Ion Channels in Endometrial Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Endometrial Cancer
1.2. Ion Channels
1.2.1. Potassium Channels
1.2.2. Sodium Channels
1.2.3. Chloride Channels
1.2.4. Calcium Channels
1.2.5. Porins
2. ICs’ Expression in Endometrial Cancer
2.1. Potassium Channels
Ion Channel or Transporter | Cellular Process(es) or Pathway(s) | Methods of Analysis | Type of Alteration | Reference |
---|---|---|---|---|
Potassium Channels | ||||
Kv11.1 alpha subunit (hERG) | Differentiation and growth | Endometrial samples: RT-PCR and IHC | ▲frequency of hERG gene and protein expression in EC compared to NE | [50] |
Kv11.1 alpha subunit (hERG) | Differentiation and growth | In vitro: RT-PCR and specific K+ channel blockers | (+) expression of hERG channel, and their potential auxiliary KCNE subunits are involved in cell proliferation ▼hERG did not reduce cell proliferation | [51] |
IKCa1 | Tumor progression | Endometrial samples: RT-PCR and WB In vitro: Downregulation and activity inhibition of IKCa1 In vivo: Mouse model of EC | ▲gene and protein expression of IKCa1 in EC specimens compared to NE ▼IKCa1 suppressed cell proliferation and restrained cancer growth | [54] |
KCa3.1 | Cell proliferation, migration, and invasion | In vitro: Downregulation and activity inhibition of KCa3.1 | ▼KCa3.1 channel inhibits cell proliferation, cell cycle progression, migration, and cellular invasion | [55] |
BKCa | Cancer initiation and development | Endometrial samples: IHC In vitro: Downregulation of BKCa | ▲ BKCa expression in EC tissues compared to NE ▼ BKCa inhibited cell proliferation and migration | [56] |
BKCa | Cell proliferation and migration | In vitro: Overexpression and downregulation of BKCa In vivo: Mouse xenograft model | ▲ BKCa stimulated proliferation and migration ▼ BKCa inhibited cell proliferation and migration and impaired tumor growth in vivo | [57] |
K2P | Cell proliferation | Endometrial samples: RT-PCR and IHC In vitro: K2P activity inhibition | ▲ TREK-1 expression in proliferative phase of endometrium ▼ Cell proliferation by K2P channel blockers | [58] |
Calcium channels | ||||
Cav1.3 | Cell proliferation and migration | Endometrial samples: IHC In vitro: Downregulation of Cav1.2 channel and E2 treatment | ▲ expression of Cav1.3 in EC and AEH specimens compared to NE ▼ Cav1.3 inhibited cell proliferation and migration | [59] |
Cav1.3 | Cell proliferation, apoptosis, and autophagy | In vitro: Cav1.3-antagonist | ▼ Cav1.3 suppressed cell proliferation and migration ▼ Cav1.3 increased apoptosis and autophagy | [60] |
CACNA2D3 | Cell proliferation and migration | Endometrial samples: RT-PCR and IHC In vitro: Overexpression of CACNA2D3 and P4 treatment In vivo: Mouse xenograft model | ▼ expression of CACNA2D3 in EC tissues and cells ▲ CACNA2D3 inhibited cell proliferation and migration ▲ CACNA2D3 suppressed tumor growth in vivo | [61] |
TRPM4 | Cell proliferation and migration | In silico: Bioinformatics analysis In vitro: Downregulation of TRPM4 channel and E2 treatment | ▼ TRPM4 expression levels correlated with poor clinical outcomes and EC cell proliferation ▼ TRPM4 promoted proliferation and migration | [62] |
TRP | Mobility and invasiveness | Endometrial samples: RT-PCR In vitro: Primary endometrial stromal and epithelial cell culture | ▲TRPV2 and TRPC1 expression in EC is associated with high-risk cancer and high EMT status ▲TRPM4 mRNA expression was related to lower-risk EC and low EMT status | [63] |
TRPV4 | Cell proliferation and metastasis | In silico: Proteomic and bioinformatics analysis In vitro: Downregulation and overexpression of TRPV4 In vivo: Mouse xenograft model | ▼ TRPV4 decreased Ca+2 influx and metastatic ability ▼ TRPV4 reduced peritoneal nodules in vivo ▲ TRPV4 showed the opposite effects in vitro and in vivo models | [64] |
Chloride channels | ||||
CFTR | Cell proliferation and migration | Endometrial samples: RT-PCR and IHC In vitro: Downregulation of CFTR | ▲ CFTR expression in EC compared to NE ▼ CFTR increases proliferation and migration | [65] |
Sodium channels | ||||
Nav1.7 | Tumor progression | Endometrial samples: RT-PCR In vitro: Primary EC cell culture and inhibition of Nav 1.7 | ▲ Nav1.7 expression in EC tissues ▲ Nav1.7 associated with poor prognosis ▼ Nav1.7 induced apoptosis and reduced the invasiveness ability | [66] |
Porins | ||||
AQP1 | Angiogenesis | Endometrial samples: IHC | (+) AQP1 expression in small vessels and microvessels ▲ AQP1 expression in EC compared to NE ▲ AQP1 correlated with tumor angiogenesis and poor prognosis | [67] |
AQP2 | Cell migration, invasion, and adhesion | Endometrial samples: IHC and WB In vitro: Downregulation of AQP2 | ▲ AQP2 expression in EC compared to NE ▼ AQP2 attenuated migration, invasion, and adhesion, but not proliferation | [68] |
AQP5 | Cell migration | In vitro: Downregulation of AQP5 | ▼AQP5 attenuated cell migration | [69] |
AQP3 | Cancer cell differentiation | Endometrial samples: IHC | AQP3 expression is correlated with EC at an earlier stage and lower histological grade | [70] |
VDAC | Tumor progression | Endometrial samples: RT-PCR and WB | ▲ VCAC1 and VDAC3 expression in EC compared to NE VCAC1 and VDAC3 expression correlates with tumor progression | [71] |
2.2. Calcium Channels
2.3. Chloride and Sodium Channels
2.4. Porins
3. IC Regulation by Steroids Hormones and Growth Factors
4. Ion Channels: Biomarkers or Potential Targets for EC?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Organization Fact Sheets: Cancer 2018. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 17 July 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial Cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef]
- Pecorelli, S. Revised FIGO Staging for Carcinoma of the Vulva, Cervix, and Endometrium. Int. J. Gynaecol. Obstet. 2009, 105, 103–104. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Urick, M.E.; Bell, D.W. Clinical Actionability of Molecular Targets in Endometrial Cancer. Nat. Rev. Cancer 2019, 19, 510–521. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Mutter, G.L. Endometrial Intraepithelial Neoplasia (EIN): Will It Bring Order to Chaos? Gynecol. Oncol. 2000, 76, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.A.; Critchley, H.O.D.; Williams, A.R.W.; Arends, M.J.; Saunders, P.T.K. New Concepts for an Old Problem: The Diagnosis of Endometrial Hyperplasia. Hum. Reprod. Update 2017, 23, 232–254. [Google Scholar] [CrossRef]
- Trimble, C.L.; Method, M.; Leitao, M.; Lu, K.; Ioffe, O.; Hampton, M.; Higgins, R.; Zaino, R.; Mutter, G.L. Management of Endometrial Precancers. Obstet. Gynecol. 2012, 120, 1160–1175. [Google Scholar] [CrossRef] [PubMed]
- Matias-Guiu, X.; Prat, J. Molecular Pathology of Endometrial Carcinoma. Histopathology 2013, 62, 111–123. [Google Scholar] [CrossRef]
- Gierisch, J.M.; Coeytaux, R.R.; Urrutia, R.P.; Havrilesky, L.J.; Moorman, P.G.; Lowery, W.J.; Dinan, M.; McBroom, A.J.; Hasselblad, V.; Sanders, G.D.; et al. Oral Contraceptive Use and Risk of Breast, Cervical, Colorectal, and Endometrial Cancers: A Systematic Review. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 1931–1943. [Google Scholar] [CrossRef]
- Kaaks, R.; Lukanova, A.; Kurzer, M.S. Obesity, Endogenous Hormones, and Endometrial Cancer Risk: A Synthetic Review. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1531–1543. [Google Scholar]
- Wu, Q.-J.; Li, Y.-Y.; Tu, C.; Zhu, J.; Qian, K.-Q.; Feng, T.-B.; Li, C.; Wu, L.; Ma, X.-X. Parity and Endometrial Cancer Risk: A Meta-Analysis of Epidemiological Studies. Sci. Rep. 2015, 5, 14243. [Google Scholar] [CrossRef]
- Lacey, J.V.; Chia, V.M.; Rush, B.B.; Carreon, D.J.; Richesson, D.A.; Ioffe, O.B.; Ronnett, B.M.; Chatterjee, N.; Langholz, B.; Sherman, M.E.; et al. Incidence Rates of Endometrial Hyperplasia, Endometrial Cancer and Hysterectomy from 1980 to 2003 within a Large Prepaid Health Plan. Int. J. Cancer 2012, 131, 1921–1929. [Google Scholar] [CrossRef]
- de Haydu, C.; Black, J.D.; Schwab, C.L.; English, D.P.; Santin, A.D. An Update on the Current Pharmacotherapy for Endometrial Cancer. Expert Opin. Pharmacother. 2016, 17, 489–499. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.; et al. SEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2019. [Google Scholar]
- Fung-Kee-Fung, M.; Dodge, J.; Elit, L.; Lukka, H.; Chambers, A.; Oliver, T. Follow-up after Primary Therapy for Endometrial Cancer: A Systematic Review. Gynecol. Oncol. 2006, 101, 520–529. [Google Scholar] [CrossRef]
- Tangjitgamol, S.; See, H.T.; Kavanagh, J. Adjuvant Chemotherapy for Endometrial Cancer. Int. J. Gynecol. Cancer 2011, 21, 885–895. [Google Scholar] [CrossRef]
- Fleming, G.F. Systemic Chemotherapy for Uterine Carcinoma: Metastatic and Adjuvant. J. Clin. Oncol. 2007, 25, 2983–2990. [Google Scholar] [CrossRef]
- van Weelden, W.J.; Massuger, L.F.A.G.; Pijnenborg, J.M.A.; Romano, A. Anti-Estrogen Treatment in Endometrial Cancer: A Systematic Review. Front. Oncol. 2019, 9, 359. [Google Scholar] [CrossRef]
- Eritja, N.; Yeramian, A.; Chen, B.-J.; Llobet-Navas, D.; Ortega, E.; Colas, E.; Abal, M.; Dolcet, X.; Reventos, J.; Matias-Guiu, X. Endometrial Carcinoma: Specific Targeted Pathways. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; pp. 149–207. [Google Scholar]
- Djamgoz, M.B.A.; Coombes, R.C.; Schwab, A. Ion Transport and Cancer: From Initiation to Metastasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130092. [Google Scholar] [CrossRef]
- Gadsby, D.C. Ion Channels versus Ion Pumps: The Principal Difference, in Principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. Neuroscience, 2nd ed.; Chapter 4—Channels and Transporters; Sinauer Associates Inc.: Sunderland, MA, USA, 2001; p. 681. ISBN 0878937420. [Google Scholar]
- Litan, A.; Langhans, S.A. Cancer as a Channelopathy: Ion Channels and Pumps in Tumor Development and Progression. Front. Cell. Neurosci. 2015, 9, 86. [Google Scholar] [CrossRef]
- Arcangeli, A.; Becchetti, A. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters. Pharmaceuticals 2010, 3, 1202–1224. [Google Scholar] [CrossRef]
- Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion Channels and the Hallmarks of Cancer. Trends Mol. Med. 2010, 16, 107–121. [Google Scholar] [CrossRef]
- Fraser, S.P.; Ozerlat-Gunduz, I.; Brackenbury, W.J.; Fitzgerald, E.M.; Campbell, T.M.; Coombes, R.C.; Djamgoz, M.B.A. Regulation of Voltage-Gated Sodium Channel Expression in Cancer: Hormones, Growth Factors and Auto-Regulation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130105. [Google Scholar] [CrossRef]
- Ramírez, A.; García-Quiroz, J.; Aguilar-Eslava, L.; Sánchez-Pérez, Y.; Camacho, J. Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. In Targets of Cancer Diagnosis and Treatment. Reviews of Physiology, Biochemistry and Pharmacology; Springer: Cham, Switzerland, 2020; Volume 183, pp. 45–101. [Google Scholar]
- Millar, I.D.; Bruce, J.I.; Brown, P.D. Ion Channel Diversity, Channel Expression and Function in the Choroid Plexuses. Cerebrospinal Fluid Res. 2007, 4, 8. [Google Scholar] [CrossRef]
- González, C.; Baez-Nieto, D.; Valencia, I.; Oyarzún, I.; Rojas, P.; Naranjo, D.; Latorre, R. K+ Channels: Function-Structural Overview. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 2087–2149. [Google Scholar]
- Yang, M.; Brackenbury, W.J. Membrane Potential and Cancer Progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef]
- Kellenberger, S.; Schild, L. Epithelial Sodium Channel/Degenerin Family of Ion Channels: A Variety of Functions for a Shared Structure. Physiol. Rev. 2002, 82, 735–767. [Google Scholar] [CrossRef]
- Savio-Galimberti, E.; Gollob, M.H.; Darbar, D. Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies. Front. Pharmacol. 2012, 3, 124. [Google Scholar] [CrossRef]
- Stauber, T.; Jentsch, T.J. Chloride in Vesicular Trafficking and Function. Annu. Rev. Physiol. 2013, 75, 453–477. [Google Scholar] [CrossRef]
- Poroca, D.R.; Pelis, R.M.; Chappe, V.M. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front. Pharmacol. 2017, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Peretti, M.; Angelini, M.; Savalli, N.; Florio, T.; Yuspa, S.H.; Mazzanti, M. Chloride Channels in Cancer: Focus on Chloride Intracellular Channel 1 and 4 (CLIC1 AND CLIC4) Proteins in Tumor Development and as Novel Therapeutic Targets. Biochim. Biophys. Acta-Biomembr. 2015, 1848, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Guan, X.; Yang, Z.; Li, C. Emerging Role of Cystic Fibrosis Transmembrane Conductance Regulator—An Epithelial Chloride Channel in Gastrointestinal Cancers. World J. Gastrointest. Oncol. 2016, 8, 282. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The Versatility and Universality of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-Gated Calcium Channels. Cold Spring Harb. Perspect. Biol. 2011, 3, a003947. [Google Scholar] [CrossRef] [PubMed]
- Tajada, S.; Villalobos, C. Calcium Permeable Channels in Cancer Hallmarks. Front. Pharmacol. 2020, 11, 968. [Google Scholar] [CrossRef]
- Munaron, L. Intracellular Calcium, Endothelial Cells and Angiogenesis. Recent Pat. Anticancer. Drug Discov. 2006, 1, 105–119. [Google Scholar] [CrossRef]
- Shoshan-Barmatz, V.; De Pinto, V.; Zweckstetter, M.; Raviv, Z.; Keinan, N.; Arbel, N. VDAC, a Multi-Functional Mitochondrial Protein Regulating Cell Life and Death. Mol. Asp. Med. 2010, 31, 227–285. [Google Scholar] [CrossRef] [PubMed]
- Chow, P.H.; Bowen, J.; Yool, A.J. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers 2020, 12, 1911. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ricciardelli, C.; Yool, A.J. Targeting Aquaporins in Novel Therapies for Male and Female Breast and Reproductive Cancers. Cells 2021, 10, 215. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Chen, H.; Chan, H.C. Ion Channels in the Endometrium: Regulation of Endometrial Receptivity and Embryo Implantation. Hum. Reprod. Update 2014, 20, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, J.I.; Perry, M.D.; Perrin, M.J.; Mann, S.A.; Ke, Y.; Hill, A.P. HERG K+ Channels: Structure, Function, and Clinical Significance. Physiol. Rev. 2012, 92, 1393–1478. [Google Scholar] [CrossRef]
- He, S.; Moutaoufik, M.T.; Islam, S.; Persad, A.; Wu, A.; Aly, K.A.; Fonge, H.; Babu, M.; Cayabyab, F.S. HERG Channel and Cancer: A Mechanistic Review of Carcinogenic Processes and Therapeutic Potential. Biochim. Biophys. Acta-Rev. Cancer 2020, 1873, 188355. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, A.; Taddei, G.L.; Crociani, O.; Paglierani, M.; Buccoliero, A.M.; Fontana, L.; Noci, I.; Borri, P.; Borrani, E.; Giachi, M.; et al. HERG Potassium Channels Are More Frequently Expressed in Human Endometrial Cancer as Compared to Non-Cancerous Endometrium. Br. J. Cancer 2000, 83, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Takimoto, K. Selective Expression of HERG and Kv2 Channels Influences Proliferation of Uterine Cancer Cells. Int. J. Oncol. 2004, 25, 153–159. [Google Scholar] [CrossRef]
- Wonderlin, W.F.; Strobl, J.S. Potassium Channels, Proliferation and G1 Progression. J. Membr. Biol. 1996, 154, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Guéguinou, M.; Chantôme, A.; Fromont, G.; Bougnoux, P.; Vandier, C.; Potier-Cartereau, M. KCa and Ca2+ Channels: The Complex Thought. Biochim. Biophys. Acta-Mol. Cell Res. 2014, 1843, 2322–2333. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shen, B.; Yao, H.L.; Jia, Y.C.; Ren, J.; Feng, Y.J.; Wang, Y.Z. Blockage of Intermediate-Conductance-Ca2+-Activated K+ Channels Inhibits Progression of Human Endometrial Cancer. Oncogene 2007, 26, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Chen, L.; Zhu, J. Effects of Intermediate-Conductance Ca2+-Activated K+ Channels on Human Endometrial Carcinoma Cells. Cell Biochem. Biophys. 2015, 72, 515–525. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Q.; Huang, G.; Guo, X.; Li, N.; Li, Y.; Li, B. BKCa Participates in E2 Inducing Endometrial Adenocarcinoma by Activating MEK/ERK Pathway. BMC Cancer 2018, 18, 1128. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, L.; Li, G.; Xia, M.; Du, C.; Zheng, Z. The Role of BKCa in Endometrial Cancer HEC-1-B Cell Proliferation and Migration. Gene 2018, 655, 42–47. [Google Scholar] [CrossRef]
- Patel, S.K.; Jackson, L.; Warren, A.Y.; Arya, P.; Shaw, R.W.; Khan, R.N. A Role for Two-Pore Potassium (K2P) Channels in Endometrial Epithelial Function. J. Cell. Mol. Med. 2013, 17, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Bao, X.; Jin, B.; Wang, X.; Mao, Z.; Li, X.; Wei, L.; Shen, D.; Wang, J.L. Ca2+ Channel Subunit a 1D Promotes Proliferation and Migration of Endometrial Cancer Cells Mediated by 17β-Estradiol via the G Protein-Coupled Estrogen Receptor. FASEB J. 2015, 29, 2883–2893. [Google Scholar] [CrossRef]
- Bao, X.X.; Xie, B.S.; Li, Q.; Li, X.P.; Wei, L.H.; Wang, J.L. Nifedipine Induced Autophagy through Beclin1 and MTOR Pathway in Endometrial Carcinoma Cells. Chin. Med. J. (Engl.) 2012, 125, 3120–3126. [Google Scholar] [CrossRef]
- Kong, X.; Li, M.; Shao, K.; Yang, Y.; Wang, Q.; Cai, M. Progesterone Induces Cell Apoptosis via the CACNA2D3/Ca2+/P38 MAPK Pathway in Endometrial Cancer. Oncol. Rep. 2020, 43, 121–132. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Yang, X.; Zhou, J.-Y.; Dong, Y.-Y.; Shen, B.-Q.; Wang, J.-Q.; Zhao, L.-J.; Wang, Z.-Q.; Li, X.-P.; et al. Decreased Expression of TRPM4 Is Associated with Unfavorable Prognosis and Aggressive Progression of Endometrial Carcinoma. Am. J. Transl. Res. 2020, 12, 3926–3939. [Google Scholar] [PubMed]
- Van den Eynde, C.; De Clercq, K.; Van Bree, R.; Luyten, K.; Annibali, D.; Amant, F.; Han, S.; Van Nieuwenhuysen, E.; Baert, T.; Peeraer, K.; et al. TRP Channel Expression Correlates with the Epithelial–Mesenchymal Transition and High-Risk Endometrial Carcinoma. Cell. Mol. Life Sci. 2022, 79, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Y.; Wang, Z.; Zhou, J.; Jia, Y.; He, X.; Zhao, L.; Dong, Y.; Fan, Y.; Yang, X.; et al. Calcium and TRPV4 Promote Metastasis by Regulating Cytoskeleton through the RhoA/ROCK1 Pathway in Endometrial Cancer. Cell Death Dis. 2020, 11, 1009. [Google Scholar] [CrossRef]
- Xia, X.; Wang, J.; Liu, Y.; Yue, M. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma. Med. Sci. Monit. 2017, 23, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, H.; Yang, W.; Yao, S.; Hong, L. The Voltage-Gated Sodium Channel Na v 1.7 Associated with Endometrial Cancer. J. Cancer 2019, 10, 4954–4960. [Google Scholar] [CrossRef]
- Pan, H.; Sun, C.-C.; Zhou, C.-Y.; Huang, H.-F. Expression of Aquaporin-1 in Normal, Hyperplasic, and Carcinomatous Endometria. Int. J. Gynecol. Obstet. 2008, 101, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.B.; Zhang, R.J.; Tan, Y.J.; Ding, G.L.; Shi, S.; Zhang, D.; He, R.H.; Liu, A.X.; Wang, T.T.; Leung, P.C.K.; et al. Identification of Estrogen Response Element in the Aquaporin-2 Gene That Mediates Estrogen-Induced Cell Migration and Invasion in Human Endometrial Carcinoma. J. Clin. Endocrinol. Metab. 2011, 96, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Xu, K.H.; Ma, J.Y.; Tian, Y.H.; Guo, X.Y.; Lin, J.; Wu, R.J. Reduced Migration of Ishikawa Cells Associated with Downregulation of Aquaporin-5. Oncol. Lett. 2012, 4, 257–261. [Google Scholar] [CrossRef]
- Watanabe, T.; Sato, K.; Kono, T.; Yamagishi, Y.; Kumazawa, F.; Miyamoto, M.; Takano, M.; Tsuda, H. Aquaporin 3 Expression in Endometrioid Carcinoma of the Uterine Body Correlated With Early Stage and Lower Grade. Pathol. Oncol. Res. 2020, 26, 2247–2253. [Google Scholar] [CrossRef]
- Jóźwiak, P.; Ciesielski, P.; Forma, E.; Kozal, K.; Wójcik-Krowiranda, K.; Cwonda, Ł.; Bieńkiewicz, A.; Bryś, M.; Krześlak, A. Expression of Voltage-Dependent Anion Channels in Endometrial Cancer and Its Potential Prognostic Significance. Tumor Biol. 2020, 42, 1010428320951057. [Google Scholar] [CrossRef]
- Huang, X.; Jan, L.Y. Targeting Potassium Channels in Cancer. J. Cell Biol. 2014, 206, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Mathie, A.; Veale, E.L.; Cunningham, K.P.; Holden, R.G.; Wright, P.D. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 401–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Lai, M.-D.; Phan, N.N.; Sun, Z.; Lin, Y.-C. Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients. PLoS ONE 2015, 10, e0125766. [Google Scholar] [CrossRef]
- Restrepo-Angulo, I.; Bañuelos, C.; Camacho, J. Ion Channel Regulation by Sex Steroid Hormones and Vitamin D in Cancer: A Potential Opportunity for Cancer Diagnosis and Therapy. Front. Pharmacol. 2020, 11, 152. [Google Scholar] [CrossRef]
- Guan, Y.; Huang, Y.; Wu, J.; Deng, Z.; Wang, Y.; Lai, Z.; Wang, H.; Sun, X.; Zhu, Y.; Du, M.; et al. Overexpression of Chloride Channel-3 Is Associated with the Increased Migration and Invasion Ability of Ectopic Endometrial Cells from Patients with Endometriosis. Hum. Reprod. 2016, 31, 986–998. [Google Scholar] [CrossRef]
- Guan, Y.; Xie, Y.; Zhou, H.; Shi, H.; Zhu, Y.; Zhang, X.; Luan, Y.; Shen, X.; Chen, Y.; Xu, L.; et al. Overexpression of Chloride Channel-3 (ClC-3) Is Associated with Human Cervical Carcinoma Development and Prognosis. Cancer Cell Int. 2019, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Airley, R.; Hewitt, S.; Marples, D. Heterogeneous Expression of the Aquaporin 1 (AQP1) Water Channel in Tumors of the Prostate, Breast, Ovary, Colon and Lung: A Study Using High Density Multiple Human Tumor Tissue Microarrays. Int. J. Oncol. 2005, 26, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- He, R.-H.; Sheng, J.-Z.; Luo, Q.; Jin, F.; Wang, B.; Qian, Y.-L.; Zhou, C.-Y.; Sheng, X.; Huang, H.-F. Aquaporin-2 Expression in Human Endometrium Correlates with Serum Ovarian Steroid Hormones. Life Sci. 2006, 79, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Hoffmann, E.K.; Novak, I. Cell Volume Regulation in Epithelial Physiology and Cancer. Front. Physiol. 2013, 4, 233. [Google Scholar] [CrossRef]
- Leanza, L.; Biasutto, L.; Managò, A.; Gulbins, E.; Zoratti, M.; Szabò, I. Intracellular Ion Channels and Cancer. Front. Physiol. 2013, 4, 227. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Gray, C.A.; Bartol, F.F.; Tarleton, B.J.; Wiley, A.A.; Johnson, G.A.; Bazer, F.W.; Spencer, T.E. Developmental Biology of Uterine Glands. Biol. Reprod. 2001, 65, 1311–1323. [Google Scholar] [CrossRef]
- Owusu-Akyaw, A.; Krishnamoorthy, K.; Goldsmith, L.T.; Morelli, S.S. The Role of Mesenchymal–Epithelial Transition in Endometrial Function. Hum. Reprod. Update 2019, 25, 114–133. [Google Scholar] [CrossRef]
- Gargett, C.E.; Nguyen, H.P.T.; Ye, L. Endometrial Regeneration and Endometrial Stem/Progenitor Cells. Rev. Endocr. Metab. Disord. 2012, 13, 235–251. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, W.; Liu, H.; Zhang, D. Age at Menopause and Risk of Developing Endometrial Cancer: A Meta-Analysis. Biomed Res. Int. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Gong, T.-T.; Wang, Y.-L.; Ma, X.-X. Age at Menarche and Endometrial Cancer Risk: A Dose-Response Meta-Analysis of Prospective Studies. Sci. Rep. 2015, 5, 14051. [Google Scholar] [CrossRef] [PubMed]
- Ilancheran, A.; Low, J.; Ng, J.S. Gynaecological Cancer in Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2012, 26, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Saczko, J.; Michel, O.; Chwiłkowska, A.; Sawicka, E.; Mączyńska, J.; Kulbacka, J. Estrogen Receptors in Cell Membranes: Regulation and Signaling. Adv. Anat. Embryol. Cell Biol. 2017, 227, 93–105. [Google Scholar] [CrossRef]
- Chabbert-Buffeta, N.; Skinner, D.C.; Caraty, A.; Bouchard, P. Neuroendocrine Effects of Progesterone. Steroids 2000, 65, 613–620. [Google Scholar] [CrossRef]
- Deng, Z.; Peng, S.; Zheng, Y.; Yang, X.; Zhang, H.; Tan, Q.; Liang, X.; Gao, H.; Li, Y.; Huang, Y.; et al. Estradiol Activates Chloride Channels via Estrogen Receptor-α in the Cell Membranes of Osteoblasts. Am. J. Physiol.-Cell Physiol. 2017, 313, C162–C172. [Google Scholar] [CrossRef]
- Gielen, S.C.J.P.; Hanekamp, E.E.; Hanifi-Moghaddam, P.; Sijbers, A.M.; van Gool, A.J.; Burger, C.W.; Blok, L.J.; Huikeshoven, F.J. Growth Regulation and Transcriptional Activities of Estrogen and Progesterone in Human Endometrial Cancer Cells. Int. J. Gynecol. Cancer 2006, 16, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Kastner, P.; Krust, A.; Turcotte, B.; Stropp, U.; Tora, L.; Gronemeyer, H.; Chambon, P. Two Distinct Estrogen-Regulated Promoters Generate Transcripts Encoding the Two Functionally Different Human Progesterone Receptor Forms A and B. EMBO J. 1990, 9, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Persson, I.; Adami, H.O.; Bergkvist, L.; Lindgren, A.; Pettersson, B.; Hoover, R.; Schairer, C. Risk of Endometrial Cancer after Treatment with Oestrogens Alone or in Conjunction with Progestogens: Results of a Prospective Study. BMJ 1989, 298, 147–151. [Google Scholar] [CrossRef]
- Arnett-Mansfield, R.L.; DeFazio, A.; Wain, G.V.; Jaworski, R.C.; Byth, K.; Mote, P.A.; Clarke, C.L. Relative Expression of Progesterone Receptors A and B in Endometrioid Cancers of the Endometrium. Cancer Res. 2001, 61, 4576–4582. [Google Scholar]
- Bolanz, K.A.; Hediger, M.A.; Landowski, C.P. The Role of TRPV6 in Breast Carcinogenesis. Mol. Cancer Ther. 2008, 7, 271–279. [Google Scholar] [CrossRef]
- Yang, H.; Ma, L.; Wang, Y.; Zuo, W.; Li, B.; Yang, Y.; Chen, Y.; Chen, L.; Wang, L.; Zhu, L. Activation of ClC-3 Chloride Channel by 17β-estradiol Relies on the Estrogen Receptor α Expression in Breast Cancer. J. Cell. Physiol. 2018, 233, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Taylor, A.; Showeil, R.; Trivedi, P.; Horimoto, Y.; Bagwan, I.; Ewington, L.; Lam, E.W.F.; El-Bahrawy, M.A. Expression Profiling and Significance of VEGF-A, VEGFR2, VEGFR3 and Related Proteins in Endometrial Carcinoma. Cytokine 2014, 68, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Leon, A.; Perez-Quintela, B.V.; Iglesias-García, J.; Lariño-Noia, J.; Varo, E.; Forteza, J.; Domínguez-Muñoz, J.E. Ductal Adenocarcinoma of the Pancreas: Expression of Growth Factor Receptors, Oncogenes and Suppressor Genes, and Their Relationship to Pathological Features, Staging and Survival. Oncol. Lett. 2011, 2, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Rydén, L.; Jirstrom, K.; Haglund, M.; Stal, O.; Fernö, M. Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor 2 Are Specific Biomarkers in Triple-Negative Breast Cancer. Results from a Controlled Randomized Trial with Long-Term Follow-Up. Breast Cancer Res. Treat. 2010, 120, 491–498. [Google Scholar] [CrossRef]
- Kim, J.Y.; Bae, B.N.; Kwon, J.E.; Kim, H.J.; Park, K. Prognostic Significance of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor in Colorectal Adenocarcinoma. Apmis 2011, 119, 449–459. [Google Scholar] [CrossRef]
- Ioannidou, E.; Moschetta, M.; Shah, S.; Parker, J.S.; Ozturk, M.A.; Pappas-Gogos, G.; Sheriff, M.; Rassy, E.; Boussios, S. Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets. Int. J. Mol. Sci. 2021, 22, 9926. [Google Scholar] [CrossRef]
- Krcek, R.; Matschke, V.; Theis, V.; Adamietz, I.A.; Bühler, H.; Theiss, C. Vascular Endothelial Growth Factor, Irradiation, and Axitinib Have Diverse Effects on Motility and Proliferation of Glioblastoma Multiforme Cells. Front. Oncol. 2017, 7, 182. [Google Scholar] [CrossRef]
- Masoumi Moghaddam, S.; Amini, A.; Morris, D.L.; Pourgholami, M.H. Significance of Vascular Endothelial Growth Factor in Growth and Peritoneal Dissemination of Ovarian Cancer. Cancer Metastasis Rev. 2012, 31, 143–162. [Google Scholar] [CrossRef]
- Frezzetti, D.; Gallo, M.; Maiello, M.R.; D’Alessio, A.; Esposito, C.; Chicchinelli, N.; Normanno, N.; De Luca, A. VEGF as a Potential Target in Lung Cancer. Expert Opin. Ther. Targets 2017, 21, 959–966. [Google Scholar] [CrossRef]
- Bruchim, I.; Sarfstein, R.; Werner, H. The IGF Hormonal Network in Endometrial Cancer: Functions, Regulation, and Targeting Approaches. Front. Endocrinol. 2014, 5, 76. [Google Scholar] [CrossRef]
- McCampbell, A.S.; Broaddus, R.R.; Loose, D.S.; Davies, P.J.A. Overexpression of the Insulin-like Growth Factor I Receptor and Activation of the AKT Pathway in Hyperplastic Endometrium. Clin. Cancer Res. 2006, 12, 6373–6378. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Yang, Y.; Li, X.; Li, T.; Zhang, Y.; Xu, C.; Liang, C.; Wang, X. Down-Regulation of IGF-1R Expression Inhibits Growth and Enhances Chemosensitivity of Endometrial Carcinoma in Vitro. Mol. Cell. Biochem. 2011, 353, 225–233. [Google Scholar] [CrossRef]
- Borowiec, A.-S.; Hague, F.; Harir, N.; Guénin, S.; Guerineau, F.; Gouilleux, F.; Roudbaraki, M.; Lassoued, K.; Ouadid-Ahidouch, H. IGF-1 Activates HEAG K+ Channels through an Akt-Dependent Signaling Pathway in Breast Cancer Cells: Role in Cell Proliferation. J. Cell. Physiol. 2007, 212, 690–701. [Google Scholar] [CrossRef]
- Conti, M. Targeting Ion Channels for New Strategies in Cancer Diagnosis and Therapy. Curr. Clin. Pharmacol. 2008, 2, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Chiasserini, D.; Whetton, A.D.; Crosbie, E.J. Proteomic Biomarkers for the Detection of Endometrial Cancer. Cancers 2019, 11, 1572. [Google Scholar] [CrossRef]
- Ghose, A.; Gullapalli, S.V.N.; Chohan, N.; Bolina, A.; Moschetta, M.; Rassy, E.; Boussios, S. Applications of Proteomics in Ovarian Cancer: Dawn of a New Era. Proteomes 2022, 10, 16. [Google Scholar] [CrossRef]
- Pavlou, M.P.; Diamandis, E.P.; Blasutig, I.M. The Long Journey of Cancer Biomarkers from the Bench to the Clinic. Clin. Chem. 2013, 59, 147–157. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martón, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- Capatina, A.L.; Lagos, D.; Brackenbury, W.J. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. In Targets of Cancer Diagnosis and Treatment. Reviews of Physiology, Biochemistry and Pharmacology; Springer: Cham, Switzerland, 2020; Volume 183, pp. 1–43. [Google Scholar]
- Schwab, A.; Stock, C. Ion Channels and Transporters in Tumour Cell Migration and Invasion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130102. [Google Scholar] [CrossRef]
- Lynch, J.J.; Van Vleet, T.R.; Mittelstadt, S.W.; Blomme, E.A.G. Potential Functional and Pathological Side Effects Related to Off-Target Pharmacological Activity. J. Pharmacol. Toxicol. Methods 2017, 87, 108–126. [Google Scholar] [CrossRef] [PubMed]
- Jehle, J.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Novel Roles for HERG K+ Channels in Cell Proliferation and Apoptosis. Cell Death Dis. 2011, 2, e193. [Google Scholar] [CrossRef]
- Mamelak, A.N.; Rosenfeld, S.; Bucholz, R.; Raubitschek, A.; Nabors, L.B.; Fiveash, J.B.; Shen, S.; Khazaeli, M.B.; Colcher, D.; Liu, A.; et al. Phase I Single-Dose Study of Intracavitary-Administered Iodine-131-TM-601 in Adults With Recurrent High-Grade Glioma. J. Clin. Oncol. 2006, 24, 3644–3650. [Google Scholar] [CrossRef]
- Haustrate, A.; Hantute-Ghesquier, A.; Prevarskaya, N.; Lehen’kyi, V. Monoclonal Antibodies Targeting Ion Channels and Their Therapeutic Potential. Front. Pharmacol. 2019, 10, 606. [Google Scholar] [CrossRef]
- Lara, R.; Adinolfi, E.; Harwood, C.A.; Philpott, M.; Barden, J.A.; Di Virgilio, F.; McNulty, S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front. Pharmacol. 2020, 11, 793. [Google Scholar] [CrossRef]
- Gilbert, S.; Oliphant, C.; Hassan, S.; Peille, A.; Bronsert, P.; Falzoni, S.; Di Virgilio, F.; McNulty, S.; Lara, R. ATP in the Tumour Microenvironment Drives Expression of NfP2X7, a Key Mediator of Cancer Cell Survival. Oncogene 2019, 38, 194–208. [Google Scholar] [CrossRef]
- Gilbert, S.M.; Gidley Baird, A.; Glazer, S.; Barden, J.A.; Glazer, A.; Teh, L.C.; King, J. A Phase I Clinical Trial Demonstrates That NfP2X 7 -Targeted Antibodies Provide a Novel, Safe and Tolerable Topical Therapy for Basal Cell Carcinoma. Br. J. Dermatol. 2017, 177, 117–124. [Google Scholar] [CrossRef]
- Fu, S.; Hirte, H.; Welch, S.; Ilenchuk, T.T.; Lutes, T.; Rice, C.; Fields, N.; Nemet, A.; Dugourd, D.; Piha-Paul, S.; et al. First-in-Human Phase I Study of SOR-C13, a TRPV6 Calcium Channel Inhibitor, in Patients with Advanced Solid Tumors. Investig. New Drugs 2017, 35, 324–333. [Google Scholar] [CrossRef]
- Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting Ion Channels for Cancer Therapy by Repurposing the Approved Drugs. Biochim. Biophys. Acta-Biomembr. 2015, 1848, 2747–2755. [Google Scholar] [CrossRef]
- Huang, T.; Zhou, J.; Wang, J. Calcium and Calcium-Related Proteins in Endometrial Cancer: Opportunities for Pharmacological Intervention. Int. J. Biol. Sci. 2022, 18, 1065–1078. [Google Scholar] [CrossRef]
- Camerino, D.C.; Desaphy, J.-F. Grand Challenge for Ion Channels: An Underexploited Resource for Therapeutics. Front. Pharmacol. 2010, 1, 113. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, B.P.; Nunes, F.B.; Noal, F.C.; Branchini, G. Ion Channels in Endometrial Cancer. Cancers 2022, 14, 4733. https://doi.org/10.3390/cancers14194733
Costa BP, Nunes FB, Noal FC, Branchini G. Ion Channels in Endometrial Cancer. Cancers. 2022; 14(19):4733. https://doi.org/10.3390/cancers14194733
Chicago/Turabian StyleCosta, Bruna Pasqualotto, Fernanda Bordignon Nunes, Francini Corrêa Noal, and Gisele Branchini. 2022. "Ion Channels in Endometrial Cancer" Cancers 14, no. 19: 4733. https://doi.org/10.3390/cancers14194733
APA StyleCosta, B. P., Nunes, F. B., Noal, F. C., & Branchini, G. (2022). Ion Channels in Endometrial Cancer. Cancers, 14(19), 4733. https://doi.org/10.3390/cancers14194733