Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neoadjuvant/Adjuvant Therapy
2.3. TACE and TKI
2.4. Tumor Size Criteria and Explant Pathology
2.5. Unresectable HCC Patients
2.6. Follow-Up
2.7. Statistical Analysis
3. Results
3.1. Tumor Necrosis
3.2. Univariate and Multivariate Analysis
3.3. Beyond Milan Subanalysis: Disease-Free and Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGlynn, K.A.; London, W.T. The global epidemiology of hepatocellular carcinoma: Present and future. Clin. Liver Dis. 2011, 15, 223–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [PubMed]
- Brar, G.; Greten, T.F.; Graubard, B.I.; McNeel, T.S.; Petrick, J.L.; McGlynn, K.A.; Altekruse, S.F. Hepatocellular Carcinoma Survival by Etiology: A SEER-Medicare Database Analysis. Hepatol. Commun. 2020, 4, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol. 2016, 25, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Sood, G.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World J. Gastroenterol. 2014, 20, 4115–4127. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; Electronic address, e.e.e. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Bruix, J.; Sherman, M.; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Trevisani, F.; Abou-Alfa, G.K.; Rimassa, L. Hepatocellular Carcinoma: Therapeutic Guidelines and Medical Treatment. Liver Cancer 2016, 6, 16–26. [Google Scholar] [CrossRef]
- Omata, M.; Cheng, A.L.; Kokudo, N.; Kudo, M.; Lee, J.M.; Jia, J.; Tateishi, R.; Han, K.H.; Chawla, Y.K.; Shiina, S.; et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update. Hepatol. Int. 2017, 11, 317–370. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, A.; Kumada, T.; Kudo, M.; Hirooka, M.; Koizumi, Y.; Hiasa, Y.; Tajiri, K.; Toyoda, H.; Tada, T.; Ochi, H.; et al. Hepatic Function during Repeated TACE Procedures and Prognosis after Introducing Sorafenib in Patients with Unresectable Hepatocellular Carcinoma: Multicenter Analysis. Dig. Dis. 2017, 35, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Peck-Radosavljevic, M.; Kudo, M.; Raoul, J.-L.; Lee, H.C.; Decaens, T.; Heo, J.; Lin, S.-M.; Shan, H.; Yang, Y.; Bayh, I.; et al. Outcomes of patients (pts) with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE): Global OPTIMIS final analysis. J. Clin. Oncol. 2018, 36, 4018. [Google Scholar] [CrossRef]
- Kudo, M.; Izumi, N.; Kokudo, N.; Matsui, O.; Sakamoto, M.; Nakashima, O.; Kojiro, M.; Makuuchi, M.; HCC Expert Panel of Japan Society of Hepatology. Management of hepatocellular carcinoma in Japan: Consensus-Based Clinical Practice Guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig. Dis. 2011, 29, 339–364. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Matsui, O.; Izumi, N.; Iijima, H.; Kadoya, M.; Imai, Y.; Okusaka, T.; Miyayama, S.; Tsuchiya, K.; Ueshima, K.; et al. JSH Consensus-Based Clinical Practice Guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer 2014, 3, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Tovoli, F.; Foerster, F.; Worns, M.A.; Cucchetti, A.; Bolondi, L. The treatment of intermediate stage tumours beyond TACE: From surgery to systemic therapy. J. Hepatol. 2017, 67, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wu, P.; Liu, P.; Chen, B.; Jiang, X.; Gu, Y.; Liu, Z.; Li, Z. Identifying the Best Anticancer Agent Combination in TACE for HCC Patients: A Network Meta-analysis. J. Cancer 2018, 9, 2640–2649. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Malagari, K.; Kulik, L.M. Role of locoregional therapies in the wake of systemic therapy. J. Hepatol. 2020, 72, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Li, X.; Feng, G.S.; Zheng, C.S.; Zhuo, C.K.; Liu, X. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J. Gastroenterol. 2004, 10, 2878–2882. [Google Scholar] [CrossRef]
- Wang, B.; Xu, H.; Gao, Z.Q.; Ning, H.F.; Sun, Y.Q.; Cao, G.W. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol. 2008, 49, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Meng, Q.; Tan, H.; Pan, S.; Sun, B.; Xu, R.; Sun, X. Antiangiogenic therapy enhances the efficacy of transcatheter arterial embolization for hepatocellular carcinomas. Int. J. Cancer 2007, 121, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020, 69, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.Y.; Chau, G.Y.; et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Fox, R.; Ma, Y.T.; Ross, P.J.; James, M.W.; Sturgess, R.; Stubbs, C.; Stocken, D.D.; Wall, L.; Watkinson, A.; et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): A randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Jiang, H.; Jiang, H.; Zhao, S.; Zeng, X.; Sun, R.; Zheng, R. Optimal timing of combining sorafenib with trans-arterial chemoembolization in patients with hepatocellular carcinoma: A meta-analysis. Transl. Oncol. 2021, 14, 101238. [Google Scholar] [CrossRef]
- Facciorusso, A.; Bellanti, F.; Villani, R.; Salvatore, V.; Muscatiello, N.; Piscaglia, F.; Vendemiale, G.; Serviddio, G. Transarterial chemoembolization vs bland embolization in hepatocellular carcinoma: A meta-analysis of randomized trials. United Eur. Gastroenterol. J. 2017, 5, 511–518. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Abudayyeh, A.; Murakami, N.; Saharia, A.; McMillan, R.; Victor, D.; Kodali, S.; Shetty, A.; Nolte Fong, J.V.; et al. Transplant Oncology: An Evolving Field in Cancer Care. Cancers 2021, 13, 4911. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Lasso, S. Stata Reference Manual: Release 16; Stata Press: College Station, TX, USA, 2020. [Google Scholar]
- clinicaltrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05171335?term=abdelrahim&draw=2&rank=1 (accessed on 12 December 2021).
Characteristics | Total | TACE Alone | TACE + TKI | p-Value |
---|---|---|---|---|
(n = 128) | (n = 103) | (n = 25) | ||
Age (year), median (IQR) | 61.4 (57.0, 66.3) | 61.5 (57.2, 66.3) | 61.0 (54.6, 66.1) | 0.58 |
Male gender | 98 (76.6) | 78 (75.7) | 20 (80.0) | 0.65 |
Race/ethnicity | 0.03 | |||
Caucasian | 82 (64.1) | 71 (68.9) | 11 (44.0) | |
African American | 11 (8.6) | 9 (8.7) | 2 (8.0) | |
Hispanic | 28 (21.9) | 17 (16.5) | 11 (44.0) | |
Asian | 7 (5.5) | 6 (5.8) | 1 (4.0) | |
BMI at transplant, median (IQR) | 27.2 (24.4, 30.7) | 26.8 (24.4, 30.6) | 27.5 (24.2, 31.1) | 0.62 |
History of diabetes mellitus | 56 (43.8) | 40 (38.8) | 16 (64.0) | 0.02 |
Underlying disease etiology * | ||||
Hepatitis-C-seropositive | 77 (60.2) | 67 (65.0) | 10 (40.0) | 0.02 |
Hepatitis B virus | 5 (3.9) | 3 (2.9) | 2 (8.0) | 0.24 |
ETOH | 16 (12.5) | 13 (12.6) | 3 (12.0) | 0.93 |
NASH/Crypto | 20 (15.6) | 15 (14.6) | 5 (20.0) | 0.50 |
Others | 14 (10.9) | 9 (8.7) | 5 (20.0) | 0.11 |
Biological MELD at transplant, median (IQR) | 13 (9, 19) | 12 (9, 17) | 18 (10, 24) | 0.02 |
Exception MELD at transplant, median (IQR) | 29 (27.5, 32) | 29 (27, 31) | 31 (28, 33) | 0.22 |
Waiting time from listing to transplant (days), median (IQR) | 343.0 (190.0, 499.0) | 339.0 (190.0, 510.0) | 385.0 (157.0, 479.0) | 0.90 |
Tumor classification (pathological) | 0.01 | |||
Inside the Milan criteria | 92 (71.9) | 79 (76.7) | 13 (52.0) | |
Beyond Milan | 36 (28.1) | 24 (23.3) | 12 (48.0) | |
Total number of LRT | 0.63 | |||
1 | 74 (57.8) | 62 (60.2) | 12 (48.0) | |
2 | 41 (32.0) | 31 (30.1) | 10 (40.0) | |
3 | 10 (7.8) | 7 (6.8) | 3 (12.0) | |
4 | 2 (1.6) | 2 (1.9) | 0 (0.0) | |
5 | 1 (0.8) | 1 (1.0) | 0 (0.0) |
Characteristics | Multivariable GLM | |
---|---|---|
(95% CI) | p-Value | |
Tumor control therapy | ||
TACE alone | (Reference) | |
TACE + TKI | 14.26 (−0.63, 29.15) | 0.06 |
Age (year) | 0.75 (−0.07, 1.57) | 0.08 |
Tumor classification (pathological) | ||
Inside the Milan criteria | (Reference) | |
Beyond Milan | −13.99 (−27.37, −0.60) | 0.04 |
Vascular invasive | −34.37 (−55.80, −12.95) | 0.002 |
Characteristics | Total | TACE Alone | TACE + TKI | p-Value |
---|---|---|---|---|
(n = 36) | (n = 24) | (n = 12) | ||
Age (year), median (IQR) | 60.9 (55.4, 66.1) | 60.9 (56.4, 65.9) | 62.3 (54.4, 66.3) | 0.76 |
Male gender | 32 (88.9) | 22 (91.7) | 10 (83.3) | 0.45 |
Race/ethnicity | 0.01 | |||
Caucasian | 26 (72.2) | 21 (87.5) | 5 (41.7) | |
African American | 1 (2.8) | 0 (0.0) | 1 (8.3) | |
Hispanic | 9 (25.0) | 3 (12.5) | 6 (50.0) | |
Asian | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
BMI at transplant, median (IQR) | 27.7 (25.3, 30.5) | 27.7 (25.3, 30.5) | 27.9 (25.1, 30.5) | 0.83 |
History of diabetes mellitus | 20 (55.6) | 12 (50.0) | 8 (66.7) | 0.34 |
Underlying disease etiology * | ||||
Hepatitis-C-seropositive | 20 (55.6) | 15 (62.5) | 5 (41.7) | 0.24 |
Hepatitis B virus | 1 (2.8) | 0 (0.0) | 1 (8.3) | 0.15 |
ETOH | 6 (16.7) | 5 (20.8) | 1 (8.3) | 0.34 |
NASH/Crypto | 2 (5.6) | 1 (4.2) | 1 (8.3) | 0.61 |
Others | 7 (19.4) | 3 (12.5) | 4 (33.3) | 0.14 |
HBcAb | 9 (25.7) | 5 (21.7) | 4 (33.3) | 0.46 |
Biological MELD at transplant, median (IQR) | 15 (9.5, 25) | 12.5 (9, 22) | 22 (12, 31) | 0.12 |
Exception MELD at transplant, median (IQR) | 29.5 (27, 33) | 29 (27, 33) | 31.5 (27, 35) | 0.40 |
Waiting time from listing to transplant (days), median (IQR) | 270.5 (140.0, 469.0) | 319.0 (139.5, 440.5) | 197.0 (140.0, 504.5) | 0.76 |
Total number of LRT | 0.61 | |||
1 | 12 (33.3) | 8 (33.3) | 4 (33.3) | |
2 | 18 (50.0) | 13 (54.2) | 5 (41.7) | |
3 | 6 (16.7) | 3 (12.5) | 3 (25.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahim, M.; Victor, D.; Esmail, A.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N.; et al. Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience. Cancers 2022, 14, 650. https://doi.org/10.3390/cancers14030650
Abdelrahim M, Victor D, Esmail A, Kodali S, Graviss EA, Nguyen DT, Moore LW, Saharia A, McMillan R, Fong JN, et al. Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience. Cancers. 2022; 14(3):650. https://doi.org/10.3390/cancers14030650
Chicago/Turabian StyleAbdelrahim, Maen, David Victor, Abdullah Esmail, Sudha Kodali, Edward A. Graviss, Duc T. Nguyen, Linda W. Moore, Ashish Saharia, Robert McMillan, Joy N. Fong, and et al. 2022. "Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience" Cancers 14, no. 3: 650. https://doi.org/10.3390/cancers14030650