez-Ericsson, P.I.; et al. TBCRC 032 IB/II multicenter study: Molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR(+) metastatic triple-negative breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2111–2123. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, T.M.; Park, J.M.; Park, S.; Park, M.; Nam, K.D.; Ko, D.; Seo, J.; Kim, S.; Jung, E.; et al. A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene 2022, 41, 3289–3297. [Google Scholar] [CrossRef]
- Park, H.K.; Yoon, N.G.; Lee, J.E.; Hu, S.; Yoon, S.; Kim, S.Y.; Hong, J.H.; Nam, D.; Chae, Y.C.; Park, J.B.; et al. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp. Mol. Med. 2020, 52, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavani, M.; Hardingham, J.E.; Palethorpe, H.M.; Price, T.J.; Townsend, A.R. Druggable molecular targets for the treatment of triple negative breast cancer. J. Breast Cancer 2019, 22, 341–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubalek, M.; Czech, T.; Müller, H. Biological subtypes of triple-negative breast cancer. Breast Care 2017, 12, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.M.; Oh, M.H.; Go, J.H.; Han, K.; Choi, S.Y. Molecular subtypes of triple-negative breast cancer: Understanding of subtype categories and clinical implication. Genes Genom. 2020, 42, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.; Dvorkin-Gheva, A.; Hallett, R.M.; Wu, Y.; Hassell, J.; Pond, G.R.; Levine, M.; Whelan, T.; Bane, A.L. Claudin-low breast cancer; clinical & pathological characteristics. PLoS ONE 2017, 12, e0168669. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, D.; Yao, Z.; Lin, X.; Liu, J.; Gu, Q.; Dong, X.; Liu, F.; Wang, Y.; Yao, N.; et al. Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol. Ther. 2017, 18, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Morales, C.; Cooke, L.S.; Johnson, B.; Somer, B.; Mahadevan, D. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Oncotarget 2015, 6, 41976–41987. [Google Scholar] [CrossRef]
- Elsawaf, Z.; Sinn, H.P. Triple-negative breast cancer: Clinical and histological correlations. Breast Care 2011, 6, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Garutti, M.; Pelizzari, G.; Bartoletti, M.; Malfatti, M.C.; Gerratana, L.; Tell, G.; Puglisi, F. Platinum salts in patients with breast cancer: A focus on predictive factors. Int. J. Mol. Sci. 2019, 20, 3390. [Google Scholar] [CrossRef] [Green Version]
- Geenen, J.J.J.; Linn, S.C.; Beijnen, J.H.; Schellens, J.H.M. PARP inhibitors in the treatment of triple-negative breast cancer. Clin. Pharmacokinet. 2018, 57, 427–437. [Google Scholar] [CrossRef]
- Tanei, T.; Choi, D.S.; Rodriguez, A.A.; Liang, D.H.; Dobrolecki, L.; Ghosh, M.; Landis, M.D.; Chang, J.C. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res. 2016, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bando, Y.; Kobayashi, T.; Miyakami, Y.; Sumida, S.; Kakimoto, T.; Saijo, Y.; Uehara, H. Triple-negative breast cancer and basal-like subtype: Pathology and targeted therapy. J. Med. Investig. 2021, 68, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Alhesa, A.; Awad, H.; Bloukh, S.; Al-Balas, M.; El-Sadoni, M.; Qattan, D.; Azab, B.; Saleh, T. PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. Int. J. Immunopathol. Pharmacol. 2022, 36, 03946320221078433. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.Q.; Haddad, R.; Gupta, S.; Mahipal, A.; Mehra, R.; Tahara, M.; Berger, R.; Eder, J.P.; Burtness, B.; Lee, S.-H.; et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: Results from the phase Ib KEYNOTE-012 expansion cohort. J. Clin. Oncol. 2016, 34, 3838. [Google Scholar] [CrossRef] [PubMed]
- Tolaney, S.M.; Kalinsky, K.; Kaklamani, V.G.; D’Adamo, D.R.; Aktan, G.; Tsai, M.L.; O’Regan, R.M.; Kaufman, P.A.; Wilks, S.T.; Andreopoulou, E.; et al. Eribulin plus pembrolizumab in patients with metastatic triple-negative breast cancer (ENHANCE 1): A phase Ib/II studyphase Ib/II study of Eribulin+ pembrolizumab in mTNBC. Clin. Cancer Res. 2021, 27, 3061–3068. [Google Scholar] [CrossRef]
- Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 1688–1698. [Google Scholar] [CrossRef] [Green Version]
- Astvatsaturyan, K.; Yue, Y.; Walts, A.E.; Bose, S. Androgen receptor positive triple negative breast cancer: Clinicopathologic, prognostic, and predictive features. PLoS ONE 2018, 13, e0197827. [Google Scholar] [CrossRef] [Green Version]
- Rampurwala, M.; Wisinski, K.B.; O’Regan, R. Role of the androgen receptor in triple-negative breast cancer. Clin. Adv. Hematol. Oncol. H O 2016, 14, 186. [Google Scholar]
- Shah, P.D.; Gucalp, A.; Traina, T. The role of the androgen receptor in triple-negative breast cancer. Women’s Health 2013, 9, 351–360. [Google Scholar] [CrossRef]
- Hanamura, T.; Christenson, J.L.; O’Neill, K.I.; Rosas, E.; Spoelstra, N.S.; Williams, M.M.; Richer, J.K. Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Res. 2021, 23, 1–15. [Google Scholar] [CrossRef]
- Grellety, T. Androgen receptor-positive triple negative breast cancer: From biology to therapy. Bull. Cancer 2020, 107, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Pietri, E.; Conteduca, V.; Andreis, D.; Massa, I.; Melegari, E.; Sarti, S.; Cecconetto, L.; Schirone, A.; Bravaccini, S.; Serra, P.; et al. Androgen receptor signaling pathways as a target for breast cancer treatment. Endocr. Relat. Cancer 2016, 23, R485–R498. [Google Scholar] [CrossRef] [PubMed]
- Basile, D.; Cinausero, M.; Iacono, D.; Pelizzari, G.; Bonotto, M.; Vitale, M.G.; Gerratana, L.; Puglisi, F. Androgen receptor in estrogen receptor positive breast cancer: Beyond expression. Cancer Treat. Rev. 2017, 61, 15–22. [Google Scholar] [CrossRef]
- Christenson, J.L.; Butterfield, K.T.; Spoelstra, N.S.; Norris, J.D.; Josan, J.S.; Pollock, J.A.; McDonnell, D.P.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Richer, J.K.J.H.; et al. MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm. Cancer 2017, 8, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honma, N.; Ogata, H.; Yamada, A.; Matsuda, Y.; Kontani, K.; Miyashita, M.; Arai, T.; Sasaki, E.; Shibuya, K.; Mikami, T. Clinicopathological characteristics and prognostic marker of triple-negative breast cancer in older women. Hum. Pathol. 2021, 111, 10–20. [Google Scholar] [CrossRef]
- Jongen, L.; Floris, G.; Wildiers, H.; Claessens, F.; Richard, F.; Laenen, A.; Desmedt, C.; Ardui, J.; Punie, K.; Smeets, A.; et al. Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy. Breast Cancer Res. Treat. 2019, 176, 699–708. [Google Scholar] [CrossRef]
- Müller, M.; Güth, U.; Varga, Z.; Reeve, K.; Bjelic-Radisic, V.; Fleisch, M.; Tausch, C.J.; Elfgen, C. Clinical imaging of the heterogeneous group of triple-negative breast cancer. Anticancer Res. 2020, 40, 2125–2131. [Google Scholar] [CrossRef]
- Candelaria, R.P.; Adrada, B.E.; Wei, W.; Thompson, A.M.; Santiago, L.; Lane, D.L.; Huang, M.L.; Arribas, E.M.; Rauch, G.M.; Symmans, W.F. Imaging features of triple-negative breast cancers according to androgen receptor status. Eur. J. Radiol. 2019, 114, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ma, D.; Xiao, Y.; Li, X.M.; Ma, J.L.; Zhang, H.; Xu, X.L.; Lv, H.; Jiang, W.H.; Yang, W.T. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: Molecular basis and clinical relevance. Oncologist 2020, 25, e1481–e1491. [Google Scholar] [CrossRef]
- McNamara, K.M.; Moore, N.L.; Hickey, T.E.; Sasano, H.; Tilley, W.D. Complexities of androgen receptor signalling in breast cancer. Endocr. Relat. Cancer 2014, 21, T161–T181. [Google Scholar] [CrossRef]
- Thike, A.A.; Yong-Zheng Chong, L.; Cheok, P.Y.; Li, H.H.; Wai-Cheong Yip, G.; Huat Bay, B.; Tse, G.M.-K.; Iqbal, J.; Tan, P.H. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod. Pathol. 2014, 27, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen receptor in breast cancer—Clinical and preclinical research insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef] [PubMed]
- Solomon, Z.J.; Mirabal, J.R.; Mazur, D.J.; Kohn, T.P.; Lipshultz, L.I.; Pastuszak, A.W. Selective androgen receptor modulators: Current knowledge and clinical applications. Sex. Med. Rev. 2019, 7, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Michmerhuizen, A.R.; Spratt, D.E.; Pierce, L.J.; Speers, C.W. Are we there yet? Understanding androgen receptor signaling in breast cancer. npj Breast Cancer 2020, 6, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mina, A.; Yoder, R.; Sharma, P. Targeting the androgen receptor in triple-negative breast cancer: Current perspectives. OncoTargets Ther. 2017, 10, 4675. [Google Scholar] [CrossRef] [Green Version]
- Paredes, A.J.; Volpe-Zanutto, F.; Permana, A.D.; Murphy, A.J.; Picco, C.J.; Vora, L.K.; Coulter, J.A.; Donnelly, R.F. Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int. J. Pharm. 2021, 606, 120885. [Google Scholar] [CrossRef]
- Gucalp, A.; Traina, T.A. Targeting the androgen receptor in triple-negative breast cancer. Curr. Probl. Cancer 2016, 40, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Anestis, A.; Sarantis, P.; Theocharis, S.; Zoi, I.; Tryfonopoulos, D.; Korogiannos, A.; Koumarianou, A.; Xingi, E.; Thomaidou, D.; Kontos, M.J.; et al. Estrogen receptor beta increases sensitivity to enzalutamide in androgen receptor-positive triple-negative breast cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 1221–1233. [Google Scholar] [CrossRef]
- Gordon, M.A.; D’Amato, N.C.; Gu, H.; Babbs, B.; Wulfkuhle, J.; Petricoin, E.F.; Gallagher, I.; Dong, T.; Torkko, K.; Liu, B.; et al. Synergy between androgen receptor antagonism and inhibition of mTOR and HER2 in breast cancer. Mol. Cancer Ther. 2017, 16, 1389–1400. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.D.; Bauer, J.A.; Schafer, J.M.; Pendleton, C.S.; Tang, L.; Johnson, K.C.; Chen, X.; Balko, J.M.; Gómez, H.; Arteaga, C.L.; et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. BCR 2014, 16, 406. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-López, M.D.; Montero, J.C.; Morales, J.C.; Prat, A.; Pandiella, A.; Ocana, A. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer 2014, 14, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafferty, S.W.; Eisner, J.R.; Moore, W.R.; Schotzinger, R.J.; Hoekstra, W.J. Highly-selective 4-(1, 2, 3-triazole)-based P450c17a 17, 20-lyase inhibitors. Bioorganic Med. Chem. Lett. 2014, 24, 2444–2447. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Gucalp, A.; DaCosta, N.; Gabrail, N.; Danso, M.; Ali, H.; Blackwell, K.L.; Carey, L.A.; Eisner, J.R.; Baskin-Bey, E.S.; et al. Phase 1 study of seviteronel, a selective CYP17 lyase and androgen receptor inhibitor, in women with estrogen receptor-positive or triple-negative breast cancer. Breast Cancer Res. Treat. 2018, 171, 111–120. [Google Scholar] [CrossRef]
- Bardia, A.; Dacosta, N.A.; Gabrail, N.Y.; Lemon, S.; Danso, M.A.; Ali, H.Y.; Fleming, R.A.; Kurman, M.R.; Eisner, J.R.; Moore, W.R. Phase (Ph) 1 study of oral seviteronel (VT-464), a dual CYP17-Lyase (L) inhibitor and androgen receptor (AR) antagonist, in patients (pts) with advanced AR+ triple negative (TNBC) or estrogen receptor (ER)+ breast cancer (BC). J. Clin. Oncol. 2016, 34, 1088. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, J.S.; Yost, S.E.; Frankel, P.H.; Ruel, C.; Egelston, C.A.; Guo, W.; Gillece, J.D.; Folkerts, M.; Reining, L. A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist 2021, 26, 99-e217. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.; Overmoyer, B.; Schwartzberg, L.; Palmieri, C.; Taylor, R.; Hancock, M.; Small, S.; Johnston, M. Abstract OT2-01-07: A phase 2 open label, multi-center, multinational study investigating the efficacy and safety of GTx-024 on advanced, androgen receptor-positive triple negative breast cancer (AR+ TNBC). Cancer Res. 2016, 76, OT2-01-07. [Google Scholar] [CrossRef]
- Kong, Y.; Qu, F.; Yuan, X.; Yan, X.; Yu, W. Effect of Bicalutamide on the proliferation and invasion of human triple negative breast cancer MDA-MB-231 cells. Medicine 2020, 99, e19822. [Google Scholar] [CrossRef] [PubMed]
- Gucalp, A.; Tolaney, S.; Isakoff, S.J.; Ingle, J.N.; Liu, M.C.; Carey, L.A.; Blackwell, K.; Rugo, H.; Nabell, L.; Forero, A. Phase II trial of bicalutamide in patients with androgen receptor–positive, estrogen receptor–negative metastatic breast cancerbicalutamide in AR (+) ER/PgR (−) metastatic breast cancer. Clin. Cancer Res. 2013, 19, 5505–5512. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, X.; Wu, H.; Gu, Y.; Shao, Y.; Shao, Q.; Zhu, F.; Li, X.; Qian, X.; Hu, J. Camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in patients with advanced biliary tract cancer: A single-arm, open-label, phase II trial. J. Immunother. Cancer 2020, 8, e001240. [Google Scholar] [CrossRef]
- Gucalp, A.; Proverbs-Singh, T.A.; Corben, A.; Moynahan, M.E.; Patil, S.; Boyle, L.A.; Hudis, C.A.; Traina, T.A. Phase I/II trial of palbociclib in combination with bicalutamide for the treatment of androgen receptor (AR)+ metastatic breast cancer (MBC). J. Clin. Oncol. 2016, 34. [Google Scholar] [CrossRef]
- Ávalos-Moreno, M.; López-Tejada, A.; Blaya-Cánovas, J.L.; Cara-Lupiañez, F.E.; González-González, A.; Lorente, J.A.; Sánchez-Rovira, P.; Granados-Principal, S. Drug repurposing for triple-negative breast cancer. J. Pers. Med. 2020, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Y.; Rosenberg, J.E. Abiraterone acetate: Oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des. Dev. Ther. 2012, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Bonnefoi, H.; Grellety, T.; Tredan, O.; Saghatchian, M.; Dalenc, F.; Mailliez, A.; L’haridon, T.; Cottu, P.; Abadie-Lacourtoisie, S.; You, B. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann. Oncol. 2016, 27, 812–818. [Google Scholar] [CrossRef]
- Shapiro, G.; Barve, M.A.; Bhave, M.A.; Subbiah, V.; Uttamsingh, S.; Sharma, K.; Andrianova, L.; Patnaik, A. A phase 1 dose-escalation and expansion-cohort study of the oral CDK7 inhibitor XL102 as a single-agent and in combination therapy in patients (pts) with advanced solid tumors. J. Clin. Oncol. 2022, 40, TPS3176. [Google Scholar] [CrossRef]
- Yardley, D.A.; Young, R.R.; Adelson, K.B.; Silber, A.L.; Kommor, M.D.; Najera, J.E.; Daniel, D.B.; Peacock, N.W.; Shastry, M.; Hainsworth, J.D. Abstract PS11-29: A phase 2 study evaluating orteronel, an inhibitor of androgen biosynthesis, in patients with androgen receptor (AR)-expressing metastatic triple-negative breast cancer (TNBC). Cancer Res. 2021, 81, PS11–PS29. [Google Scholar] [CrossRef]
- Zweifel, M.; Thürlimann, B.; Riniker, S.; Weder, P.; von Moos, R.; Pagani, O.; Bigler, M.; Rothgiesser, K.M.; Pilop, C.; Hawle, H.; et al. Phase I trial of the androgen receptor modulator CR1447 in breast cancer patients. Endocr. Connect. 2017, 6, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Von Wahlde, M.K.; Hülsewig, C.; Ruckert, C.; Götte, M.; Kiesel, L.; Bernemann, C. The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2015, 31, 160–164. [Google Scholar] [CrossRef]
Drug | No. of Patient | Phase | Patient Cohort | Regimen | Comparator Arm | Result | Comment | Common Toxicity | NCT No. |
---|---|---|---|---|---|---|---|---|---|
Seviteronel | 175 | I/II | TNBC or ER +/HER2 normal unresectable locally advanced breast cancer. | Seviteronel | Seviteronel at 650 mg and 700 mg. | Cmax: 750 mg: 17.4 ± 4.4 µM vs. 600 mg: 14.9 ± 4.3 µM. AUC: 750 mg: 99.8 ± 17.9 µM*h vs. 600 mg: 78.9 ± 14.1 µM*h. | Sevi was well tolerated with an adverse event profile similar to that in men. | Fatigue, tremor, and vomiting. | NCT02580448 |
Enobosarm | 18 | II | Androgen receptor+ mTNBC. | Pembrolizumab and Enobosarm | - | ORR: 13%, Median PFS: 2.6 months. CBR: 25%. Median OS: 25.5 months. | The combination of enobosarm and pembrolizumab was well tolerated in heavily pretreated AR+ TNBC. | Grade 3 adverse events: dry skin, diarrhea, and musculoskeletal ache. | NCT02971761 |
Bicalutamide | 60 | II | AR+ Metastatic TNBC | Bicalutamide and other according to physician’s choice. | Median PFS: 12 weeks. CBR: 19% | Bicalutamide shows efficacy in a select group of patients with ER/PR-negative, AR-positive breast cancer. | Bicalutamide was well-tolerated with no grade 4/5 treatment-related adverse events. | NCT02353988 | |
Enzalutamide | 118 | II | Advanced, AR+, TNBC. | Enzalutamide | ITT population and >10% nuclear AR (evaluable subgroup). | Median PFS: ITT: 2.9 months and ES: 3.3 months. CBR: ITT: 25% and ES: 33% at 16 weeks. Median OS: ITT: 12.7 months and ES: 17.6 months. | Enzalutamide was well tolerated in patients with advanced AR-positive TNBC. | Fatigue (>2%). | NCT01889238 |
Abiraterone acetate | 34 | II | Molecular apocrine HER2-negative locally advanced or metastatic breast cancer | Abiraterone acetate plus prednisone | ORR: 6.70%. Median PFS: 2.8 months. CBR: 20% at 6 months. | Treatment was found to be beneficial for some patients. | Fatigue, HTN, Hypokalemia, and nausea were commonly found AE and were grade 1 or 2. | NCT01842321 | |
Orteronel | 26 | II | AR expressing metastatic TNBC previously treated with standard therapy. | Orteronel | ORR: 4%. Median PFS: 2.0 months. CBR: 15%. Median OS: 10.2 months | Treatment was well tolerated but showed limited clinical activity in previously treated patients with TNBC. | Common: Nausea and fatigue. Grade 3/4: HTN, increased amylase and lipase. SAEs seen in 4 patients: G2 pneumonitis, G2 chest pain, G2 peripheral edema, G4 prolonged QT, and G4 hypokalemia. | NCT01990209 |
Drug | Phase | No. of Patients | Patient Cohort | Treatment Arm | Primary Outcomes | Secondary Outcomes | Status | NCT No. |
---|---|---|---|---|---|---|---|---|
AR inhibitor | Ib/II | 140 | LAR subtype without HER2 gene activated mutation. | AR inhibitor combined with everolimus (B1) or CDK4/6 inhibitor (B2), or EZH2 inhibitor (B4) | ORR | DOR, PFS, OS | Recruiting | NCT03805399 |
Enzalutamide | II | 50 | Early- Stage AR (+) TNBC | Enzalutamide | Treatment discontinuation rate | - | Active, not recruiting | NCT02750358 |
Bicalutamide | I/II | 37 | Advanced AR+ TNBC | Ribociclib, Bicalutamide | MTD, CBR | Phase1: ORR, DoR, safety and tolerability, PK parameters. Phase 2: PFS, ORR, and OS. | Recruiting | NCT03090165 |
Enzalutamide | II | 37 | AR+ TNBC. | Enzalutamide, Paclitaxel | Incidence of pCR, residual cancer burden-index, and minimal residual disease. | PFS | Recruiting | NCT02689427 |
Enzalutamide | I/II | 246 | Advanced solid tumors | NUV868 as monotherapy and in combination with Olaparib or Enzalutamide. | DLTs, PK, ORR, and PSA-RR | Recruiting | NCT05252390 | |
Abiraterone | I | 298 | Locally advanced or metastatic solid tumors | Fulvestrant, Abiraterone, Prednisone | MTD, ORR | Incidence and severity of AEs, tolerability, drug-drug interactions, and PK parameters. | Recruiting | NCT04726332 |
Enzalutamide | II | 221 | Primary Breast Cancer (ARB) AR+ and ER+ TNBC. | Enzalutamide, alone or in combination with exemestane. | Geometric mean change and anti-proliferative response. | Geometric mean change, anti-proliferative response, safety, tolerability, and apoptotic response. | Unknown | NCT02676986 |
CR1447 | II | 29 | HER2 negative and AR+ triple negative metastatic or locally advanced breast cancer. | CR1447 | Disease control at 24 weeks | Adverse events, Pk analysis, disease control at 12 weeks, change in tumor size at 12 weeks, Ki67 expression, estradiol levels during treatment, and mRNA expression. | Active, not recruiting | NCT02067741 |
Darolutamide | II | 94 | Triple negative AR+ locally recurrent (Unresectable) or metastatic breast cancer. | Darolutamide + Capecitabine | CBR | CBR, ORR, DoR, OS, PFS, and evaluation of toxicity. | Active, not recruiting | NCT03383679 |
Bicalutamide | I/II | 46 | AR+ TNBC. | Palbociclib + Bicalutamide | Recommended phase II dose and PFS. | ORR, CBR, PFS, safety, and tolerability. | Active, not recruiting | NCT02605486 |
Bicalutamide | II | 46 | AR+ TNBC | Nivolumab, Ipilimumab, Bicalutamide | CBR at 24 weeks | PFS, OSR, ORR | Recruiting | NCT03650894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadela, A.; Chavda, V.P.; Soni, S.; Megha, K.; Pandya, A.J.; Vora, L. Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers 2023, 15, 233. https://doi.org/10.3390/cancers15010233
Khadela A, Chavda VP, Soni S, Megha K, Pandya AJ, Vora L. Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers. 2023; 15(1):233. https://doi.org/10.3390/cancers15010233
Chicago/Turabian StyleKhadela, Avinash, Vivek P. Chavda, Shruti Soni, Kaivalya Megha, Aanshi J. Pandya, and Lalitkumar Vora. 2023. "Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer" Cancers 15, no. 1: 233. https://doi.org/10.3390/cancers15010233
APA StyleKhadela, A., Chavda, V. P., Soni, S., Megha, K., Pandya, A. J., & Vora, L. (2023). Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers, 15(1), 233. https://doi.org/10.3390/cancers15010233