Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient and Public Involvement
2.3. Patient Recruitment
2.4. Eligibility Criteria
2.5. IOUS Devices and Set-Up
2.6. Protocol of IOUS Image Acquisition
2.6.1. B-Mode
2.6.2. Color Doppler Mode
2.6.3. MicroV Mode
2.6.4. Image Acquisition of the Tumor Periphery
2.7. Protocol of Post-Acquisition Analysis
2.7.1. Post-Processing of MicroV Images
2.7.2. First-Order Radiomic Analysis
2.8. Data Collection and Management
3. Results
Protocol Refinement and First Proof-of-Concept Applications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giammalva, G.R.; Iacopino, D.G.; Azzarello, G.; Gaggiotti, C.; Graziano, F.; Gulì, C.; Pino, M.A.; Maugeri, R. End-of-Life Care in High-Grade Glioma Patients. The Palliative and Supportive Perspective. Brain Sci. 2018, 8, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonosi, L.; Ferini, G.; Giammalva, G.R.; Benigno, U.E.; Porzio, M.; Giovannini, E.A.; Musso, S.; Gerardi, R.M.; Brunasso, L.; Costanzo, R.; et al. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life 2022, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Gerard, I.J.; Kersten-Oertel, M.; Hall, J.A.; Sirhan, D.; Collins, D.L. Brain Shift in Neuronavigation of Brain Tumors: An Updated Review of Intra-Operative Ultrasound Applications. Front. Oncol. 2021, 10, 618837. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.M.; Jones, P.S.; Weinberg, J.S. Intraoperative MRI for Brain Tumors. J. Neurooncol. 2021, 151, 479–490. [Google Scholar] [CrossRef]
- Lubner, M.G.; Gettle, L.M.; Kim, D.H.; Ziemlewicz, T.J.; Dahiya, N.; Pickhardt, P. Diagnostic and Procedural Intraoperative Ultrasound: Technique, Tips and Tricks for Optimizing Results. Br. J. Radiol. 2021, 94, 20201406. [Google Scholar] [CrossRef]
- Hackl, C.; Bitterer, F.; Platz Batista da Silva, N.; Jung, E.M.; Schlitt, H.J. Intraoperative Ultrasound in Visceral Surgery. Chirurg 2020, 91, 474–480. [Google Scholar] [CrossRef]
- Pino, M.A.; Imperato, A.; Musca, I.; Maugeri, R.; Giammalva, G.R.; Costantino, G.; Graziano, F.; Meli, F.; Francaviglia, N.; Iacopino, D.G.; et al. New Hope in Brain Glioma Surgery: The Role of Intraoperative Ultrasound. A Review. Brain Sci. 2018, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Giammalva, G.R.; Ferini, G.; Musso, S.; Salvaggio, G.; Pino, M.A.; Gerardi, R.M.; Brunasso, L.; Costanzo, R.; Paolini, F.; di Bonaventura, R.; et al. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front. Oncol. 2022, 12, 818446. [Google Scholar] [CrossRef]
- del Bene, M.; Perin, A.; Casali, C.; Legnani, F.; Saladino, A.; Mattei, L.; Vetrano, I.G.; Saini, M.; DiMeco, F.; Prada, F. Advanced Ultrasound Imaging in Glioma Surgery: Beyond Gray-Scale B-Mode. Front. Oncol. 2018, 8, 576. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Perin, A.; Martegani, A.; Aiani, L.; Solbiati, L.; Lamperti, M.; Casali, C.; Legnani, F.; Mattei, L.; Saladino, A.; et al. Intraoperative Contrast-Enhanced Ultrasound for Brain Tumor Surgery. Neurosurgery 2014, 74, 542–552. [Google Scholar] [CrossRef]
- Prada, F.; Mattei, L.; del Bene, M.; Aiani, L.; Saini, M.; Casali, C.; Filippini, A.; Legnani, F.G.; Perin, A.; Saladino, A.; et al. Intraoperative Cerebral Glioma Characterization with Contrast Enhanced Ultrasound. Biomed. Res. Int. 2014, 2014, 484261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prada, F.; del Bene, M.; Moiraghi, A.; Casali, C.; Legnani, F.G.; Saladino, A.; Perin, A.; Vetrano, I.G.; Mattei, L.; Richetta, C.; et al. From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma Surgery—Pictorial Essay and Literature Review. Biomed. Res. Int. 2015, 2015, 925729. [Google Scholar] [CrossRef] [PubMed]
- Kloth, C.; Kratzer, W.; Schmidberger, J.; Beer, M.; Clevert, D.A.; Graeter, T. Ultrasound 2020—Diagnostics & Therapy: On the Way to Multimodal Ultrasound: Contrast-Enhanced Ultrasound (CEUS), Microvascular Doppler Techniques, Fusion Imaging, Sonoelastography, Interventional Sonography. RoFo Fortschr. Geb. Rontgenstrahlen Bildgeb. Verfahr. 2021, 193, 23–32. [Google Scholar]
- Goeral, K.; Hojreh, A.; Kasprian, G.; Klebermass-Schrehof, K.; Weber, M.; Mitter, C.; Berger, A.; Prayer, D.; Brugger, P.C.; Vergesslich-Rothschild, K.; et al. Microvessel Ultrasound of Neonatal Brain Parenchyma: Feasibility, Reproducibility, and Normal Imaging Features by Superb Microvascular Imaging (SMI). Eur. Radiol. 2019, 29, 2127–2136. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Je, B.K.; Choo, J.Y. Ultrasonographic Demonstration of the Tissue Microvasculature in Children: Microvascular Ultrasonography versus Conventional Color Doppler Ultrasonography. Korean J. Radiol. 2020, 21, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Z.; Huang, Y.H.; Shen, H.L.; Liu, X.T. Clinical Applications of Superb Microvascular Imaging in the Liver, Breast, Thyroid, Skeletal Muscle, and Carotid Plaques. J. Ultrasound Med. 2019, 38, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, T.J.; Revels, J.; Wang, S.; Toia, G.; Sonneborn, R.; Hippe, D.S.; Erpelding, T. Comparison of Superb Microvascular Imaging with Color Flow and Power Doppler Imaging of Small Hepatocellular Carcinomas. J. Ultrasound Med. 2018, 37, 2915–2924. [Google Scholar] [CrossRef]
- Sim, J.K.; Lee, J.Y.; Hong, H.S. Differentiation Between Malignant and Benign Lymph Nodes: Role of Superb Microvascular Imaging in the Evaluation of Cervical Lymph Nodes. J. Ultrasound Med. 2019, 38, 3025–3036. [Google Scholar] [CrossRef]
- Mao, Y.; Mu, J.; Zhao, J.; Zhao, L.; Xin, X. The Value of Superb Microvascular Imaging in Differentiating Benign Renal Mass from Malignant Renal Tumor: A Retrospective Study. Br. J. Radiol. 2018, 91, 20170601. [Google Scholar] [CrossRef]
- Park, A.Y.; Seo, B.K.; Woo, O.H.; Jung, K.S.; Cho, K.R.; Park, E.K.; Cha, S.H.; Cha, J. The Utility of Ultrasound Superb Microvascular Imaging for Evaluation of Breast Tumour Vascularity: Comparison with Colour and Power Doppler Imaging Regarding Diagnostic Performance. Clin. Radiol. 2018, 73, 304–311. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Wu, L.; Wang, R.; Liu, J.B.; Hu, B.; Jiang, L.X. Value of Superb Microvascular Imaging Ultrasonography in the Diagnosis of Carpal Tunnel Syndrome. Medicine 2017, 96, e6862. [Google Scholar] [CrossRef]
- Durmaz, M.S.; Sivri, M. Comparison of Superb Micro-Vascular Imaging (SMI) and Conventional Doppler Imaging Techniques for Evaluating Testicular Blood Flow. J. Med. Ultrason. 2018, 45, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Kloth, C.; Eissler, A.; Schmidberger, J.; Gräter, T.; Scheuerle, A.; Kratzer, W.; Pedro, M.T. Quantitative Analysis of Superb Microvascular Imaging versus Color-Coded Doppler Sonography for Preoperative Evaluation of Vascularization of Schwannomas. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2020, 81, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Giammalva, G.R.; Viola, A.; Maugeri, R.; Giardina, K.; di Bonaventura, R.; Musso, S.; Brunasso, L.; Cepeda, S.; del Bene, M.; della Pepa, G.M.; et al. MicroV IOUS Custom MV0 LUT and Scripts for Analysis of Radiomic Features in ImageJ. Zenodo 2022. [Google Scholar] [CrossRef]
- della Pepa, G.M.; Ius, T.; Menna, G.; la Rocca, G.; Battistella, C.; Rapisarda, A.; Mazzucchi, E.; Pignotti, F.; Alexandre, A.; Marchese, E.; et al. “Dark Corridors” in 5-Ala Resection of High-Grade Gliomas: Combining Fluorescence-Guided Surgery and Contrast-Enhanced Ultrasonography to Better Explore the Surgical Field. J. Neurosurg. Sci. 2019, 63, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Ota, Y.; Nagai, M.; Kusaka, G.; Tanaka, Y.; Naritaka, H. Ultrasonography Monitoring with Superb Microvascular Imaging Technique in Brain Tumor Surgery. World Neurosurg. 2017, 97. [Google Scholar] [CrossRef]
- Ishikawa, M.; Masamoto, K.; Hachiya, R.; Kagami, H.; Inaba, M.; Naritaka, H.; Katoh, S. Neurosurgical Intraoperative Ultrasonography Using Contrast Enhanced Superb Microvascular Imaging Vessel Density and Appearance Time of the Contrast Agent. Br. J. Neurosurg. 2020, 1–10. [Google Scholar] [CrossRef]
- Barone, F.; Alberio, N.; Iacopino, D.G.D.; Giammalva, G.G.R.; D’arrigo, C.; Tagnese, W.; Graziano, F.; Cicero, S.; Maugeri, R.; D’Arrigo, C.; et al. Brain Mapping as Helpful Tool in Brain Glioma Surgical Treatment-Toward the “Perfect Surgery”. Brain Sci. 2018, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Umana, G.E.; Scalia, G.; Graziano, F.; Maugeri, R.; Alberio, N.; Barone, F.; Crea, A.; Fagone, S.; Giammalva, G.R.; Brunasso, L.; et al. Navigated Transcranial Magnetic Stimulation Motor Mapping Usefulness in the Surgical Management of Patients Affected by Brain Tumors in Eloquent Areas: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 644198. [Google Scholar] [CrossRef]
- Giammalva, G.R.; Musso, S.; Salvaggio, G.; Pino, M.A.; Gerardi, R.M.; Umana, G.E.; Midiri, M.; Iacopino, D.G.; Maugeri, R. Coplanar Indirect-Navigated Intraoperative Ultrasound: Matching Un-Navigated Probes With Neuronavigation During Neurosurgical Procedures. How We Do It. Oper. Neurosurg. 2021, 21, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Brunasso, L.; Ferini, G.; Bonosi, L.; Costanzo, R.; Musso, S.; Benigno, U.E.; Gerardi, R.M.; Giammalva, G.R.; Paolini, F.; Umana, G.E.; et al. A Spotlight on the Role of Radiomics and Machine-Learning in the Management of Intracranial Meningiomas: A New in Neuro-Oncology: A Review. Life 2022, 12, 586. [Google Scholar] [CrossRef]
- Giammalva, G.R.; Brunasso, L.; Costanzo, R.; Paolini, F.; Umana, G.E.G.E.; Scalia, G.; Gagliardo, C.; Gerardi, R.M.R.M.; Basile, L.; Graziano, F.; et al. Brain Mapping-Aided Supratotal Resection (Sptr) of Brain Tumors: The Role of Brain Connectivity. Front. Oncol. 2021, 11, 645854. [Google Scholar] [CrossRef] [PubMed]
B-Mode | |
---|---|
Depth | 44 mm |
Gain | 85% |
Power | 80% |
Mechanical index | 0.4 |
Probe frequency | 6–8 MHz (tissue-enhancement imaging mode: low resolution) |
Dynamic range/sharpness/density | 16/1/2 |
PRS (persistence) | 4 |
Post-processing | 2 |
XView | +6 |
Color (to be set in addition to former B-mode parameters) | |
Mechanical index | 0.2 |
Color frequency | 5 MHz |
Color PRF | 1.0 KHz |
Color gain | 50% |
Color PRC | M/2 |
Color PRS (persistency) | 6 |
Doppler (to be set in addition to former Color mode parameters) | |
Mechanical index | 0.3 |
SV | 3/22 mmθ |
Doppler Frequency | 4.2 MHz |
Doppler PRF | 3.0 KHz |
Doppler PRC | 6 |
MicroV Doppler (to be set in addition to former Doppler mode parameters) | |
Color PRS (persistency) | 5 |
HD-CFM | 2 |
MAP COLOR | MV0 or alternatively MV2 |
DIM-TP | 56° |
SENS | 5 |
SMOOTH | Medium |
Clip duration | Unlimited |
Filter | 3 |
Plane | 0 |
Pt. | Histology | Location | N. | Area (px2) | Mean | StDev | Min | Max | Mode |
---|---|---|---|---|---|---|---|---|---|
F, 68 y | GBM | Lt. frontal | 13,775 | 964.309.787.326 | 53.884 | 56.996 | 0 | 254 | 8 (645) |
M, 57 y | GBM | Rt. frontal | 21,879 | 1.531.624.960.938 | 33.741 | 48.799 | 0 | 254 | 8 (6849) |
M, 71 y | GBM | Lt. temporo-parieto-occipital | 30,989 | 2.169.364.500.868 | 27.887 | 42.783 | 0 | 254 | 8 (3651) |
F, 66 y | GBM | Rt. parietal | 36,816 | 2.577.279.791.667 | 11.529 | 19.424 | 0 | 190 | 8 (32676) |
F, 62 y | GBM | Rt. frontal | 25,252 | 1.767.749.600.694 | 12.075 | 14.387 | 0 | 174 | 8 (10259) |
M, 67 y | GBM | Rt. temporal | 35,412 | 2.478.993.697.917 | 56.478 | 67.567 | 0 | 254 | 254 (2644) |
F, 45 y | GBM | IV ventricle | 10,998 | 769.907.734.375 | 18.649 | 27.067 | 0 | 254 | 8 (3617) |
F, 62 y | GBM | Lt. temporal | 6102 | 427.166.484.375 | 31.701 | 15.528 | 0 | 180 | 28 (401) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giammalva, G.R.; Viola, A.; Maugeri, R.; Giardina, K.; Di Bonaventura, R.; Musso, S.; Brunasso, L.; Cepeda, S.; Della Pepa, G.M.; Scerrati, A.; et al. Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features. Cancers 2022, 14, 5335. https://doi.org/10.3390/cancers14215335
Giammalva GR, Viola A, Maugeri R, Giardina K, Di Bonaventura R, Musso S, Brunasso L, Cepeda S, Della Pepa GM, Scerrati A, et al. Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features. Cancers. 2022; 14(21):5335. https://doi.org/10.3390/cancers14215335
Chicago/Turabian StyleGiammalva, Giuseppe Roberto, Anna Viola, Rosario Maugeri, Kevin Giardina, Rina Di Bonaventura, Sofia Musso, Lara Brunasso, Santiago Cepeda, Giuseppe Maria Della Pepa, Alba Scerrati, and et al. 2022. "Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features" Cancers 14, no. 21: 5335. https://doi.org/10.3390/cancers14215335
APA StyleGiammalva, G. R., Viola, A., Maugeri, R., Giardina, K., Di Bonaventura, R., Musso, S., Brunasso, L., Cepeda, S., Della Pepa, G. M., Scerrati, A., Mantovani, G., Ferini, G., Gerardi, R. M., Pino, M. A., Umana, G. E., Denaro, L., Albanese, A., & Iacopino, D. G. (2022). Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features. Cancers, 14(21), 5335. https://doi.org/10.3390/cancers14215335