CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Ethical Agreement
2.4. Statistical Analysis
3. Results
3.1. Demographic Background
3.2. Surgical Details
3.3. Complications and Revision Surgery
3.4. Outcome
4. Discussion
4.1. Strenghts of This Study
4.2. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Fehlings, M.G.; Nater, A.; Tetreault, L.; Kopjar, B.; Arnold, P.; Dekutoski, M.; Finkelstein, J.; Fisher, C.; France, J.; Gokaslan, Z.; et al. Survival and Clinical Outcomes in Surgically Treated Patients With Metastatic Epidural Spinal Cord Compression: Results of the Prospective Multicenter AOSpine Study. J. Clin. Oncol. 2016, 34, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Depreitere, B.; Ricciardi, F.; Arts, M.; Balabaud, L.; Bunger, C.; Buchowski, J.M.; Chung, C.K.; Coppes, M.H.; Fehlings, M.G.; Kawahara, N.; et al. How good are the outcomes of instrumented debulking operations for symptomatic spinal metastases and how long do they stand? A subgroup analysis in the global spine tumor study group database. Acta Neurochir. 2020, 162, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Haag, E.; Joerger, A.-K.; Jost, P.; Combs, S.E.; Wostrack, M.; Gempt, J.; Meyer, B. Comprehensive surgical treatment strategy for spinal metastases. Sci. Rep. 2021, 11, 7988. [Google Scholar] [CrossRef]
- Meyer, H.S.; Wagner, A.; Raufer, A.; Joerger, A.K.; Gempt, J.; Meyer, B. Surgery in Acute Metastatic Spinal Cord Compression: Timing and Functional Outcome. Cancers 2022, 14, 2249. [Google Scholar] [CrossRef]
- Barz, M.; Aftahy, K.; Janssen, I.; Ryang, Y.-M.; Prokop, G.; Combs, S.E.; Jost, P.J.; Meyer, B.; Gempt, J. Spinal Manifestation of Malignant Primary (PLB) and Secondary Bone Lymphoma (SLB). Curr. Oncol. 2021, 28, 3891–3899. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Van den Brande, R.; Mj Cornips, E.; Peeters, M.; Ost, P.; Billiet, C.; Van de Kelft, E. Epidemiology of spinal metastases, metastatic epidural spinal cord compression and pathologic vertebral compression fractures in patients with solid tumors: A systematic review. J. Bone Oncol. 2022, 35, 100446. [Google Scholar] [CrossRef]
- Wong, D.A.; Fornasier, V.L.; MacNab, I. Spinal metastases: The obvious, the occult, and the impostors. Spine 1990, 15, 1–4. [Google Scholar] [CrossRef]
- Kafchitsas, K.; Habermann, B.; Tonak, M.; Kurth, A. Knochentumoren der Wirbelsäule. Osteol. Osteol. 2010, 19, 332–339. [Google Scholar] [CrossRef]
- Delank, K.S.; Wendtner, C.; Eich, H.T.; Eysel, P. The treatment of spinal metastases. Dtsch. Arztebl. Int. 2011, 108, 71–79. [Google Scholar] [CrossRef]
- Giantsoudi, D.; De Man, B.; Verburg, J.; Trofimov, A.; Jin, Y.; Wang, G.; Gjesteby, L.; Paganetti, H. Metal artifacts in computed tomography for radiation therapy planning: Dosimetric effects and impact of metal artifact reduction. Phys. Med. Biol. 2017, 62, R49–R80. [Google Scholar] [CrossRef] [PubMed]
- Ringel, F.; Ryang, Y.-M.; Kirschke, J.S.; Müller, B.S.; Wilkens, J.J.; Brodard, J.; Combs, S.E.; Meyer, B. Radiolucent Carbon Fiber-Reinforced Pedicle Screws for Treatment of Spinal Tumors: Advantages for Radiation Planning and Follow-Up Imaging. World Neurosurg. 2017, 105, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Fleege, C.; Makowski, M.; Rauschmann, M.; Fraunhoffer, K.L.; Fennema, P.; Arabmotlagh, M.; Rickert, M. Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis. Sci. Rep. 2020, 10, 16094. [Google Scholar] [CrossRef]
- Nevelsky, A.; Borzov, E.; Daniel, S.; Bar-Deroma, R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J. Appl. Clin. Med. Phys. 2017, 18, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Lindtner, R.A.; Schmid, R.; Nydegger, T.; Konschake, M.; Schmoelz, W. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur. Spine J. 2018, 27, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Haag, E.; Joerger, A.-K.; Gempt, J.; Krieg, S.M.; Wostrack, M.; Meyer, B. Cement-Augmented Carbon Fiber-Reinforced Pedicle Screw Instrumentation for Spinal Metastases: Safety and Efficacy. World Neurosurg. 2021, 154, e536–e546. [Google Scholar] [CrossRef] [PubMed]
- Boriani, S.; Tedesco, G.; Ming, L.; Ghermandi, R.; Amichetti, M.; Fossati, P.; Krengli, M.; Mavilla, L.; Gasbarrini, A. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: A preliminary report. Eur. Spine J. 2018, 27, 874–881. [Google Scholar] [CrossRef]
- Cofano, F.; Di Perna, G.; Monticelli, M.; Marengo, N.; Ajello, M.; Mammi, M.; Vercelli, G.; Petrone, S.; Tartara, F.; Zenga, F.; et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new “carbon-strategy”. J. Clin. Neurosci. 2020, 75, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Neal, M.T.; Richards, A.E.; Curley, K.L.; Patel, N.P.; Ashman, J.B.; Vora, S.A.; Kalani, M.A. Carbon fiber-reinforced PEEK instrumentation in the spinal oncology population: A retrospective series demonstrating technique, feasibility, and clinical outcomes. Neurosurg. Focus. 2021, 50, E13. [Google Scholar] [CrossRef] [PubMed]
- Ille, S.; Baumgart, L.; Obermueller, T.; Meyer, B.; Krieg, S.M. Clinical efficiency of operating room-based sliding gantry CT as compared to mobile cone-beam CT-based navigated pedicle screw placement in 853 patients and 6733 screws. Eur. Spine J. 2021, 30, 3720–3730. [Google Scholar] [CrossRef] [PubMed]
- Pranata, R.; Lim, M.A.; Vania, R.; Bagus Mahadewa, T.G. Minimal Invasive Surgery Instrumented Fusion versus Conventional Open Surgical Instrumented Fusion for the Treatment of Spinal Metastases: A Systematic Review and Meta-analysis. World Neurosurg. 2021, 148, e264–e274. [Google Scholar] [CrossRef] [PubMed]
- Uri, O.; Folman, Y.; Laufer, G.; Behrbalk, E. A Novel Spine Fixation System Made Entirely of Carbon-Fiber-Reinforced PEEK Composite: An In Vitro Mechanical Evaluation. Adv. Orthop. 2020, 2020, 4796136. [Google Scholar] [CrossRef] [PubMed]
- Hubertus, V.; Gempt, J.; Mariño, M.; Sommer, B.; Eicker, S.O.; Stangenberg, M.; Dreimann, M.; Janssen, I.; Wipplinger, C.; Wagner, A.; et al. Surgical management of spinal metastases involving the cervicothoracic junction: Results of a multicenter, European observational study. Neurosurg. Focus. 2021, 50, E7. [Google Scholar] [CrossRef]
- Luksanapruksa, P.; Buchowski, J.M.; Zebala, L.P.; Kepler, C.K.; Singhatanadgige, W.; Bumpass, D.B. Perioperative Complications of Spinal Metastases Surgery. Clin. Spine Surg. 2017, 30, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Nasser, R.; Yadla, S.; Maltenfort, M.G.; Harrop, J.S.; Anderson, D.G.; Vaccaro, A.R.; Sharan, A.D.; Ratliff, J.K. Complications in spine surgery. J. Neurosurg. Spine 2010, 13, 144–157. [Google Scholar] [CrossRef]
- Butt, M.F.; Farooq, M.; Mir, B.; Dhar, A.S.; Hussain, A.; Mumtaz, M. Management of unstable thoracolumbar spinal injuries by posterior short segment spinal fixation. Int. Orthop. 2007, 31, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joerger, A.K.; Shiban, E.; Krieg, S.M.; Meyer, B. Carbon-fiber reinforced PEEK instrumentation for spondylodiscitis: A single center experience on safety and efficacy. Sci. Rep. 2021, 11, 2414. [Google Scholar] [CrossRef]
- Kramer, A.G.T.; Jägersberg, M.; Preuß, A.; Meyer, B.; Ringel, F. The Oswestry Spinal Risk Index (OSRI) in assessing prognosis of patients with spinal metastases. Brain Spine 2022, 2, 100875. [Google Scholar] [CrossRef]
- Verlaan, J.-J.; Choi, D.; Versteeg, A.; Albert, T.; Arts, M.; Balabaud, L.; Bunger, C.; Buchowski, J.; Chung, C.K.; Coppes, M.H.; et al. Characteristics of Patients Who Survived < 3 Months or > 2 Years After Surgery for Spinal Metastases: Can We Avoid Inappropriate Patient Selection? J. Clin. Oncol. 2016, 34, 3054–3061. [Google Scholar] [CrossRef]
- Bach, F.; Larsen, B.H.; Rohde, K.; Gjerris, F.; Agerlin, N.; Rasmusson, B.; Stjernholm, P. Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations and prognosis in 398 patients with spinal cord compression. Acta Neurochir. 1990, 107, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Krätzig, T.; Mende, K.C.; Mohme, M.; Kniep, H.; Dreimann, M.; Stangenberg, M.; Westphal, M.; Gauer, T.; Eicker, S.O. Carbon fiber-reinforced PEEK versus titanium implants: An in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg. Rev. 2021, 44, 2163–2170. [Google Scholar] [CrossRef]
- Burkhardt, B.W.; Bullinger, Y.; Mueller, S.J.; Oertel, J.M. The Surgical Treatment of Pyogenic Spondylodiscitis using Carbon-Fiber-Reinforced Polyether Ether Ketone Implants: Personal Experience of a Series of 81 Consecutive Patients. World Neurosurg. 2021, 151, e495–e506. [Google Scholar] [CrossRef] [PubMed]
Total, n | 321 |
---|---|
Sex | |
Male, n (%) | 194 (60.4) |
Female, n (%) | 127 (39.6) |
Metastases, n | 306 |
Primary cancer site, n (% of total metastases) | |
Prostate | 56 (18.3) |
Breast | 53 (17.3) |
NSCLC | 43 (14.1) |
Kidney | 34 (11.1) |
CUP | 15 (4.9) |
other | 105 (34.3) |
Primary bone tumors, n | 15 |
Age, y mean ± SD | 65 ± 13 |
KPS, % mean ± SD | 69 ± 19 |
80–100, n (% of total patients) | 155 (48.3) |
50–70, n (% of total patients) | 115 (35.8) |
0–40, n (% of total patients) | 51 (15.9) |
Preoperative Clinical Symptoms | Number of Patients | Percent of Patients |
---|---|---|
pain w/o other symptoms | 165 | 51.4% |
pain and paresthesia | 34 | 10.6% |
incidental finding | 20 | 6.2% |
pain and paresis | 17 | 5.3% |
pain, paresthesia and paresis | 13 | 4% |
ataxia w/o other symptoms | 11 | 3.4% |
paresthesia, paresis and bladder/bowel dysfunction | 10 | 3.1% |
pain, paresthesia, paresis and bladder/bowel dysfunction | 9 | 2.8% |
pain and bladder/bowel dysfunction | 9 | 2.8% |
paresis w/o other symptoms | 8 | 2.5% |
pain, paresthesia and bladder/bowel dysfunction | 7 | 2.2% |
pain, paresis and bladder/bowel dysfunction | 5 | 1.6% |
paresis and bladder/bowel dysfunction | 5 | 1.6% |
paresthesia w/o other symptoms | 4 | 1.2% |
paresthesia and paresis | 3 | 0.9% |
paresthesia and bladder/bowel dysfunction | 1 | 0.3% |
Total n = 321 | |
---|---|
Open approach (n) | 257 (80.1%) |
W/o decompression (n) | 27 |
With decompression (n) | 230 |
MIS (n) | 64 (19.9%) |
W/o decompression (n) | 46 |
With decompression (n) | 18 |
Cemented (n) | 77 (24.0%) |
Anterior reconstruction (n) | 121 (37.7%) |
Blood loss (mL) mean ± SD | 1104 ± 1146 |
Red blood cell transfusion | |
0 | 179 |
1–5 | 119 |
>5 | 14 |
n/a | 9 |
Total (n = 321) n (%) | |
---|---|
Dural tear | 15 (4.7%) |
Screw breakage | 11 (3.4%) |
Cement extravasate | 4 (1.2%) |
Total | 30 (9.3%) |
Total (n = 321) n (%) | |
---|---|
Epidural haematoma | 6 (1.9%) |
Surgical site infection | 15 (4.7%) |
CSF leackage | 7 (2.2%) |
Atrophic wound healing disorder | 18 (5.6%) |
Pedicle screw loosening | 7 (2.2%) |
Rod breakage (titanium) | 1 (0.3%) |
Pedicle screw breakage | 1 (0.3%) |
Total | 55 (17.1%) |
Better n (%) | Equal n (%) | Worse n (%) | |
---|---|---|---|
KPS pre vs. post OP | 92 (28.7) | 185 (57.6) | 44 (13.7) |
Neurological status pre vs. post OP | 138 (43.0) | 134 (41.7) | 49 (15.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joerger, A.-K.; Seitz, S.; Lange, N.; Aftahy, A.K.; Wagner, A.; Ryang, Y.-M.; Bernhardt, D.; Combs, S.E.; Wostrack, M.; Gempt, J.; et al. CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy. Cancers 2022, 14, 5275. https://doi.org/10.3390/cancers14215275
Joerger A-K, Seitz S, Lange N, Aftahy AK, Wagner A, Ryang Y-M, Bernhardt D, Combs SE, Wostrack M, Gempt J, et al. CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy. Cancers. 2022; 14(21):5275. https://doi.org/10.3390/cancers14215275
Chicago/Turabian StyleJoerger, Ann-Kathrin, Sebastian Seitz, Nicole Lange, Amir K. Aftahy, Arthur Wagner, Yu-Mi Ryang, Denise Bernhardt, Stephanie E. Combs, Maria Wostrack, Jens Gempt, and et al. 2022. "CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy" Cancers 14, no. 21: 5275. https://doi.org/10.3390/cancers14215275
APA StyleJoerger, A. -K., Seitz, S., Lange, N., Aftahy, A. K., Wagner, A., Ryang, Y. -M., Bernhardt, D., Combs, S. E., Wostrack, M., Gempt, J., & Meyer, B. (2022). CFR-PEEK Pedicle Screw Instrumentation for Spinal Neoplasms: A Single Center Experience on Safety and Efficacy. Cancers, 14(21), 5275. https://doi.org/10.3390/cancers14215275