New Directions in the Therapy of Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Treatment Guidelines in Advanced Glioblastoma
3. Main Pharmacological Options in the Treatment of Glioblastoma
3.1. BRAF in Glioblastoma
3.2. MEK in Glioblastoma
3.3. PI3K in Glioblastoma
3.4. FGFR in Glioblastoma
3.5. VEGF in Glioblastoma
4. Drug-Evaluating Studies
4.1. Vemurafenib
4.2. Dabrafenib and Trametinib
4.3. Cobimetinib
4.4. Paxalisib
4.5. Everolimus
4.6. Nintedanib
4.7. Pemigatinib
4.8. Aflibercept
4.9. Bevacizumab
4.10. Pazopanib
4.11. Sorafenib
4.12. Sunitinib
4.13. Lenvatinib
4.14. Apatinib
4.15. Regorafenib
5. Development Prospects of Radiotherapy in Glioblastomas
5.1. Re-Irradiation Using Stereotaxic Techniques
5.2. Preoperative Radiotherapy
5.3. Adaptive/Phase Stereotaxic Radiotherapy
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015, 152, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro-Oncology 2014, 16, 896–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of gliomas. Cancer Treat Res. 2015, 163, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Types of Brain Tumours. Available online: https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors (accessed on 9 July 2022).
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Wang, M.; Chen, Y.; Gong, J.; Chen, L.; Shi, X.; Lan, F.; Chen, Z.; Xiong, T.; Sun, H.; et al. Trends in Intracranial Glioma Incidence and Mortality in the United States, 1975–2018. Front. Oncol. 2021, 11, 748061. [Google Scholar] [CrossRef]
- Chen, B.; Chen, C.; Zhang, Y.; Xu, J. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017. BMC Cancer 2021, 21, 54. [Google Scholar] [CrossRef]
- Huang, Y.T.; Zhang, Y.; Wu, Z.; Michaud, D.S. Genotype-based gene signature of glioma risk. Neuro-Oncology 2017, 19, 940–950. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Delgado-López, P.D.; Saiz-López, P.; Gargini, R.; Sola-Vendrell, E.; Tejada, S. A comprehensive overview on the molecular biology of human glioma: What the clinician needs to know. Clin. Transl. Oncol. 2020, 22, 1909–1922. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy With Concomitant and Adjuvant Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Duffau, H. Diffuse Low-Grade Glioma, Oncological Outcome and Quality of Life: A Surgical Perspective. Curr. Opin. Oncol. 2018, 30, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Delgado-López, P.D.; Corrales-García, E.M. Survival in Glioblastoma: A Review on the Impact of Treatment Modalities. Clin. Transl. Oncol. 2016, 18, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. BioMed Res. Int. 2017, 2017, 8013575. [Google Scholar] [CrossRef] [Green Version]
- Boele, F.W.; Klein, M.; Reijneveld, J.C.; Verdonck-de Leeuw, I.M.; Heimans, J.J. Symptom management and quality of life in glioma patients. CNS Oncol. 2014, 3, 37–47. [Google Scholar] [CrossRef]
- Turek, G.; Pasterski, T.; Bankiewicz, K.; Dzierzcki, S.; Zbek, M. Current Strategies for the Treatment of Malignant Gliomas—Experience of the Department of Neurosurgery, Brodno Masovian Hospital in Warsaw. Pol. J. Surg. 2020, 92, 1–5. [Google Scholar] [CrossRef]
- Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
- Martínez-Garcia, M.; Álvarez-Linera, J.; Carrato, C.; Ley, L.; Luque, R.; Maldonado, X.; Martínez-Aguillo, M.; Navarro, L.M.; Vaz-Salgado, M.A.; Gil-Gil, M. SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clin. Transl. Oncol. 2018, 20, 22–28. [Google Scholar] [CrossRef]
- Cunha, M.; Maldaun, M. Metastasis from glioblastoma multiforme: A meta-analysis. Rev. Assoc. Med. Bras. 2019, 65, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2020, 18, 170–186. [Google Scholar] [CrossRef]
- Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir. 2018, 58, 405–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, J.; Nafziger, E.; Leung, D. Evidence-Based Practice: Temozolomide Beyond Glioblastoma. Curr. Oncol. Rep. 2019, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Tiek, D.; Song, X.; Huang, T.; Hu, B.; Cheng, S.-Y. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021, 10, 484. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, J.; Fan, Y.; Qi, Y.; Wang, S.; Zhao, S.; Guo, X.; Xue, H.; Deng, L.; Zhao, R.; et al. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J. Exp. Clin. Cancer Res. 2022, 41, 223. [Google Scholar] [CrossRef]
- Stupp, R.; Tailibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Arnoux, F.; Lamure, M.; Ducray, F.; Aulagner, G.; Honnorat, J.; Armoiry, X. The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. Neuro-Oncology 2016, 18, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.M.; Umemura, Y.; Leung, D. Bevacizumab and glioblastoma: Past, present, and future directions. Cancer J. 2018, 24, 180–186. [Google Scholar] [CrossRef]
- Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef]
- Zeng, T.; Cui, D.; Gao, L. Glioma: An Overview of Current Classifications, Characteristics, Molecular Biology and Target Therapies. Front. Biosci. 2015, 20, 1104–1115. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, V.; Islam, M.M.; Yang, M.; Slaby, R.; Ramirez, H.M.; Mirza, S.P. Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers 2020, 12, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Dwivedi, T. A simplified overview of World Health Organization classification update of central nervous system tumors 2016. J. Neurosci. Rural Pract. 2017, 8, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Klockow, J.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [Google Scholar] [CrossRef]
- Tykocki, T.; Eltayeb, M. Ten-year survival in glioblastoma. A systematic review. J. Clin. Neurosci. 2018, 54, 7–13. [Google Scholar] [CrossRef]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma Multiforme: A Review of Its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev. 2017, 18, 3–9. [Google Scholar] [CrossRef]
- Stark, A.M.; Maslehaty, H.; Hugo, H.H.; Mahvash, M.; Mehdorn, H.M. Glioblastoma of the cerebellum and brainstem. J Clin Neurosci. 2010, 17, 1248–1251. [Google Scholar] [CrossRef]
- Zong, H.; Verhaak, R.G.; Canoll, P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev. Mol. Diagn. 2012, 12, 383–394. [Google Scholar] [CrossRef]
- Lei, C.G.; Jia, X.Y.; Sun, W.J. Establish six-gene prognostic model for glioblastoma based on multi-omics data of TCGA database. Yi Chuan 2021, 43, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Redekar, S.S.; Varma, S.L.; Bhattacharjee, A. Identification of key genes associated with survival of glioblastoma multiforme using integrated analysis of TCGA datasets. Comput. Methods Programs Biomed. Update 2022, 2, 100051. [Google Scholar] [CrossRef]
- Kunkle, B.; Yoo, C.; Roy, D. Discovering gene–environment interactions in glioblastoma through a comprehensive data integration bioinformatics method. Neurotoxicology 2013, 35, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fabro, F.; Lamfers, M.L.M.; Leenstra, S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers 2022, 14, 600. [Google Scholar] [CrossRef]
- Selvasaravanan, K.D.; Wiederspohn, N.; Hadzalic, A.; Strobel, H.; Payer, C.; Schuster, A.; Karpel-Massler, G.; Siegelin, M.D.; Halatsch, M.E.; Debatin, K.M.; et al. The limitations of targeting MEK signalling in Glioblastoma therapy. Sci. Rep. 2020, 10, 7401. [Google Scholar] [CrossRef]
- Bouchè, V.; Aldegheri, G.; Donofrio, C.A.; Fioravanti, A.; Roberts-Thomson, S.; Fox, S.B.; Schettini, F.; Generali, D. BRAF Signaling Iinhibition in Glioblastoma: Which Clinical Perspectives? Front. Oncol. 2021, 11, 772052. [Google Scholar] [CrossRef]
- Kowalewski, A.; Durslewicz, J.; Zdrenka, M.; Grzanka, D.; Szylberg, L. Clinical relevance of BRAF V600E mutation status in brain tumors with a focus on a novel management algorithm. Target. Oncol. 2020, 15, 531–540. [Google Scholar] [CrossRef]
- Alzial, G.; Renoult, O.; Paris, F.; Gratas, C.; Clavreul, A.; Pecqueur, C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene 2022, 41, 613–621. [Google Scholar] [CrossRef]
- McNulty, S.N.; Schwetye, K.E.; Ferguson, C.; Storer, C.E.; Ansstas, G.; Kim, A.H.; Gutmann, D.H.; Rubin, J.B.; Head, R.D.; Dahiya, S. BRAF mutations may identify a clinically distinct subset of glioblastoma. Sci. Rep. 2021, 11, 19999. [Google Scholar] [CrossRef]
- Delgado-Martín, B.; Medina, M. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. Adv. Sci. 2020, 7, 1902971. [Google Scholar] [CrossRef]
- Woo, P.; Lam, T.C.; Pu, J.; Li, L.F.; Leung, R.; Ho, J.; Zhung, J.; Wong, B.; Chan, T.; Loong, H.; et al. Regression of BRAF (V600E) mutant adult glioblastoma after primary combined BRAF-MEK inhibitor targeted therapy: A report of two cases. Oncotarget 2019, 10, 3818–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasa, K.; Cross, K.A.; Dahiya, S. BRAF alteration in central and peripheral nervous system tumors. Front. Oncol. 2020, 10, 574974. [Google Scholar] [CrossRef] [PubMed]
- Lokhandwala, P.M.; Tseng, L.H.; Rodriguez, E.; Zheng, G.; Pallavajjalla, A.; Gocke, C.D.; Eshleman, J.R.; Lin, M.T. Clinical Mutational Profiling and Categorization of BRAF Mutations in Melanomas Using Next Generation Sequencing. BMC Cancer 2019, 19, 665. [Google Scholar] [CrossRef] [PubMed]
- Johanns, T.M.; Ferguson, C.J.; Grierson, P.M.; Dahiya, S.; Ansstas, G. Rapid Clinical and Radiographic Response With Combined Dabrafenib and Trametinib in Adults With BRAF-Mutated High-Grade Glioma. J. Natl. Compr. Cancer Netw. 2018, 16, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Johanns, T.M.; Ansstas, G.; Dahiya, S. BRAF-Targeted Therapy in the Treatment of BRAF-Mutant High-Grade Gliomas in Adults. J. Natl. Compr. Cancer Netw. 2018, 16, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Proietti, I.; Skroza, N.; Michelini, S.; Mambrin, A.; Balduzzi, V.; Bernardini, N.; Marchesiello, A.; Tolino, E.; Volpe, S.; Maddalena, P.; et al. BRAF Inhibitors: Molecular Targeting and Immunomodulatory Actions. Cancers 2020, 12, 1823. [Google Scholar] [CrossRef]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.D.; Joly, F.; et al. BRAF Inhibition in BRAFV600-Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and Trametinib in Patients With Tumors With BRAFV600E Mutations: Results of the NCI-MATCH Trial Subprotocol H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef]
- Trippett, T.; Toledano, H.; Campbell Hewson, Q.; Verschuur, A.; Langevin, A.M.; Aerts, I.; Howell, L.; Gallego, S.; Rossig, C.; Smith, A.; et al. Cobimetinib in Pediatric and Young Adult Patients with Relapsed or Refractory Solid Tumors (iMATRIX-cobi): A Multicenter, Phase I/II Study. Target. Oncol. 2022, 17, 283–293. [Google Scholar] [CrossRef]
- Wen, P.Y.; de Groot, J.F.; Battiste, J.; Goldlust, S.A.; Garner, J.S.; Friend, J.; Simpson, J.A.; Damek, D.; Olivero, A.; Cloughesy, T.F. Paxalisib in patients with newly diagnosed glioblastoma with unmethylated MGMT promoter status: Final phase 2 study results. J. Clin. Oncol. 2022, 40, 2047. [Google Scholar] [CrossRef]
- Chinnaiyan, P.; Won, M.; Wen, P.Y.; Rojiani, A.M.; Werner-Wasik, M.; Shih, H.A.; Ashby, L.S.; Michael Yu, H.H.; Stieber, V.W.; Malone, S.C.; et al. A Randomized Phase II Study of Everolimus in Combination with Chemoradiation in Newly Diagnosed Glioblastoma: Results of NRG Oncology RTOG 0913. Neuro-Oncology 2018, 20, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.J.; Galanis, E.; Anderson, S.K.; Schiff, D.; Kaufmann, T.J.; Peller, P.J.; Giannini, C.; Brown, P.D.; Uhm, J.H.; Mcgraw, S.; et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro-Oncology 2015, 17, 1261–1269. [Google Scholar] [CrossRef]
- Hainsworth, J.D.; Shih, K.C.; Shepard, G.C.; Tillinghast, G.W.; Brinker, B.T.; Spigel, D.R. Phase II Study of Concurrent Radiation Therapy, Temozolomide, and Bevacizumab Followed by Bevacizumab/everolimus as First-Line Treatment for Patients with Glioblastoma. Clin. Adv. Hematol. Oncol. 2012, 10, 240–246. [Google Scholar] [PubMed]
- Norden, A.D.; Schiff, D.; Ahluwalia, M.S.; Lesser, G.J.; Nayak, L.; Lee, E.Q.; Rinne, M.L.; Muzikansky, A.; Dietrich, J.; Purow, B.; et al. Phase II Trial of Triple Tyrosine Kinase Receptor Inhibitor Nintedanib in Recurrent High-Grade Gliomas. J. Neuro-Oncol. 2015, 121, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Study to Evaluate the Efficacy and Safety of Pemigatinib in Participants with Previously Treated Glioblastoma or Other Primary Central Nervous System Tumors Harboring Activating FGFR1-3 Alterations (FIGHT-209). Available online: https://clinicaltrials.gov/ct2/show/NCT05267106?term=pemigatinib&cond=glioblastoma&draw=2&rank=1 (accessed on 31 July 2022).
- De Groot, J.F.; Lamborn, K.R.; Chang, S.M.; Gilbert, M.R.; Cloughesy, T.F.; Aldape, K.; Yao, J.; Jackson, E.F.; Lieberman, F.; Robins, H.I.; et al. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. J. Clin. Oncol. 2011, 29, 2689–2695. [Google Scholar] [CrossRef]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [Green Version]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.A.; Camphausen, K.; et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.A.; Deangelis, L.M.; Abrey, L.E.; Zhang, W.T.; Prados, M.D.; et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 2010, 12, 855–861. [Google Scholar] [CrossRef]
- Hainsworth, J.D.; Ervin, T.; Friedman, E.; Priego, V.; Murphy, P.B.; Clark, B.L.; Lamar, R.E. Concurrent Radiotherapy and Temozolomide Followed by Temozolomide and Sorafenib in the First-Line Treatment of Patients With Glioblastoma Multiforme. Cancer 2010, 116, 3663–3669. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.H.; Marcello, J.; Herndon, J.E.; McLendon, R.E.; Janney, D.; et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: Results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J. Neuro-Oncol. 2011, 101, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peereboom, D.M.; Ahluwalia, M.S.; Ye, X.; Supko, J.G.; Hilderbrand, S.L.; Phuphanich, S.; Nabors, L.B.; Rosenfeld, M.R.; Mikkelsen, T.; Grossman, S.A.; et al. NABTT 0502: A phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro-Oncology 2013, 15, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahm, C.G.; Van Linde, M.E.; Labots, M.; Kouwenhoven, M.C.; Aliaga, E.S.; Enting, R.H.; Appelman, A.P.A.; Nuver, J.; Walenkamp, A.M.E.; Verheul, H.M.W. A phase II/III trial of high-dose, intermittent sunitinib in patients with recurrent glioblastoma: The STELLAR study. Ann. Oncol. 2019, 30, v157–v158. [Google Scholar] [CrossRef]
- Lwin, Z.; Gomez-Roca, C.; Saada-Bouzid, E.; Yanez, E.; Muñoz, F.L.; Im, S.A.; Castanon, E.; Senellart, H.; Graham, D.; Voss, M.; et al. LBA41 LEAP-005: Phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Ann. Oncol. 2020, 31, S1170. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.; Zhou, S.; Zhu, Y.; Xu, J.; Tao, R. Apatinib plus temozolomide for recurrent glioblastoma: An uncontrolled, open-label study. Onco Targets Ther. 2019, 12, 10579–10585. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2018, 20, 110–119. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Asati, V.; Bharti, S.K. Discovery of small-molecule ATR inhibitors for potential cancer treatment: A patent review from 2014 to present. Expert Opin. Ther. Pat. 2017, 27, 887–906. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, H. Current development status of MEK inhibitors. Molecules 2017, 22, 1551. [Google Scholar] [CrossRef] [Green Version]
- Neuzillet, C.; Tijeras-Raballand, A.; de Mestier, L.; Cros, J.; Faivre, S.; Raymond, E. MEK in cancer and cancer therapy. Pharmacol. Ther. 2014, 141, 160–171. [Google Scholar] [CrossRef]
- Yaeger, R.; Corcoran, R.B. Targeting Alterations in the RAF-MEK Pathway. Cancer Discov. 2019, 9, 329–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Bi, Z.; Liu, Y.; Qin, F.; Wei, Y.; Wei, X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis. 2022. [Google Scholar] [CrossRef]
- Schreck, K.C.; Allen, A.N.; Wang, J.; Pratilas, C.A. Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neurooncol. Adv. 2020, 2, vdaa138. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.N.; Dong, Q.R.; Cui, Y.K. Synergistic inhibition of MEK and reciprocal feedback networks for targeted intervention in malignancy. Cancer Biol. Med. 2019, 16, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Yang, J.; Gong, H.; Lin, Y.; Liu, J. Trametinib Inhibits the Growth and Aerobic Glycolysis of Glioma Cells by Targeting the PKM2/c-Myc Axis. Front. Pharmacol. 2021, 12, 760055. [Google Scholar] [CrossRef]
- Shannon, S.; Jia, D.; Entersz, I.; Beelen, P.; Yu, M.; Carcione, C.; Carcione, J.; Mahtabfar, A.; Vaca, C.; Weaver, M.; et al. Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer 2017, 17, 121. [Google Scholar] [CrossRef] [Green Version]
- Colardo, M.; Segatto, M.; Di Bartolomeo, S. Targeting RTK-PI3K-mTOR axis in gliomas: An update. Int. J. Mol. Sci. 2021, 22, 4899. [Google Scholar] [CrossRef]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Ji, M.; Zhang, Z.; Lin, S.; Wang, C.; Jin, J.; Xue, N.; Xu, H.; Chen, X. The PI3K Inhibitor XH30 Enhances Response to Temozolomide in Drug-Resistant Glioblastoma via the Noncanonical Hedgehog Signaling Pathway. Front. Pharmacol. 2021, 12, 749242. [Google Scholar] [CrossRef]
- Yao, W.; Gong, H.; Mei, H.; Shi, L.; Yu, J.; Hu, Y. Taxifolin Targets PI3K and mTOR and Inhibits Glioblastoma Multiforme. J. Oncol. 2021, 2021, 5560915. [Google Scholar] [CrossRef]
- Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S.S.T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer 2017, 16, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 2016, 7, 33440–33450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, M.; Wang, D.; Lin, S.; Wang, C.; Li, L.; Zhang, Z.; Jin, J.; Wu, D.; Dong, Y.; Xu, H.; et al. A Novel PI3K Inhibitor XH30 Suppresses Orthotopic Glioblastoma and Brain Metastasis in Mice Models. Acta Pharm. Sin. B 2022, 12, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Pascual, A.; Siebzehnrubl, F.A. Fibroblast Growth Factor Receptor Functions in Glioblastoma. Cells 2019, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R.J. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol. Res. 2019, 151, 104567. [Google Scholar] [CrossRef]
- Georgescu, M.M.; Islam, M.Z.; Li, Y.; Traylor, J.; Nanda, A. Novel targetable FGFR2 and FGFR3 alterations in glioblastoma associate with aggressive phenotype and distinct gene expression programs. Acta Neuropathol. Commun. 2021, 9, 69. [Google Scholar] [CrossRef]
- Turner, N.; Pearson, A.; Sharpe, R.; Lambros, M.; Geyer, F.; Lopez-Garcia, M.A.; Natrajan, R.; Marchio, C.; Iorns, E.; Mackay, A.; et al. FGFR1 Amplification Drives Endocrine Therapy Resistance and Is a Therapeutic Target in Breast Cancer. Cancer Res. 2010, 70, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Fernanda Amary, M.; Ye, H.; Berisha, F.; Khatri, B.; Forbes, G.; Lehovsky, K.; Frezza, A.M.; Behjati, S.; Tarpey, P.; Pillay, N.; et al. Fibroblastic growth factor receptor 1 amplification in osteosarcoma is associated with poor response to neo-adjuvant chemotherapy. Cancer Med. 2014, 3, 980–987. [Google Scholar] [CrossRef]
- Sayal, K.K.; Higgins, G.S.; Hammond, E.M. Uncovering the influence of the FGFR1 pathway on glioblastoma radiosensitivity. Ann. Transl. Med. 2016, 4, 538. [Google Scholar] [CrossRef]
- Hierro, C.; Rodon, J.; Tabernero, J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. Semin. Oncol. 2015, 42, 801–819. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, R.; Matsuda, Y.; Ishiwata, T.; Naito, Z. Downregulation of fibroblast growth factor receptor 2 and its isoforms correlates with a high proliferation rate and poor prognosis in high-grade glioma. Oncol. Rep. 2014, 32, 1163–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang-Minh, L.B.; Siebzehnrubl, F.A.; Yang, C.; Suzuki-Hatano, S.; Dajac, K.; Loche, T.; Andrews, N.; Schmoll Massari, M.; Patel, J.; Amin, K.; et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 2018, 37, e98772. [Google Scholar] [CrossRef] [PubMed]
- Gabler, L.; Jaunecker, C.N.; Katz, S.; van Schoonhoven, S.; Englinger, B.; Pirker, C.; Mohr, T.; Vician, P.; Stojanovic, M.; Woitzuck, V.; et al. Fibroblast growth factor receptor 4 promotes glioblastoma progression: A central role of integrin-mediated cell invasiveness. Acta Neuropathol. Commun. 2022, 10, 65. [Google Scholar] [CrossRef]
- Ardizzone, A.; Scuderi, S.A.; Giuffrida, D.; Colarossi, C.; Puglisi, C.; Campolo, M.; Cuzzocrea, S.; Esposito, E.; Paterniti, I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers 2020, 12, 3825. [Google Scholar] [CrossRef]
- Kurzyk, A. Angiogenesis-possibilities, problems and prospects. Postepy Biochem. 2015, 61, 25–34. [Google Scholar]
- Loureiro, L.V.M.; Neder, L.; Callegaro-Filho, D.; de Oliveira Koch, L.; Stavale, J.N.; Malheiros, S.M.F. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg. Exp. Pathol. 2020, 3, 9. [Google Scholar] [CrossRef]
- Tatla, A.S.; Justin, A.W.; Watts, C.; Markaki, A.E. A vascularized tumoroid model for human glioblastoma angiogenesis. Sci. Rep. 2021, 11, 19550. [Google Scholar] [CrossRef]
- Mahase, S.; Rattenni, R.N.; Wesseling, P.; Leenders, W.; Baldotto, C.; Jain, R.; Zagzag, D. Hypoxia-mediated mechanisms associated with antiangiogenic treatment resistance in glioblastomas. Am. J. Pathol. 2017, 187, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Șovrea, A.S.; Boșca, B.; Melincovici, C.S.; Constantin, A.M.; Crintea, A.; Mărginean, M.; Dronca, E.; Jianu, M.E.; Suflețel, R.; Gonciar, D.; et al. Multiple Faces of the Glioblastoma Microenvironment. Int. J. Mol. Sci. 2022, 23, 595. [Google Scholar] [CrossRef]
- Rosińska, S.; Gavard, J. Tumor Vessels Fuel the Fire in Glioblastoma. Int. J. Mol. Sci. 2021, 22, 6514. [Google Scholar] [CrossRef] [PubMed]
- Guyon, J.; Chapouly, C.; Andrique, L.; Bikfalvi, A.; Daubon, T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front. Physiol. 2021, 12, 622615. [Google Scholar] [CrossRef] [PubMed]
- Hundsberger, T.; Reardon, D.A.; Wen, P.Y. Angiogenesis inhibitors in tackling recurrent glioblastoma. Expert Rev. Anticancer Ther. 2017, 17, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Ahir, B.K.; Engelhard, H.H.; Lakka, S.S. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol. Neurobiol. 2020, 57, 2461–2478. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Cohen, M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov. 2016, 11, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, S.F.; Helmi, F.; El-Akiki, S.; El Omri, H.; Nashwan, A.; Yassin, M.A. Concomitant BRAF Mutation in Hairy Cell Leukemia and Papillary Thyroid Cancer: Case Report. Case Rep. Oncol. 2019, 12, 922–927. [Google Scholar] [CrossRef]
- Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.E.; Chau, I.; Blay, J.Y.; Wolf, J.; Raje, N.S.; Diamond, E.L.; Hollebecque, A.; et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef]
- Berzero, G.; Di Stefano, A.L.; Ronchi, S.; Bielle, F.; Villa, C.; Guillerm, E.; Capelle, L.; Mathon, B.; Laurenge, A.; Giry, M.; et al. IDH-Wildtype Lower-Grade Diffuse Gliomas: The Importance of Histological Grade and Molecular Assessment for Prognostic Stratification. Neuro-Oncology 2020, 23, 955–966. [Google Scholar] [CrossRef]
- Vaidhyanathan, S.; Mittapalli, R.K.; Sarkaria, J.N.; Elmquist, W.F. Factors influencing the CNS distribution of a novel MEK-1/2 inhibitor: Implications for combination therapy for melanoma brain metastases. Drug Metab. Dispos. 2014, 42, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Mittapalli, R.K.; Vaidhyanathan, S.; Dudek, A.Z.; Elmquist, W.F. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: Implications for the treatment of melanoma brain metastases. J. Pharmacol. Exp. Ther. 2013, 344, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Kushnirsky, M.; Feun, L.G.; Gultekin, S.H.; de la Fuente, M.I. Prolonged Complete Response With Combined Dabrafenib and Trametinib After BRAF Inhibitor Failure in BRAF-Mutant Glioblastoma. JCO Precis. Oncol. 2020, 4, PO.19.00272. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- FDA Grants Accelerated Approval to Dabrafenib in Combination with Trametinib for Unresectable or Metastatic Solid Tumours with BRAF V600E Mutation. Available online: https://www.esmo.org/oncology-news/fda-grants-accelerated-approval-to-dabrafenib-in-combination-with-trametinib-for-unresectable-or-metastatic-solid-tumours-with-braf-v600e-mutation (accessed on 25 July 2022).
- Hargrave, D.; Witt, O.; Cohen, K.; Packer, R.; Lissat, A.; Kordes, U.; Laetsch, T.; Hoffman, L.; Lassaletta, A.; Gerber, N.; et al. Phase II open-label, global study evaluating dabrafenib in combination with trametinib in pediatric patients with BRAF V600–mutant high-grade glioma (HGG) or low-grade glioma (LGG). Ann. Oncol. 2018, 29, viii132. [Google Scholar] [CrossRef]
- Cobimetinib Approved for Advanced Melanoma–National Cancer Institute. Available online: https://www.cancer.gov/news-events/cancer-currents-blog/2015/cobimetinib-melanoma (accessed on 28 July 2022).
- Cruz Da Silva, E.; Mercier, M.C.; Etienne-Selloum, N.; Dontenwill, M.; Choulier, L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers 2021, 13, 1795. [Google Scholar] [CrossRef]
- Wen, P.Y.; Cloughesy, T.F.; Olivero, A.G.; Morrissey, K.M.; Wilson, T.R.; Lu, X.; Mueller, L.U.; Coimbra, A.F.; Ellingson, B.M.; Gerstner, E.; et al. First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma. Clin. Cancer Res. 2020, 26, 1820–1828. [Google Scholar] [CrossRef] [Green Version]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple Angiokinase Inhibitor With Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef] [Green Version]
- Capone, S.; Ketonen, L.; Weathers, S.P.; Subbiah, V. Activity of Pemigatinib in Pilocytic Astrocytoma and FGFR1N546K Mutation. JCO Precis. Oncol. 2022, 6, e2100371. [Google Scholar] [CrossRef]
- Lazzara, F.; Fidilio, A.; Platania, C.B.M.; Giurdanella, G.; Salomone, S.; Leggio, G.M.; Tarallo, V.; Cicatiello, V.; De Falco, S.; Eandi, C.M.; et al. Aflibercept regulates retinal inflammation elicited by high glucose via the PlGF/ERK pathway. Biochem. Pharmacol. 2019, 168, 341–351. [Google Scholar] [CrossRef]
- Wachsberger, P.R.; Burd, R.; Cardi, C.; Thakur, M.; Daskalakis, C.; Holash, J.; Yancopoulos, G.D.; Dicker, A.P. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1526–1537. [Google Scholar] [CrossRef] [Green Version]
- Nayak, L.; de Groot, J.; Wefel, J.S.; Cloughesy, T.F.; Lieberman, F.; Chang, S.M.; Omuro, A.; Drappatz, J.; Batchelor, T.T.; DeAngelis, L.M.; et al. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. J. Neuro-Oncol. 2017, 132, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ghiaseddin, A.; Peters, K.B. Use of bevacizumab in recurrent glioblastoma. CNS Oncol. 2015, 4, 157–169. [Google Scholar] [CrossRef] [PubMed]
- García-Romero, N.; Palacín-Aliana, I.; Madurga, R.; Carrión-Navarro, J.; Esteban-Rubio, S.; Jiménez, B.; Collazo, A.; Pérez-Rodríguez, F.; Ortiz de Mendivil, A.; Fernández-Carballal, C.; et al. Bevacizumab dose adjustment to improve clinical outcomes of glioblastoma. BMC Med. 2020, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.I. Tumor treating field therapy in combination with bevacizumab for the treatment of recurrent glioblastoma. J. Vis. Exp. 2014, 92, e51638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäki-Petäjä, K.M.; McGeoch, A.; Yang, L.L.; Hubsch, A.; McEniery, C.M.; Meyer, P.A.R.; Mir, F.; Gajendragadkar, P.; Ramenatte, N.; Anandappa, G.; et al. Mechanisms Underlying Vascular Endothelial Growth Factor Receptor Inhibition-Induced Hypertension: The HYPAZ Trial. Hypertension 2021, 77, 1591–1599. [Google Scholar] [CrossRef]
- Rovithi, M.; Gerritse, S.L.; Honeywell, R.J.; Ten Tije, A.J.; Ruijter, R.; Peters, G.J.; Voortman, J.; Labots, M.; Verheul, H.M.W. Phase 1 dose-escalation study of once weekly or once every two weeks administration of high dose sunitinib in patients with refractory solid tumors. J. Clin. Oncol. 2019, 37, 411–418. [Google Scholar] [CrossRef]
- van Linde, M.E.; Labots, M.; Brahm, C.G.; Hovinga, K.E.; De Witt Hamer, P.C.; Honeywell, R.J.; de Goeij-de Haas, R.; Henneman, A.A.; Knol, J.C.; Peters, G.J.; et al. Tumor Drug Concentration and Phosphoproteomic Profiles after Two Weeks of Treatment with Sunitinib in Patients with Newly-Diagnosed Glioblastoma. Clin. Cancer Res. 2022, 28, 1595–1602. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.; Zhang, C.; Shao, Y.; Li, X.; Yu, Z.; Huang, Y. Apatinib inhibits glioma cell malignancy in patient-derived orthotopic xenograft mouse model by targeting thrombospondin 1/myosin heavy chain 9 axis. Cell Death Dis. 2021, 12, 927. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/show/NCT03970447 (accessed on 21 September 2022).
- Available online: https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf (accessed on 21 September 2022).
- Malmström, A.; Grønberg, B.H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M.E.; et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 2012, 13, 916–926. [Google Scholar] [CrossRef]
- Roa, W.; Brasher, P.M.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
- Roa, W.; Kepka, L.; Kumar, N.; Sinaika, V.; Matiello, J.; Lomidze, D.; Hentati, D.; Guedes de Castro, D.; Dyttus-Cebulok, K.; Drodge, S.; et al. International Atomic Energy Agency Randomized Phase III Study of Radiation Therapy in Elderly and/or Frail Patients with Newly Diagnosed Glioblastoma Multiforme. J. Clin. Oncol. 2015, 33, 4145–4150. [Google Scholar] [CrossRef] [PubMed]
- Fogh, S.E.; Andrews, D.W.; Glass, J.; Curran, W.; Glass, C.; Champ, C.; Evans, J.J.; Hyslop, T.; Pequignot, E.; Downes, B.; et al. Hypofractionated Stereotactic Radiation Therapy: An Effective Therapy for Recurrent High-Grade Gliomas. J. Clin. Oncol. 2010, 28, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Lovo, E.E.; Moreira, A.; Barahona, K.C.; Ramirez, J.; Campos, F.; Tobar, C.; Caceros, V.; Sallabanda, M.; Sallabanda, K. Stereotactic Radiosurgery for Recurrent Glioblastoma Multiforme: A Retrospective Multi-Institutional Experience. Cureus 2021, 13, e18480. [Google Scholar] [CrossRef] [PubMed]
- Yaprak, G.; Isik, N.; Gemici, C.; Pekyurek, M.; Bicakci, B.C.; Demircioglu, F.; Tatarlı, N. Stereotactic radiotherapy in recurrent glioblastoma: A valid salvage treatment option. Stereotact. Funct. Neurosurg. 2020, 98, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, F.; Soon, Y.Y.; Leong, Y.H.; Koh, W.Y.; Vellayappan, B. Re-irradiation for recurrent glioblastoma (GBM): A systematic review and meta-analysis. J. Neuro-Oncol. 2019, 142, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Niyazi, M.; Alongi, F.; Navarria, P.; Belka, C. Current status and recent advances in reirradiation of glioblastoma. Radiat. Oncol. 2021, 16, 36. [Google Scholar] [CrossRef]
- Minniti, G.; Agolli, L.; Falco, T.; Scaringi, C.; Lanzetta, G.; Caporello, P.; Osti, M.F.; Esposito, V.; Enrici, R.M. Hypofractionated stereotactic radiotherapy in combination with bevacizumab or fotemustine for patients with progressive malignant gliomas. J. Neuro-Oncol. 2015, 122, 559–566. [Google Scholar] [CrossRef]
- Tsien, C.; Pugh, S.; Dicker, A.P.; Raizer, J.J.; Matuszak, M.M.; Lallana, E.; Huang, J.; Algan, O.; Taylor, N.; Portelance, L.; et al. Randomized phase II trial of re-irradiation and concurrent bevacizumab versus bevacizumab alone as treatment for recurrent glioblastoma (NRG Oncology/RTOG 1205): Initial outcomes and RT plan quality report. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, S78. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Jayamanne, D.; Wheeler, H.; Khasraw, M.; Wong, M.; Kastelan, M.; Guo, L.; Back, M. The role of large volume re-irradiation with Bevacizumab in chemorefractory high grade glioma. Clin. Transl. Radiat. Oncol. 2020, 22, 33–39. [Google Scholar] [CrossRef]
- Clarke, J.; Neil, E.; Terziev, R.; Gutin, P.; Barani, I.; Kaley, T.; Lassman, A.B.; Chan, T.A.; Yamada, J.; DeAngelis, L.; et al. Multicenter, Phase 1, Dose Escalation Study of Hypofractionated Stereotactic Radiation Therapy with Bevacizumab for Recurrent Glioblastoma and Anaplastic Astrocytoma. Int. J. Radiat. Oncol. 2017, 99, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, D.F.; Jenn, J.; Corradini, S.; Ruf, V.; Herms, J.; Forbrig, R.; Unterrainer, M.; Thon, N.; Kreth, F.W.; Belka, C.; et al. Bevacizumab reduces toxicity of reirradiation in recurrent high-grade glioma. Radiother. Oncol. 2019, 138, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Souhami, L.; Seiferheld, W.; Brachman, D.; Podgorsak, E.B.; Werner-Wasik, M.; Lustig, R.; Schultz, C.J.; Sause, W.; Okunieff, P.; Buckner, J.; et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: Report of Radiation Therapy Oncology Group 93-05 protocol. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kievit, F.M.; Wang, K.; Ozawa, T.; Tarudji, A.W.; Silber, J.R.; Holland, E.C.; Ellenbogen, R.G.; Zhang, M. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma. Nanomedicine 2017, 13, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Ruiz-Garcia, H.; Nehlsen, A.D.; Sindhu, K.K.; Estrada, R.S.; Borst, G.R.; Sheehan, J.P.; Quinones-Hinojosa, A.; Trifiletti, D.M. Preoperative Stereotactic Radiosurgery for Glioblastoma. Biology 2022, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Preoperative Radiosurgery for the Treatment of High Grade Glioma, The NeoGlioma Study. Available online: https://clinicaltrials.gov/ct2/show/record/NCT05030298?view=record (accessed on 20 August 2022).
- Higuchi, Y.; Serizawa, T.; Nagano, O.; Matsuda, S.; Ono, J.; Sato, M.; Iwadate, Y.; Saeki, N. Three-Staged Stereotactic Radiotherapy without Whole Brain Irradiation for Large Metastatic Brain Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Lovo, E.E.; Torres, L.B.; Campos, F.J.; Caceros, V.E.; Barahona, K.E.; Minervini, M.H.; Reyes, W.A. Two-session Radiosurgery as Initial Treatment for Newly Diagnosed Large, Symptomatic Brain Metastases from Breast and Lung Histology. Cureus 2019, 11, e5472. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, P.; Paiano, M.; Crocamo, V.; Beltramo, G.; Bergantin, A.; Pantelis, E.; Antypas, C.; Clerico, A. Staged Image-guided Robotic Radiosurgery and Deferred Chemotherapy to Treat a Malignant Glioma During and After Pregnancy. Cureus 2018, 10, e2141. [Google Scholar] [CrossRef] [Green Version]
- Lovo, E.E.; Barahona, K.C.; Campos, F.; Caceros, V.; Tobar, C.; Reyes, W.A. Two-Session Radiosurgery for Large Primary Tumors Affecting the Brain. Cureus 2020, 12, e7850. [Google Scholar] [CrossRef]
- Lovo, E.E. Pros and cons for staged SRS vs fractionation for large brain metastasis. In Proceedings of the 15th International Stereotactic Radiosurgery Society Congress (ISRS 2022), Milan, Italy, 19–23 June 2022. [Google Scholar]
- Stupp, R. Drug development for glioma: Are we repeating the same mistakes? Lancet Oncol. 2018, 20, 10–12. [Google Scholar] [CrossRef]
Medication | Target | Population | Phase | Comedication | Overall Survival (OS) | Progression-Free Survival (PFS) |
---|---|---|---|---|---|---|
Vemurafenib [58] | V600E BRAF V600D BRAF V600R BRAF | Patients with BRAF-V600-mutant glioma in any point of treatment | Phase II | n.a. | 11.9 months (95% CI, 8.3 to 40.1 months) for malignant diffuse glioma | 5.3 months (95% CI, 1.8 to 12.9 months) for malignant diffuse glioma |
Dabrafenib [59,60] | V600E BRAF V600D BRAF V600R BRAF V600K BRAF | Patients with recurrent or progressive BRAF V600E–mutant HGG and LGG | Phase II | trametinib | 17.6 months (95% CI, 9.5 to 45.2 months) for HGG | 3.8 months (95% CI, 1.8 to 9.2 months) for HGG |
Patients with BRAF-V600-mutant solid tumors (including GBM), lymphomas, or multiple myeloma | Phase II | trametinib | 28.6 months for all types of cancers | 11.4 months (90% CI, 8.4 to 16.3 months) for all types of cancers | ||
Trametinib [59,60] | MEK1/2 | |||||
Cobimetinib [61] | MEK1 | Paediatric and young adult patients with relapsed or refractory solid tumors (including HGG) | Phase I/II | n.a. | not reached | 14.8 months (95 % CI, 3.6 to 14.8) for all types of cancers |
Paxalisib [62] | PI3K/mTOR | Patients with newly-diagnosed GBM with unmethylated MGMT promoter status following surgical resection and initial chemoradiation with temozolomide | Phase II | n.a. | 15.7 months | 8.4 months |
Everolimus [63,64,65] | mTOR | Patients with newly diagnosed GBM | Phase II | everolimus + radiotherapy + temozolomide vs. radiotherapy + temozolomide | 16.5 months (95% CI, 12.5 to 18.7 months) vs. 21.2 months (95% CI, 16.6 to 29.9 months) | 8.2 months (95% CI, 6.5 to 10.6 months) vs. 10.2 months (95% CI, 7.5 to 13.8 months) |
everolimus + radiotherapy + temozolomide | 15.8 months (95% CI, 13.0 to 20.3 months) | 6.4 months (95% CI, 5.4 to 9.0 months) | ||||
Patients with newly diagnosed GBM, previously not treated | Phase II | radiotherapy + temozolomide + bevacizumab followed by the combination of bevacizumab + everolimus | 13.9 months (95% CI, 12.4 to NA months) | 11.3 months (95% CI, 9.3 to 13.1 months) | ||
Nintedanib [66] | VEGFR1-R3 and FGFR1–3 | First or second recurrence of GBM in patients previously treated with bevacizumab vs. not treated with bevacizumab | Phase II | n.a. | 2.6 months (95% CI, 1.0 to 6.9 moths) vs. 6.9 months (95% CI, 3.7 to 8.1 months) | 0.9 months (95% CI, 0.7 to 0.9 months) vs. 0.9 months (95% CI, 0.9 to 2.8 months) |
Pemigatinib [67] | FGFR1–3 | Patients with recurrent GBM or other primary CNS tumors with an activating FGFR1-3 mutation or fusion/rearrangement | Phase II | n.a. | Ongoing | Ongoing |
Aflibercept [68] | VEGF-A/B | Patients with recurrent malignant or anaplastic gliomas that did not respond to temozolomide | Phase II | n.a. | 9.8 months | 3.0 months (95% CI, 2.0 to 4.0 months) |
Bevacizumab [69,70,71] | VEGF-A | Patients with GBM with progression after chemoradiation | Phase III | bevacizumab + lomustine vs. lomustine monotherapy | 9.1 months (95% CI, 8.1 to 10.1 months) vs. 8.6 months (95% CI, 7.6 to 10.4 months) | 4.2 months (95% CI, 3.7 to 4.3 months) vs. 1.5 months (95% CI, 1.5 to 2.5 months) |
Patients with first or second relapse and GBM progression | Phase II | bevacizumab monotherapy vs. bevacizumab + irinotecan | 9.2 months (95% CI, 8.2 to 10.7 months) vs. 8.7 months (95% CI, 7.8 to 10.9 months) | 4.2 months (95% CI, 2.9 to 5.8 months) vs. 5.6 months (95% CI, 4.4 to 6.2 months) | ||
Patients with recurrent GBM after chemoradiation | Phase II | n.a. | 7.8 months (95% CI, 5.3 to 13.5 months) | 4.0 months (95% CI, 3.0 to 6.5 months) | ||
Pazopanib [72] | VEGFR1-R3 | Patients with recurrent GBM | Phase II | n.a. | 8.6 months (95% CI, 6 to 11.8 months) | 3.0 months (95% CI, 2.0 to 3.5 months) |
Sorafenib [73,74,75] | VEGFR2-R3 | Patients with newly diagnosed GBM, previously not treated | Phase II | radiotherapy + temozolomide followed by the combination of temozolomide + sorafenib | 12.0 months (95%CI, 7.2 to 16.0 months) | 6.0 months (95% CI, 3.7 to 7.0 months) |
Patients with recurrent GBM | Phase II | temozolomide | 10.4 months (95% CI, 6.0 to 13.8 months), | 1.6 months (95% CI, 1.0 to 2.9 months) | ||
Patients with progressive/recurrent GBM | Phase II | erlotinib | 5.7 months (95% CI, 4.5 to 7.9 months) | 2.5 months (95% CI, 1.8 to 3.7 months) | ||
Sunitinib [76] | VEGFR1-R2 | Patients with recurrent GBM | Phase II/III | sunitinib vs. lomustine | Ongoing | Ongoing |
Lenvatinib [77] | VEGFR1-R3 | Patients with previously treated select solid tumors (including GBM) | Phase II | pembrolizumab | Ongoing | Ongoing |
Apatinib [78] | VEGFR2 | Patients with recurrent GBM | Phase II | temozolomide | 9.0 months (95% CI, 8.2 to 12.2 months) | 6.0 months (95% CI, 5.3 to 7.8 months) |
Regorafenib [79] | VEGFR1-3 | Patients with relapsed GBM | Phase II | regorafenib monotherapy vs. lomustine monotherapy | 7.4 months (95% CI, 5.8 to 12.0 months) vs. 5.6 months (95% CI, 4.7 to 7.3 months) | 2.0 months (95% CI, 1.9 to 3.6 months) vs. 1.9 months (95% CI, 1.8 to 2.1 months) |
Vemurafenib [58] | V600E BRAF V600D BRAF V600R BRAF | Patients with BRAF-V600-mutant glioma in any point of treatment | Phase II | n.a. | 11.9 months (95% CI, 8.3 to 40.1 months) for malignant diffuse glioma | 5.3 months (95% CI, 1.8 to 12.9 months) for malignant diffuse glioma |
Dabrafenib [59,60] | V600E BRAF V600D BRAF V600R BRAF V600K BRAF | Patients with recurrent or progressive BRAF V600E–mutant HGG and LGG | Phase II | trametinib | 17.6 months (95% CI, 9.5 to 45.2 months) for HGG | 3.8 months (95% CI, 1.8 to 9.2 months)) for HGG |
Patients with BRAF-V600-mutant solid tumors (including GBM), lymphomas, or multiple myeloma | Phase II | trametinib | 28.6 months for all types of cancers | 11.4 months (90% CI, 8.4 to 16.3 months) for all types of cancers | ||
Trametinib [59,60] | MEK1/2 | JAK WYŻEJ | ||||
Cobimetinib [61] | MEK1 | Pediatric and young adult patients with relapsed or refractory solid tumors (including HGG) | Phase I/II | n.a. | not reached | 14.8 months (95% CI, 3.6 to 14.8) for all types of cancers |
Paxalisib [62] | PI3K/mTOR | Patients with newly diagnosed GBM with unmethylated MGMT promoter status following surgical resection and initial chemoradiation with temozolomide | Phase II | n.a. | 15.7 months | 8.4 months |
Everolimus [63,64,65] | mTOR | Patients with newly diagnosed GBM | Phase II | everolimus + radiotherapy + temozolomide vs. radiotherapy + temozolomide | 16.5 months (95% CI, 12.5 to 18.7 months) vs. 21.2 months (95% CI, 16.6 to 29.9 months) | 8.2 months (95% CI, 6.5 to 10.6 months) vs. 10.2 months (95% CI, 7.5 to 13.8 months) |
everolimus + radiotherapy + temozolomide | 15.8 months (95% CI, 13.0 to 20.3 months) | 6.4 months (95% CI, 5.4 to 9.0 months) | ||||
Patients with newly diagnosed GBM, previously not treated | Phase II | radiotherapy + temozolomide + bevacizumab followed by the combination of bevacizumab + everolimus | 13.9 months (95% CI, 12.4 to NA months) | 11.3 months (95% CI, 9.3 to 13.1 months) | ||
Nintedanib [66] | VEGFR1-R3 and FGFR1–3 | First or second recurrence of GBM in patients previously treated with bevacizumab vs. not treated with bevacizumab | Phase II | n.a. | 2.6 months (95% CI, 1.0 to 6.9 moths) vs. 6.9 months (95% CI, 3.7 to 8.1 months) | 0.9 months (95% CI, 0.7 to 0.9 months) vs. 0.9 months (95% CI, 0.9 to 2.8 months) |
Pemigatinib [67] | FGFR1–3 | Patients with recurrent GBM or other primary CNS tumors with an activating FGFR1-3 mutation or fusion/rearrangement | Phase II | n.a. | Ongoing | Ongoing |
Aflibercept [68] | VEGF-A/B | Patients with recurrent malignant or anaplastic gliomas that did not respond to temozolomide | Phase II | n.a. | 9.8 months | 3.0 months (95% CI, 2.0 to 4.0 months) |
Bevacizumab [69,70,71] | VEGF-A | Patients with GBM with progression after chemoradiation | Phase III | bevacizumab + lomustine vs. lomustine monotherapy | 9.1 months (95% CI, 8.1 to 10.1 months) vs. 8.6 months (95% CI, 7.6 to 10.4 months) | 4.2 months (95% CI, 3.7 to 4.3 months) vs. 1.5 months (95% CI, 1.5 to 2.5 months) |
Patients with first or second relapse and GBM progression | Phase II | bevacizumab monotherapy vs. bevacizumab + irinotecan | 9.2 months (95% CI, 8.2 to 10.7 months) vs. 8.7 months (95% CI, 7.8 to 10.9 months) | 4.2 months (95% CI, 2.9 to 5.8 months) vs. 5.6 months (95% CI, 4.4 to 6.2 months) | ||
Patients with recurrent GBM after chemoradiation | Phase II | n.a. | 7.8 months (95% CI, 5.3 to 13.5 months) | 4.0 months (95% CI, 3.0 to 6.5 months) | ||
Pazopanib [72] | VEGFR1-R3 | Patients with recurrent GBM | Phase II | n.a. | 8.6 months (95% CI, 6 to 11.8 months) | 3.0 months (95% CI, 2.0 to 3.5 months) |
Sorafenib [73,74,75] | VEGFR2-R3 | Patients with newly diagnosed GBM, previously not treated | Phase II | radiotherapy + temozolomide followed by the combination of temozolomide + sorafenib | 12.0 months (95%CI, 7.2 to 16.0 months) | 6.0 months (95% CI, 3.7 to 7.0 months) |
Patients with recurrent GBM | Phase II | temozolomide | 10.4 months (95% CI, 6.0 to 13.8 months), | 1.6 months (95% CI, 1.0 to 2.9 months) | ||
Patients with progressive/recurrent GBM | Phase II | erlotinib | 5.7 months (95% CI, 4.5 to 7.9 months) | 2.5 months (95% CI, 1.8 to 3.7 months) | ||
Sunitinib [76] | VEGFR1-R2 | Patients with recurrent GBM | Phase II/III | sunitinib vs. lomustine | Ongoing | Ongoing |
Lenvatinib [77] | VEGFR1-R3 | Patients with previously treated select solid tumors (including GBM) | Phase II | pembrolizumab | Ongoing | Ongoing |
Apatinib [78] | VEGFR2 | Patients with recurrent GBM | Phase II | temozolomide | 9.0 months (95% CI, 8.2 to 12.2 months) | 6.0 months (95% CI, 5.3 to 7.8 months) |
Regorafenib [79] | VEGFR1-3 | Patients with relapsed GBM | Phase II | regorafenib monotherapy vs. lomustine monotherapy | 7.4 months (95% CI, 5.8 to 12.0 months) vs. 5.6 months (95% CI, 4.7 to 7.3 months) | 2.0 months (95% CI, 1.9 to 3.6 months) vs. 1.9 months (95% CI, 1.8 to 2.1 months) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szklener, K.; Mazurek, M.; Wieteska, M.; Wacławska, M.; Bilski, M.; Mańdziuk, S. New Directions in the Therapy of Glioblastoma. Cancers 2022, 14, 5377. https://doi.org/10.3390/cancers14215377
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers. 2022; 14(21):5377. https://doi.org/10.3390/cancers14215377
Chicago/Turabian StyleSzklener, Katarzyna, Marek Mazurek, Małgorzata Wieteska, Monika Wacławska, Mateusz Bilski, and Sławomir Mańdziuk. 2022. "New Directions in the Therapy of Glioblastoma" Cancers 14, no. 21: 5377. https://doi.org/10.3390/cancers14215377
APA StyleSzklener, K., Mazurek, M., Wieteska, M., Wacławska, M., Bilski, M., & Mańdziuk, S. (2022). New Directions in the Therapy of Glioblastoma. Cancers, 14(21), 5377. https://doi.org/10.3390/cancers14215377