Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Sanger Sequencing of H3F3A p.G34W
2.3. H3F3A p.G34W Immunohistochemistry
2.4. Compounds
2.5. Epigenetics Compound Screens
2.6. Next-Generation RNA-Sequencing
2.7. Drug Treatment of 2D Cell Cultures
2.8. Drug Treatment of 3D Cell Cultures
2.9. Western Blot
2.10. Statistical Analysis
3. Results
3.1. Established Cell Lines Consist of Neoplastic “Stromal” Cells That Express the H3F3A p.G34W Oncohistone In Vitro
3.2. Epigenetics Compound Screen Identifies Aurora Kinases, Janus Kinases, and HDAC Enzymes as Potential Therapeutic Targets for GCTB
3.3. Class I HDAC Subtypes Are Most Abundantly Expressed in GCTB
3.4. HDAC Inhibitors Reduce the Growth of Neoplastic “Stromal” Cells in Both 2D and 3D In Vitro Models
3.5. Both Pan-HDAC and Class-I-Specific HDAC Inhibitors Induce Apoptosis and Histone Acetylation in GCTB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flanagan, A.M.; Larousserie, F.; O’Donnell, P.G.; Yoshida, A. Giant Cell Tumour of Bone. In WHO Classification of Tumours–Soft Tissue and Bone Tumours; WHO Classification of Tumours Editorial Board, Ed.; IARC Press: Lyon, France, 2020; pp. 440–446. [Google Scholar]
- Van der Heijden, L.; Dijkstra, P.D.S.; van de Sande, M.A.J.; Kroep, J.R.; Nout, R.A.; van Rijswijk, C.S.P.; Bovee, J.V.M.G.; Hogendoorn, P.C.W.; Gelderblom, H. The Clinical Approach Toward Giant Cell Tumor of Bone. Oncologist 2014, 19, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Lieveld, M.; Bodson, E.; De Boeck, G.; Nouman, B.; Cleton-Jansen, A.M.; Korsching, E.; Benassi, M.S.; Picci, P.; Sys, G.; Poffyn, B.; et al. Gene Expression Profiling of Giant Cell Tumor of Bone Reveals Downregulation of Extracellular Matrix Components Decorin and Lumican Associated with Lung Metastasis. Virchows Arch. 2014, 465, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, R.G.; De Boeck, G.; Baelde, J.J.; Taminiau, A.H.M.; Uyttendaele, D.; Roels, H.; Praet, M.M.; Hogendoorn, P.C.W. CD33+ CD14- Phenotype Is Characteristic of Multinuclear Osteoclast-like Cells in Giant Cell Tumor of Bone. J. Bone Miner. Res. 2009, 24, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.S.; Yurgelun, M.B.; Chang, S.S.; Zhang, H.Z.; Murakami, K.; Blaine, T.A.; Parisien, M.V.; Kim, W.; Winchester, R.J.; Lee, F.Y.I. Recruitment of Osteoclast Precursors by Stromal Cell Derived Factor-1 (SDF-1) in Giant Cell Tumor of Bone. J. Orthop. Res. 2005, 23, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Maggiani, F.; Forsyth, R.; Hogendoorn, P.C.W.; Krenacs, T.; Athanasou, N.A. The Immunophenotype of Osteoclasts and Macrophage Polykaryons. J. Clin. Pathol. 2011, 64, 701–705. [Google Scholar] [CrossRef]
- Roux, S.; Amazit, L.; Meduri, G.; Guiochon-Mantel, A.; Milgrom, E.; Mariette, X. RANK (Receptor Activator of Nuclear Factor Kappa B) and RANK Ligand Are Expressed in Giant Cell Tumors of Bone. Am. J. Clin. Pathol. 2002, 117, 210–216. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; et al. Distinct H3F3A and H3F3B Driver Mutations Define Chondroblastoma and Giant Cell Tumor of Bone. Nat. Genet. 2013, 45, 1479–1482. [Google Scholar] [CrossRef]
- Cleven, A.H.G.; Höcker, S.; Briaire-De Bruijn, I.; Szuhai, K.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma. Am. J. Surg. Pathol. 2015, 39, 1576–1583. [Google Scholar] [CrossRef]
- Presneau, N.; Baumhoer, D.; Behjati, S.; Pillay, N.; Tarpey, P.; Campbell, P.J.; Jundt, G.; Hamoudi, R.; Wedge, D.C.; Van Loo, P.; et al. Diagnostic Value of H3F3A Mutations in Giant Cell Tumour of Bone Compared to Osteoclast-Rich Mimics. J. Pathol. Clin. Res. 2015, 1, 113–123. [Google Scholar] [CrossRef]
- Lübbehüsen, C.; Lüke, J.; Seeling, C.; Mellert, K.; Marienfeld, R.; von Baer, A.; Schultheiss, M.; Möller, P.; Barth, T.F.E. Characterization of Three Novel H3F3A-Mutated Giant Cell Tumor Cell Lines and Targeting of Their Wee1 Pathway. Sci. Rep. 2019, 9, 6458. [Google Scholar] [CrossRef] [Green Version]
- Fellenberg, J.; Sähr, H.; Mancarella, D.; Plass, C.; Lindroth, A.M.; Westhauser, F.; Lehner, B.; Ewerbeck, V. Knock-down of Oncohistone H3F3A-G34W Counteracts the Neoplastic Phenotype of Giant Cell Tumor of Bone Derived Stromal Cells. Cancer Lett. 2019, 448, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, S.; De Jay, N.; Deshmukh, S.; Hendrikse, L.D.; Jawhar, W.; Chen, C.C.; Mikael, L.G.; Faury, D.; Marchione, D.M.; Lanoix, J.; et al. H3.3 G34w Promotes Growth and Impedes Differentiation of Osteoblast-like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discov. 2020, 10, 1968–1987. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, R.G.; Krenács, T.; Athanasou, N.; Hogendoorn, P.C.W. Cell Biology of Giant Cell Tumour of Bone: Crosstalk between m/Wt Nucleosome H3.3, Telomeres and Osteoclastogenesis. Cancers 2021, 13, 5119. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Shi, J.; Shi, X.; Li, W.; Wen, H. Histone H3.3 G34 Mutations Alter Histone H3K36 and H3K27 Methylation in Cis. J. Mol. Biol. 2018, 430, 1562–1565. [Google Scholar] [CrossRef] [PubMed]
- Lutsik, P.; Baude, A.; Mancarella, D.; Oez, S.; Kuehn, A.; Toth, R.; Hey, J.; Toprak, U.; Lim, J.; Nguyen, V.H.; et al. Globally Altered Epigenetic Landscape and Delayed Osteogenic Differentiation in H3.3-G34W-Mutant Giant Cell Tumor of Bone. Nat. Commun. 2020, 11, 5414. [Google Scholar] [CrossRef]
- Jain, S.U.; Khazaei, S.; Marchione, D.M.; Lundgren, S.M.; Wang, X.; Weinberg, D.N.; Deshmukh, S.; Juretic, N.; Lu, C.; David Allis, C.; et al. Histone H3.3 G34 Mutations Promote Aberrant PRC2 Activity and Drive Tumor Progression. Proc. Natl. Acad. Sci. USA 2020, 117, 27354–27364. [Google Scholar] [CrossRef]
- Hemingway, F.; Kashima, T.G.; Mahendra, G.; Dhongre, A.; Hogendoorn, P.C.W.; Mertens, F.; Athanasou, N.A. Smooth Muscle Actin Expression in Primary Bone Tumours. Virchows Arch. 2012, 460, 525–534. [Google Scholar] [CrossRef]
- Balke, M.; Campanacci, L.; Gebert, C.; Picci, P.; Gibbons, M.; Taylor, R.; Hogendoorn, P.; Kroep, J.; Wass, J.; Athanasou, N. Bisphosphonate Treatment of Aggressive Primary, Recurrent and Metastatic Giant Cell Tumour of Bone. BMC Cancer 2010, 10, 462. [Google Scholar] [CrossRef]
- Lipplaa, A.; Kroep, J.R.; van der Heijden, L.; Jutte, P.C.; Hogendoorn, P.C.W.; Dijkstra, S.; Gelderblom, H. Adjuvant Zoledronic Acid in High-Risk Giant Cell Tumor of Bone: A Multicenter Randomized Phase II Trial. Oncologist 2019, 24, 889-e421. [Google Scholar] [CrossRef]
- Van der Heijden, L.; Dijkstra, S.; van de Sande, M.; Gelderblom, H. Current Concepts in the Treatment of Giant Cell Tumour of Bone. Curr. Opin. Oncol. 2020, 32, 332–338. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Zhang, X.; Tang, Y.; Wu, Z.; Wang, Y.; Huang, H.; Fu, X.; Liu, J.; Hogendoorn, P.C.W.; et al. Clinicopathologic and Molecular Features of Denosumab-Treated Giant Cell Tumour of Bone (GCTB): Analysis of 21 Cases. Ann. Diagn. Pathol. 2022, 57, 151882. [Google Scholar] [CrossRef] [PubMed]
- Hafner, M.; Niepel, M.; Chung, M.; Sorger, P.K. Growth Rate Inhibition Metrics Correct for Confounders in Measuring Sensitivity to Cancer Drugs. Nat. Methods 2016, 13, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Oosting, J.; Tamsma, M.; Niessen, B.; De Bruijn, I.B.; van den Akker, B.; Kruisselbrink, A.B.; Palubeckaitė, I.; Bovée, J.V.M.G.; Cleton-jansen, A.M. Targeting the Nad Salvage Synthesis Pathway as a Novel Therapeutic Strategy for Osteosarcomas with Low Naprt Expression. Int. J. Mol. Sci. 2021, 22, 6273. [Google Scholar] [CrossRef] [PubMed]
- Venneker, S.; Kruisselbrink, A.B.; Briaire-de Bruijn, I.H.; de Jong, Y.; van Wijnen, A.J.; Danen, E.H.J.; Bovée, J.V.M.G. Inhibition of PARP Sensitizes Chondrosarcoma Cell Lines to Chemo- and Radiotherapy Irrespective of the IDH1 or IDH2 Mutation Status. Cancers 2019, 11, 1918. [Google Scholar] [CrossRef]
- Balke, M.; Neumann, A.; Szuhai, K.; Agelopoulos, K.; August, C.; Gosheger, G.; Hogendoorn, P.C.W.; Athanasou, N.; Buerger, H.; Hagedorn, M. A Short-Term in Vivo Model for Giant Cell Tumor of Bone. BMC Cancer 2011, 11, 241. [Google Scholar] [CrossRef]
- Noguchi, R.; Yoshimatsu, Y.; Ono, T.; Sei, A.; Hirabayashi, K.; Ozawa, I.; Kikuta, K.; Kondo, T. Establishment and Characterization of NCC-GCTB1-C1: A Novel Patient-Derived Cancer Cell Line of Giant Cell Tumor of Bone. Hum. Cell 2020, 33, 1321–1328. [Google Scholar] [CrossRef]
- Yoshimatsu, Y.; Noguchi, R.; Tsuchiya, R.; Ono, T.; Sin, Y.; Akane, S.; Sugaya, J.; Mori, T.; Fukushima, S.; Yoshida, A.; et al. Establishment and Characterization of Novel Patient-Derived Cell Lines from Giant Cell Tumor of Bone. Hum. Cell 2021, 34, 1899–1910. [Google Scholar] [CrossRef]
- Ono, T.; Noguchi, R.; Yoshimatsu, Y.; Tsuchiya, R.; Sin, Y.; Nakagawa, R.; Hirabayashi, K.; Ozawa, I.; Kikuta, K.; Kondo, T. Establishment and Characterization of the NCC-GCTB4-C1 Cell Line: A Novel Patient-Derived Cell Line from Giant Cell Tumor of Bone. Hum. Cell 2022, 35, 392–399. [Google Scholar] [CrossRef]
- Mahdal, M.; Neradil, J.; Mudry, P.; Paukovcekova, S.; Zambo, I.S.; Urban, J.; Macsek, P.; Pazourek, L.; Tomas, T.; Veselska, R. New Target for Precision Medicine Treatment of Giant-Cell Tumor of Bone: Sunitinib Is Effective in the Treatment of Neoplastic Stromal Cells with Activated PDGFRβ Signaling. Cancers 2021, 13, 3543. [Google Scholar] [CrossRef]
- Bradley, E.W.; Carpio, L.R.; van Wijnen, A.J.; McGee-Lawrence, M.E.; Westendorf, J.J. Histone Deacetylases in Bone Development and Skeletal Disorders. Physiol. Rev. 2015, 95, 1359–1381. [Google Scholar] [CrossRef] [Green Version]
- Obri, A.; Makinistoglu, M.P.; Zhang, H.; Karsenty, G. HDAC4 Integrates PTH and Sympathetic Signaling in Osteoblasts. J. Cell Biol. 2014, 205, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Yafei, J.; Haoran, M.; Wenyan, J.; Linghang, X.; Kai, T.; Gangyang, W.; Zhuoying, W.; Jing, H.; Mengkai, Y.; Yujie, T.; et al. Personalized Medicine Modality Based on Patient-Derived Xenografts from a Malignant Transformed GCTB Harboring H3F3A G34W Mutation. J. Orthop. Transl. 2021, 29, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Van Veggel, M.; Westerman, E.; Hamberg, P. Clinical Pharmacokinetics and Pharmacodynamics of Panobinostat. Clin. Pharmacokinet. 2018, 57, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Gardner, E.R.; Chen, X.; Ockers, S.B.; Baum, C.E.; Sissung, T.M.; Price, D.K.; Frye, R.; Piekarz, R.L.; Bates, S.E.; et al. Population Pharmacokinetics of Romidepsin in Patients with Cutaneous T-Cell Lymphoma and Relapsed Peripheral T-Cell Lymphoma. Clin. Cancer Res. 2009, 15, 1496–1503. [Google Scholar] [CrossRef]
- Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L. Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals 2010, 3, 2751–2767. [Google Scholar] [CrossRef] [PubMed]
- Kumta, S.M.; Huang, L.; Cheng, Y.Y.; Chow, L.T.C.; Lee, K.M.; Zheng, M.H. Expression of VEGF and MMP-9 in Giant Cell Tumor of Bone and Other Osteolytic Lesions. Life Sci. 2003, 73, 1427–1436. [Google Scholar] [CrossRef]
- De Vita, A.; Vanni, S.; Miserocchi, G.; Fausti, V.; Pieri, F.; Spadazzi, C.; Cocchi, C.; Liverani, C.; Calabrese, C.; Casadei, R.; et al. A Rationale for the Activity of Bone Target Therapy and Tyrosine Kinase Inhibitor Combination in Giant Cell Tumor of Bone and Desmoplastic Fibroma: Translational Evidences. Biomedicines 2022, 10, 372. [Google Scholar] [CrossRef]
- Gaspar, N.; Venkatramani, R.; Hecker-Nolting, S.; Melcon, S.G.; Locatelli, F.; Bautista, F.; Longhi, A.; Lervat, C.; Entz-Werle, N.; Casanova, M.; et al. Lenvatinib with Etoposide plus Ifosfamide in Patients with Refractory or Relapsed Osteosarcoma (ITCC-050): A Multicentre, Open-Label, Multicohort, Phase 1/2 Study. Lancet Oncol. 2021, 22, 1312–1321. [Google Scholar] [CrossRef]
Dacinostat | Panobinostat | Quisinostat | Fimepinostat | Romidepsin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
All Classes | All Classes | All Classes | Class I, IIB, and IV | Class I | |||||||
Cell Line | In Vitro Model | GR50 (nM) | IC50 (nM) | GR50 (nM) | IC50 (nM) | GR50 (nM) | IC50 (nM) | GR50 (nM) | IC50 (nM) | GR50 (nM) | IC50 (nM) |
L4040 | 2D | 23.2 | 24.8 | 12.5 | 12.7 | 8.45 | 9.37 | 4.88 | 5.31 | 1.25 | 1.34 |
3D | - | - | - | 35.3 | - | - | - | - | - | 3.02 | |
L5077 | 2D | - | - | 9.41 | 18.3 | - | - | - | - | 0.58 | 0.87 |
L5862 | 2D | 61.0 | 78.0 | 23.7 | 29.5 | 25.3 | 30.4 | 7.44 | 11.3 | 0.59 | 0.70 |
3D | - | - | - | 43.7 | - | - | - | - | - | 1.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venneker, S.; van Eenige, R.; Kruisselbrink, A.B.; Palubeckaitė, I.; Taliento, A.E.; Briaire-de Bruijn, I.H.; Hogendoorn, P.C.W.; van de Sande, M.A.J.; Gelderblom, H.; Mei, H.; et al. Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone. Cancers 2022, 14, 4708. https://doi.org/10.3390/cancers14194708
Venneker S, van Eenige R, Kruisselbrink AB, Palubeckaitė I, Taliento AE, Briaire-de Bruijn IH, Hogendoorn PCW, van de Sande MAJ, Gelderblom H, Mei H, et al. Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone. Cancers. 2022; 14(19):4708. https://doi.org/10.3390/cancers14194708
Chicago/Turabian StyleVenneker, Sanne, Robin van Eenige, Alwine B. Kruisselbrink, Ieva Palubeckaitė, Alice E. Taliento, Inge H. Briaire-de Bruijn, Pancras C. W. Hogendoorn, Michiel A. J. van de Sande, Hans Gelderblom, Hailiang Mei, and et al. 2022. "Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone" Cancers 14, no. 19: 4708. https://doi.org/10.3390/cancers14194708
APA StyleVenneker, S., van Eenige, R., Kruisselbrink, A. B., Palubeckaitė, I., Taliento, A. E., Briaire-de Bruijn, I. H., Hogendoorn, P. C. W., van de Sande, M. A. J., Gelderblom, H., Mei, H., Bovée, J. V. M. G., & Szuhai, K. (2022). Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone. Cancers, 14(19), 4708. https://doi.org/10.3390/cancers14194708