The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Literature Review
3. Meat Consumption and Carcinogenesis: Exploring the Pathophysiology
3.1. The Role of Cooking and Meat Processing in Carcinogenesis
3.2. Red or Processed Meat and Bladder Cancer
3.3. White Meat and Bladder Cancer
4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Crocetto, F.; Barone, B.; Ferro, M.; Busetto, G.M.; La Civita, E.; Buonerba, C.; Di Lorenzo, G.; Terracciano, D.; Schalken, J.A. Liquid biopsy in bladder cancer: State of the art and future perspectives. Crit. Rev. Oncol. 2022, 170, 103577. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.-A.; Naghavi, M. Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease study 2019. BMJ Glob. Health 2021, 6, e004128. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Chiujdea, S.; Musi, G.; Lucarelli, G.; Del Giudice, F.; Hurle, R.; Damiano, R.; Cantiello, F.; Mari, A.; Minervini, A.; et al. Impact of Age on Outcomes of Patients with Pure Carcinoma In Situ of the Bladder: Multi-Institutional Cohort Analysis. Clin. Genitourin. Cancer 2022, 20, e166–e172. [Google Scholar] [CrossRef]
- Oeyen, E.; Hoekx, L.; De Wachter, S.; Baldewijns, M.; Ameye, F.; Mertens, I. BC Diagnosis and Follow-Up: The Current Status and Possible Role of Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 821. [Google Scholar] [CrossRef]
- di Meo, N.A.; Loizzo, D.; Pandolfo, S.D.; Autorino, R.; Ferro, M.; Porta, C.; Stella, A.; Bizzoca, C.; Vincenti, L.; Crocetto, F.; et al. Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer. Int. J. Mol. Sci. 2022, 23, 4173. [Google Scholar] [CrossRef]
- Burger, M.; Catto, J.W.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and risk factors of urothelial BC. Eur. Urol. 2013, 63, 234. [Google Scholar] [CrossRef]
- Amin, H.A.A.; Kobaisi, M.H.; Samir, R.M. Schistosomiasis and BC in Egypt: Truths and Myths. Open Access Maced. J. Med. Sci. 2019, 7, 4023–4029. [Google Scholar] [CrossRef]
- Lin, J.; Forman, M.R.; Wang, J.; Grossman, H.B.; Chen, M.; Dinney, C.P.; Hawk, E.T.; Wu, X. Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk. Int. J. Cancer 2012, 131, 1892–1903. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Aster, J. Robbins Basic Pathology, 10th ed.; Health Sciences Division; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Malats, N.; Real, F.X. Epidemiology of Bladder Cancer. Hematol. Oncol. Clin. N. Am. 2015, 29, 177–189.vii. [Google Scholar] [CrossRef]
- Dianatinasab, M.; Wesselius, A.; Salehi-Abargouei, A.; Yu, E.Y.W.; Brinkman, M.; Fararouei, M.; Brandt, P.V.D.; White, E.; Weiderpass, E.; Le Calvez-Kelm, F.; et al. Adherence to a Western dietary pattern and risk of bladder cancer: A pooled analysis of 13 cohort studies of the Bladder Cancer Epidemiology and Nutritional Determinants international study. Int. J. Cancer 2020, 147, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Crocetto, F.; Pandolfo, S.D.; Aveta, A.; Martino, R.; Trama, F.; Caputo, V.F.; Barone, B.; Abate, M.; Sicignano, E.; Cilio, S.; et al. A Comparative Study of the Triglycerides/HDL Ratio and Pseudocholinesterase Levels in Patients with BC. Diagnostics 2022, 12, 431. [Google Scholar] [CrossRef]
- Crocetto, F.; Di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 3750. [Google Scholar] [CrossRef] [PubMed]
- Lippi, L.; Del Rio, D. Nutritional habits and BC. Transl. Androl. Urol. 2018, 7 (Suppl. S1), S90–S92. [Google Scholar] [CrossRef] [PubMed]
- Dianatinasab, M.; Forozani, E.; Akbari, A.; Azmi, N.; Bastam, D.; Fararouei, M.; Wesselius, A.; Zeegres, M.P. Dietary patterns and risk of bladder cancer: A systematic review and meta-analysis. BMC Public Health 2022, 22, 73. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.; Rhubart-Berg, P.; McKenzie, S.; Kelling, K.; Lawrence, R.S. Public health implications of meat production and consumption. Public Health Nutr. 2005, 8, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Boada, L.D.; Henríquez-Hernández, L.; Luzardo, O. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef]
- Henchion, M.; Moloney, A.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15 (Suppl. S1), 100287. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Li, F.; An, S.; Hou, L.; Chen, P.; Lei, C.; Tan, W. Red and processed meat intake and risk of BC: A meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 2100–2110. [Google Scholar]
- Balbi, J.C.; Larrinag, M.T.; De Stefani, E.; Mendilaharsu, M.; Ronco, A.L.; Boffetta, P.; Brennan, P. Foods and risk of bladder cancer: A case control study in Uruguay. Eur. J. Cancer Prev. 2001, 10, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Catsburg, C.E.; Gago-Dominguez, M.; Yuan, J.-M.; Castelao, J.E.; Cortessis, V.K.; Pike, M.C.; Stern, M.C. Dietary sources of N-nitroso compounds and BC risk: Findings from the Los Angeles BC study. Int. J. Cancer 2013, 134, 125–135. [Google Scholar] [CrossRef]
- Michaud, D.S.; Holick, C.N.; Giovannucci, E.; Stampfer, M.J. Meat intake and BC risk in 2 prospective cohort studies. Am. J. Clin. Nutr. 2006, 84, 1177–1183. [Google Scholar] [CrossRef]
- Isa, F.; Xie, L.-P.; Hu, Z.; Zhong, Z.; Hemelt, M.; Reulen, R.C.; Zeegers, M.P. Dietary consumption and diet diversity and risk of developing bladder cancer: Results from the South and East China case–control study. Cancer Causes Control 2013, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Crippa, A.; Larsson, S.C.; Discacciati, A.; Wolk, A.; Orsini, N. Red and processed meat consumption and risk of BC: A dose–response meta-analysis of epidemiological studies. Eur. J. Nutr. 2018, 57, 689–701. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, E.; Boffetta, P.; Ronco, A.L.; Deneo-Pellegrini, H.; Acosta, G.; Mendilaharsu, M. Dietary patterns and risk of bladder cancer: A factor analysis in Uruguay. Cancer Causes Control 2008, 19, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Rosato, V.; Negri, E.; Serraino, D.; Montella, M.; Libra, M.; Lagiou, P.; Facchini, G.; Ferraroni, M.; Decarli, A.; La Vecchia, C. Processed Meat and Risk of Renal Cell and BC. Nutr. Cancer 2018, 70, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Di Maso, M.; Turati, F.; Bosetti, C.; Montella, M.; Libra, M.; Negri, E.; Ferraroni, M.; La Vecchia, C.; Serraino, D.; Polesel, J. Food consumption, meat cooking methods and diet diversity and the risk of bladder cancer. Cancer Epidemiol. 2019, 63, 101595. [Google Scholar] [CrossRef]
- Larsson, S.C.; Johansson, J.-E.; Andersson, S.-O.; Wolk, A. Meat intake and BC risk in a Swedish prospective cohort. Cancer Causes Control 2008, 20, 35–40. [Google Scholar] [CrossRef]
- Jakszyn, P.; González, C.A.; Luján-Barroso, L.; Ros, M.M.; Bueno-De-Mesquita, H.B.; Roswall, N.; Tjønneland, A.M.; Büchner, F.L.; Egevad, L.; Overvad, K.; et al. Red Meat, Dietary Nitrosamines, and Heme Iron and Risk of Bladder Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Epidemiol. Biomark. Prev. 2011, 20, 555–559. [Google Scholar] [CrossRef]
- Steinmaus, C.M.; Ez, S.N.; Smith, A.H.; Nuñez, S. Diet and BC: A meta-analysis of six dietary variables. Am. J. Epidemiol. 2000, 151, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Jiang, H. Meat intake and risk of BC: A meta-analysis. Med. Oncol. 2011, 29, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.M.; Sinha, R.; Ward, M.H.; Graubard, B.I.; Hollenbeck, A.R.; Kilfoy, B.A.; Schatzkin, A.; ScD, D.S.M.; Cross, A.J. Meat and components of meat and the risk of bladder cancer in the NIH-AARP Diet and Health Study. Cancer 2010, 116, 4345–4353. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.W.; Cross, A.J.; Baris, D.; Ward, M.H.; Karagas, M.R.; Johnson, A.; Schwenn, M.; Cherala, S.; Colt, J.S.; Cantor, K.P.; et al. Dietary intake of meat, fruits, vegetables, and selective micronutrients and risk of bladder cancer in the New England region of the United States. Br. J. Cancer 2012, 106, 1891–1898. [Google Scholar] [CrossRef]
- Augustsson, K.; Skog, K.; Jägerstad, M.; Dickman, P.W.; Steineck, G. Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: A population-based study. Lancet 1999, 353, 703–707. [Google Scholar] [CrossRef]
- Dianatinasab, M.; Wesselius, A.; de Loeij, T.; Salehi-Abargouei, A.; Yu, E.Y.W.; Fararouei, M.; Brinkman, M.; Brandt, P.V.D.; White, E.; Weiderpass, E.; et al. The association between meat and fish consumption and bladder cancer risk: A pooled analysis of 11 cohort studies. Eur. J. Epidemiol. 2021, 36, 781–792. [Google Scholar] [CrossRef]
- Xu, X. Processed Meat Intake and Bladder Cancer Risk in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cohort. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1993–1997. [Google Scholar] [CrossRef]
- Daniel, C.R.; Cross, A.J.; Graubard, B.I.; Hollenbeck, A.R.; Park, Y.; Sinha, R. Prospective Investigation of Poultry and Fish Intake in Relation to Cancer Risk. Cancer Prev. Res. 2011, 4, 1903–1911. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Turner, N.D.; Lloyd, S.K. Association between red meat consumption and colon cancer: A systematic review of experimental results. Exp. Biol. Med. 2017, 242, 813–839. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Molina, L.T.; Ojha, C.S.P. Polycyclic Aromatic Hydrocarbons Sources, Distribution, and Health Implications. Air Pollut. Health Environ. Impacts 2010, 229–248. [Google Scholar]
- Baird, W.M.; Hooven, L.A.; Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 2005, 45, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Pulliero, A. The effects of environmental chemical carcinogens on the microRNA machinery. Int. J. Hyg. Environ. Health 2014, 217, 601–627. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Raza, A.; Anjum, F.M.; Khan, M.R.; Suleria, H.A.R. Effect of Thermal Treatment on Meat Proteins with Special Reference to Heterocyclic Aromatic Amines (HAAs). Crit. Rev. Food Sci. Nutr. 2014, 55, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Malejka-Giganti, D.; Bartoszek, A.; Baer-Dubowska, W. Impact of Food Preservation, Processing, and Cooking on Cancer Risk. In Carcinogenic and Anticarcinogenic Food Components; CRC Press: Boca Raton, FL, USA, 2005; Chapter 5. [Google Scholar]
- Turesky, R.J. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicol. Lett. 2007, 168, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Doaei, S.; Hajiesmaeil, M.; Aminifard, A.; Mosavi-Jarrahi, S.A.; Akbari, M.E.; Gholamalizadeh, M. Effects of gene polymorphisms of metabolic enzymes on the association between red and processed meat consumption and the development of colon cancer; a literature review. J. Nutr. Sci. 2018, 7, e26. [Google Scholar] [CrossRef]
- Lijinsky, W. N-Nitroso compounds in the diet. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 129–138. [Google Scholar] [CrossRef]
- Bingham, S.A.; Pignatelli, B.; Pollock, J.R.A.; Ellul, A.; Malaveille, C.; Gross, G.; Runswick, S.; Cummings, J.H.; O’Neill, I.K. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 1996, 17, 515–523. [Google Scholar] [CrossRef]
- Bastide, N.M.; Chenni, F.; Audebert, M.; Santarelli, R.L.; Taché, S.; Naud, N.; Baradat, M.; Jouanin, I.; Surya, R.; Hobbs, D.A.; et al. A Central Role for Heme Iron in Colon Carcinogenesis Associated with Red Meat Intake. Cancer Res. 2015, 75, 870–879. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 2019, 17, 275–289. [Google Scholar] [CrossRef]
- Song, M.; Garrett, W.S.; Chan, A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015, 148, 1244–1260.e16. [Google Scholar] [CrossRef] [PubMed]
- Perelló, G.; Martí-Cid, R.; Llobet, J.M.; Domingo, J.L. Effects of Various Cooking Processes on the Concentrations of Arsenic, Cadmium, Mercury, and Lead in Foods. J. Agric. Food Chem. 2008, 56, 11262–11269. [Google Scholar] [CrossRef] [PubMed]
- Boldo, E.; Castelló, A.; Aragonésa, N.; Amiano, P.; Pérez-Gómez, B.; Castaño-Vinyals, G.; Martín, V.; Guevara, M.; Urtiaga, C.; Dierssen-Sotos, T.; et al. Meat intake, methods and degrees of cooking and breast cancer risk in the MCC-Spain study. Maturitas 2018, 110, 62–70. [Google Scholar] [CrossRef]
- Rohrmann, S.; Linseisen, J.; Becker, N.; Norat, T.; Sinha, R.; Skeie, G.; Lund, E.; Martínez, C.; Barricarte, A.; Mattisson, I.; et al. Cooking of meat and fish in Europe—Results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Clin. Nutr. 2002, 56, 1216–1230. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R. Meat and cancer. Meat Sci. 2010, 84, 308–313. [Google Scholar] [CrossRef]
- Felton, J.S.; Knize, M.G.; Roper, M.; Fultz, E.; Shen, N.H.; Turteltaub, K.W. Chemical analysis, prevention, and low-level dosimetry of heterocyclic amines from cooked food. Cancer Res. 1992, 52 (Suppl. S7), 2103s–2107s. [Google Scholar]
- Heinz, G.; Hautzinger, P. Meat Processing Technology for Small-to Medium-Scale Producers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; Available online: http://www.fao.org/documents/card/fr/c/fb92d00f-7ff3-593a-a77c-7b19003b2554/ (accessed on 11 June 2022).
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2015, 57, 2909–2923. [Google Scholar] [CrossRef]
- Sikorski, Z.E.; Kołakowski, E. Smoking. In Handbook of Meat Processing; Toldra, F., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 231–245. [Google Scholar] [CrossRef]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64 (Suppl. S4), S113–S119. [Google Scholar] [CrossRef]
- Wilkens, L.R.; Kadir, M.M.; Kolonel, L.N.; Nomura, A.M.; Hankin, J.H. Risk factors for lower urinary tract cancer: The role of total fluid consumption, nitrites and nitrosamines, and selected foods. Cancer Epidemiol. Biomark. Prev. 1996, 5, 161–166. [Google Scholar]
- García-Closas, R.; García-Closas, M.; Kogevinas, M.; Malats, N.; Silverman, D.; Serra, C.; Tardón, A.; Carrato, A.; Castaño-Vinyals, G.; Dosemeci, M.; et al. Food, nutrient and heterocyclic amine intake and the risk of BC. Eur. J. Cancer 2007, 43, 1731–1740. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C.; Cervellin, G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. 2015, 97, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tappel, A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med. Hypotheses 2007, 68, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Kim, K.; Lee, S.-A.; Kwon, S.O.; Lee, J.-K.; Keum, N.; Park, S.M. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and Dose–Response Meta-Analysis. Nutrients 2019, 11, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riboli, E.; González, C.A.; López-Abente, G.; Errezola, M.; Izarzugaza, I.; Escolar, A.; Nebot, M.; Hémon, B.; Agudo, A. Diet and bladder cancer in Spain: A multi-centre case-control study. Int. J. Cancer 1991, 49, 214–219. [Google Scholar] [CrossRef]
- Wakai, K.; Takashi, M.; Okamura, K.; Yuba, H.; Suzuki, K.-I.; Murase, T.; Obata, K.; Itoh, H.; Kato, T.; Kobayashi, M.; et al. Foods and Nutrients in Relation to Bladder Cancer Risk: A Case-Control Study in Aichi Prefecture, Central Japan. Nutr. Cancer 2000, 38, 13–22. [Google Scholar] [CrossRef]
- Chiu, C.P.; Yang, D.Y.; Chen, B.H. Formation of Heterocyclic Amines in Cooked Chicken Legs. J. Food Prot. 1998, 61, 712–719. [Google Scholar] [CrossRef]
- World Cancer Research Fund International. Nutrition, Physical Activity & Cancer Prevention: Current Challenges, New Horizons; Royal College of Physicians: London, UK, 2010; Available online: https://www.msig.at/publication/ULMER/borena_WCRF2010_01.pdf (accessed on 1 June 2022).
- Shin, H.-S.; Strasburg, G.; Gray, J.I. A Model System Study of the Inhibition of Heterocyclic Aromatic Amine Formation by Organosulfur Compounds. J. Agric. Food Chem. 2002, 50, 7684–7690. [Google Scholar] [CrossRef]
- Ferro, M.; Babă, D.F.; de Cobelli, O.; Musi, G.; Lucarelli, G.; Terracciano, D.; Porreca, A.; Busetto, G.M.; Del Giudice, F.; Soria, F. Neutrophil percentage-to-albumin ratio predicts mortality in bladder cancer patients treated with neoadjuvant chemotherapy followed by radical cystectomy. Future Sci OA. 2021, 7, FSO709. [Google Scholar] [CrossRef]
Type of Study | Number of Patients Enrolled | Exposure Variable (Definition) | OR | RR | HR | 95% CI | Years of Follow-Up (Median) | Adjustments | Remarks | References |
---|---|---|---|---|---|---|---|---|---|---|
MA | 1,520,308 | Total red meat | - | 1.15 | - | 0.97–1.36 | - | Age, sex, smoking, geographic region, total energy, BMI, study design | increased by 25% the risk of BC for red meat in the population of USA | [21] |
CC | 744 | Salted meat | 18.3 | - | - | 4.6–71.9 | 1 | Age, sex, smoking, BMI, total calories, education, urban/rural status and ‘mate’ drinking | the risk was especially elevated among long-term smokers | [22] |
CC | 1660 | Salami/pastrami/corned beef or liver | 1.76 | - | - | 1.09–2.85 | 9 | Age, gender, race/ethnicity | associated with risk of BC, particularly among nonsmokers | [23] |
CO H | 135,893 | Beef, pork or lamb | - | 1.59 | - | 1.06–2.37 | 22 | Age, smoking, caloric intake, geographic region and total fluid intake | elevated risk among men and women who consumed 5 servings of bacon/wk | [24] |
CC | 956 | Red meat | 1.8 | - | - | 1.1–3.0 | 3 | sex, age, smoking status, smoking duration, smoking amount | consumption of red meat at least 5 times a week induced a 2-fold increase OR than the consumption of meat less than once a week | [25] |
MA | processed meat (salting, fermentation | - | - | - | Age, gender, smoking | [26] | ||||
1,066,027 | Smoking or other processes | 1.20 | 1.06–1.37 | A 20% increase in the risk of BC is associated with an increase of 50 g of processed meat per day | ||||||
CC | 13,050 | Salted meat | 2.23 | - | 1.63–3.04 | 7 | Age, sex, residence, education, family history of BC, high-risk occupation, body mass index, years smoked, and total energy intake | intake of salted meat is associated with a greater risk of BC | [27] | |
CC | 3149 | processed meat | 1.23 | - | - | 1.03–1.47 | 7 | sex, age, education, smoking, alcohol drinking, BMI, vegetable and fruit consumption, and total energy intake | a moderate risk of hormone-dependent tumors in women with an elevated processed meat intake | [28] |
CC | 1355 | processed meat (stewed and roasted) | 1.57 (read meat) 1.47 (stewed) 1.41 (roasted) | - | - | 1.07–2.31 1.03–2.09 1.00–1.99 | 11 | sex and smoking | consumption of meat increased the risk of BC, especially when it is roasted or stewed | [29] |
CO H | 82,002 | Red meat (beef, pork, meatballs, hamburger, veal and kidney or liver) | - | - | 1.05 (Total meat) 1.0 (Red meat) 1.01 (Processed meat) | 0.71–1.55 0.71–1.41 0.80–1.28 | 9 | Age, sex, smoking, education and total energy intake | no association between the intake of total or any specific type of meat | [30] |
CO H | 481,419 | Meat intake | - | - | 1.06 | 0.99–1.13 | Total energy intake, smoking, education and BMI | no overall association between intake of red meat and BC | [31] | |
MA | 7022 | Meat intake | - | 1.08 | - | 0.82–1.42 | - | Smoking | a diet with a high content in fruits and vegetables may prevent bladder cancer | [32] |
MA | - | Meat intake | - | 1.04 | - | 0.80–1.27 | - | Age, sex and smoking | A low increase in the risk of BC with high processed meat consumption | [33] |
CO H | 1,922,817 | Meat intake | - | - | 1.22 | 0.96–1.54 | 9 | Age, sex, smoking, vegetables beverages fruit and total energy | possible increased risk of BC with PhIP (2-amino-1-methyl-6-phenylimidazo [4, 5-b]pyridine) exposure | [34] |
CC | 2589 | Meat and processed meat intake | 1.28 (Meat) 1.41 (Processed meat) | - | - | 1.00–1.65 1.08–1.84 | 3 | Gender, age, education, race, smoking, BMI, and total energy | meat cooking methods are not associated with BC risk | [35] |
CC | 273 | Meat intake | - | 1.20 | - | 0.7–2.1 | - | Age, sex, smoking, energy | an increased cancer risk when the intake of heterocyclic amines is high (above 1900 ng daily) | [36] |
COH | 518,545 | Meat intake | - | - | 1.18 | 1.03–1.36 | - | age, sex, smoking, total energy intake, and vegetables and fruits consumption | meat consumption may be associated with BC development | [37] |
COH | 101,721 | Processed meat | - | 1.47 | - | 1.12–1.93 | 12.5 | age, sex, race, BMI, smoking, alcohol drinking, total energy intake, and family history of any cancer type | a higher risk of BC is associated with intake of processed red meat | [38] |
Type of Study | Number of Patients Enrolled | Exposure Variable (Definition) | OR | RR | HR | 95% CI | Years of Follow-Up (Median) | Adjustments | Remarks | References |
---|---|---|---|---|---|---|---|---|---|---|
COH | 2296 | White meat (poultry and fish) | - | - | 0.83 (Poultry) 1.13 (Fish) | 0.73–0.96 0.99–1.29 | 9.1 | Age, sex, education, BMI, race, smoking, total energy, alcohol drinking | a decrease in BC risk associated with 10 g/per 1000 kcal in white meat consumption | [39] |
COH | 518,545 | Meat intake | - | 0.77 | - | 0.48–1.06 | - | age, sex, smoking, total energy intake, and vegetables and fruits consumption | No association between poultry and BC | [37] |
COH | 135,839 | Chicken (without skink) | - | 1.52 | - | 1.09–2.11 | 22 | Age, smoking, caloric, geographic region and total fluid intake | a positive association was detected for intake of chicken without skin, but not for chicken with skin | [24] |
Cooking Method | Definition | Temperature | Effect |
---|---|---|---|
Stewed | cooked by boiling or simmering in the liquid contained in an enclosed vessel | Around 100 °C | Generate much lower levels of HCAs or PAHs |
Boiled | cooked in boiling liquid | ||
Steamed | cooked by steam, in pressure cooker or cooked suspended above boiling water | ||
Barbecued | cooked on grill bars over burning charcoal, wood or gas | 200 °C or more | The exposition to a hot surface or to direct flame causes amino acids and creatine to react to form a variety of HCAs |
Grilled | cooked rapidly without moisture, on grill bars under or over intense direct heat | ||
Fried | cooked in heated fat, usually over a direct source of heat |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aveta, A.; Cacciapuoti, C.; Barone, B.; Di Zazzo, E.; Del Giudice, F.; Maggi, M.; Ferro, M.; Terracciano, D.; Busetto, G.M.; Lucarelli, G.; et al. The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk? Cancers 2022, 14, 4775. https://doi.org/10.3390/cancers14194775
Aveta A, Cacciapuoti C, Barone B, Di Zazzo E, Del Giudice F, Maggi M, Ferro M, Terracciano D, Busetto GM, Lucarelli G, et al. The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk? Cancers. 2022; 14(19):4775. https://doi.org/10.3390/cancers14194775
Chicago/Turabian StyleAveta, Achille, Crescenzo Cacciapuoti, Biagio Barone, Erika Di Zazzo, Francesco Del Giudice, Martina Maggi, Matteo Ferro, Daniela Terracciano, Gian Maria Busetto, Giuseppe Lucarelli, and et al. 2022. "The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk?" Cancers 14, no. 19: 4775. https://doi.org/10.3390/cancers14194775
APA StyleAveta, A., Cacciapuoti, C., Barone, B., Di Zazzo, E., Del Giudice, F., Maggi, M., Ferro, M., Terracciano, D., Busetto, G. M., Lucarelli, G., Tataru, O. S., Montanari, E., Mirto, B. F., Falcone, A., Giampaglia, G., Sicignano, E., Capone, F., Villano, G., Angellotto, P., ... Crocetto, F. (2022). The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk? Cancers, 14(19), 4775. https://doi.org/10.3390/cancers14194775