Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Breaking a 30-Year Plateau in OS Treatment
3. Protein Homeostasis Requires the Ubiquitin Proteasome System
4. Proteasome Inhibition in Cancer
4.1. PI’s Mechanisms of Action
4.1.1. Inhibition of NF-κB Pathway
4.1.2. Activation of the MAPK Pathways
4.1.3. Stabilizing the Levels of p53
4.1.4. Preventing the Degradation of Pro-Apoptotic Proteins
4.1.5. Modulation of TRAIL
4.1.6. Proteotoxic Crisis, Endoplasmic Reticulum (ER) Stress, and the Unfolded Protein Response (UPR)
5. PIs Used in Cancer Treatment and Evidence for Their Use in OS
5.1. First-Generation PI: Bortezomib
5.1.1. In Vitro
5.1.2. In Vivo
5.1.3. Clinical
5.2. Second-Generation PI: Carfilzomib
5.2.1. In Vitro
5.2.2. In Vivo
5.2.3. Clinical
5.3. Second-Generation PI: Ixazomib
5.3.1. In Vitro
5.3.2. In Vivo
5.3.3. Clinical
5.4. Second-Generation PIs in Clinical Development: Oprozomib and Delanzomib
5.4.1. In Vitro
5.4.2. Clinical
5.5. Third-Generation PIs in Clinical Development: MG132
5.5.1. In Vitro
5.5.2. In Vivo
5.6. Emerging Inhibitors
6. Caveats and Unanswered Questions for Future Research
6.1. Will the Clinical Success Experienced in Multiple Myeloma Be Achievable in OS Patients?
6.2. Is ER Stress and the UPR Advantageous in OS Progression and a Targetable Vulnerablility?
6.3. Do Proteasome Inhibitors Have Immunomodulatory Properties and Are These Contributing to Their Mechanism of Action?
7. Limitations
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marina, N.; Gebhardt, M.; Teot, L.; Gorlick, R. Biology and Therapeutic Advances for Pediatric Osteosarcoma. Oncologist 2004, 9, 422–441. [Google Scholar] [CrossRef] [PubMed]
- Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol. 2015, 33, 3029–3035. [Google Scholar] [CrossRef] [PubMed]
- Bertin, H.; Gomez-Brouchet, A.; Rédini, F. Osteosarcoma of the Jaws: An Overview of the Pathophysiological Mechanisms | Elsevier Enhanced Reader. Crit. Rev. Oncol. Hematol. 2020, 156, 103126. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A Review of Current and Future Therapeutic Approaches. BioMed. Eng. OnLine 2021, 20, 24. [Google Scholar] [CrossRef]
- Marchandet, L.; Lallier, M.; Charrier, C.; Baud’huin, M.; Ory, B.; Lamoureux, F. Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers 2021, 13, 683. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, R. Current Therapeutic Approaches for Osteosarcoma. Recent Adv. Bone Tumours Osteoarthr. 2021. [Google Scholar] [CrossRef]
- Meazza, C.; Asaftei, S.D. State-of-the-art, approved therapeutics for the pharmacological management of osteosarcoma. Expert Opin. Pharmacother. 2021, 22, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Kahen, E.; Cubitt, C.L.; McGuire, J.; Kreahling, J.; Lee, J.; Altiok, S.; Lynch, C.C.; Sullivan, D.M.; Reed, D.R. Identification of Synergistic, Clinically Achievable, Combination Therapies for Osteosarcoma. Sci. Rep. 2015, 5, 16991. [Google Scholar] [CrossRef]
- Botter, S.M.; Neri, D.; Fuchs, B. Recent advances in osteosarcoma. Curr. Opin. Pharmacol. 2014, 16, 15–23. [Google Scholar] [CrossRef]
- Kansara, M.; Thomas, D.M. Molecular Pathogenesis of Osteosarcoma. DNA Cell. Biol. 2007, 26, 1–18. [Google Scholar] [CrossRef]
- Franceschini, N.; Cleton-Jansen, A.-M. Bovée Judith VMG Bone: Osteosarcoma. Available online: http://atlasgeneticsoncology.org/Tumors/ConvOsteoID5344.html (accessed on 12 September 2021).
- Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol. 2010, 21, vii320–vii325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hansen, H.M.; Semmes, E.C.; Gonzalez-Maya, J.; Morimoto, L.; Wei, Q.; Eward, W.C.; DeWitt, S.B.; Hurst, J.H.; Metayer, C.; et al. Common Genetic Variation and Risk of Osteosarcoma in a Multi-Ethnic Pediatric and Adolescent Population. Bone 2020, 130, 115070. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma Overview. Rheumatol. Ther. 2016, 4, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.D.R. Osteosarcoma. Ear Nose Throat J. 2013, 92, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Jeffree, G.M.; Price, C.H.G.; Sissons, H.A. The metastatic patterns of osteosarcoma. Br. J. Cancer 1975, 32, 87–107. [Google Scholar] [CrossRef]
- Ferrari, S.; Briccoli, A.; Mercuri, M.; Bertoni, F.; Picci, P.; Tienghi, A.; Del Prever, A.B.; Fagioli, F.; Comandone, A.; Bacci, G. Postrelapse Survival in Osteosarcoma of the Extremities: Prognostic Factors for Long-Term Survival. J. Clin. Oncol. 2003, 21, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.D.; Luu, H.H. Osteosarcoma. Cancer Treat. Res. 2014, 162, 65–92. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.G.; Mikaelian, K.; Dorey, F.; Mirra, J.M.; Sassoon, A.; Holmes, E.C.; Eilber, F.R.; Eckardt, J.J. Pulmonary Metastases of Stage IIB Extremity Osteosarcoma and Subsequent Pulmonary Metastases. J. Clin. Oncol. 2016, 12, 1849–1858. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, J.-A.; Lee, S.H.; Choi, J.Y.; Hong, S.H.; Chung, H.W.; Kang, H.S. Imaging Findings of Extrapulmonary Metastases of Osteosarcoma. Clin. Imaging 2004, 28, 291–300. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Hou, C.-H.; Hou, S.-M.; Yang, R.-S. The Metastasectomy and Timing of Pulmonary Metastases on the Outcome of Osteosarcoma Patients. Clin. Med. Oncol. 2009, 3, 99. [Google Scholar] [CrossRef] [Green Version]
- Misaghi, A.; Goldin, A.; Awad, M.; Kulidjian, A.A. Osteosarcoma: A Comprehensive Review. SICOT J. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Rothzerg, E.; Pfaff, A.; Koks, S. Innovative Approaches for Treatment of Osteosarcoma. Exp. Biol. Med. 2022, 247, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Fu, C.; Sun, J.; Wang, X.; Geng, S.; Wang, X.; Zou, J.; Yang, C.; Bi, Z. A New Perspective for Osteosarcoma Therapy: Proteasome Inhibition by MLN9708/2238 Successfully Induces Apoptosis and Cell Cycle Arrest and Attenuates the Invasion Ability of Osteosarcoma Cells in Vitro. Cell. Physiol. Biochem. 2017, 41, 451–465. [Google Scholar] [CrossRef] [PubMed]
- He, J.-P.; Hao, Y.; Wang, X.-L.; Yang, X.-J.; Shao, J.-F.; Guo, F.-J.; Feng, J.-X. Review of the Molecular Pathogenesis of Osteosarcoma. Asian Pac. J. Cancer Prev. 2014, 15, 5967–5976. [Google Scholar] [CrossRef]
- Nunes, A.T.; Annunziata, C.M. Proteasome Inhibitors: Structure and Function. Semin. Oncol. 2017, 44, 377. [Google Scholar] [CrossRef] [PubMed]
- Adams, J. Proteasome Inhibitors in Cancer Therapy. Cancer Chemoprev. 2004, 635–642. [Google Scholar] [CrossRef]
- Morozov, A.V.; Karpov, V.L. Biological Consequences of Structural and Functional Proteasome Diversity. Heliyon 2018, 4, e00894. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Taylor, A. Ubiquitin-Proteasome Pathway and Cellular Responses to Oxidative Stress. Free Radic. Biol. Med. 2011, 51, 5. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, C.; Pan, J.; Xu, J.; Zhou, Z.-G.; Wang, C.-Y. The Ubiquitin Proteasome Pathway (UPP) in the Regulation of Cell Cycle Control and DNA Damage Repair and Its Implication in Tumorigenesis. Int. J. Clin. Exp. Pathol. 2012, 5, 726. [Google Scholar]
- Myung, J.; Kim, K.B.; Crews, C.M. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors. Med. Res. Rev. 2001, 21, 245. [Google Scholar] [CrossRef]
- Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein Degradation by the Ubiquitin–Proteasome Pathway in Normal and Disease States. J. Am. Soc. Nephrol. 2006, 17, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Callis, J. The Ubiquitination Machinery of the Ubiquitin System. Arab. Book Am. Soc. Plant Biol. 2014, 12, e0174. [Google Scholar] [CrossRef] [PubMed]
- Streich, F.C., Jr.; Lima, C.D. Structural and Functional Insights to Ubiquitin-Like Protein Conjugation. Annu. Rev. Biophys. 2014, 43, 357. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.D.; Ritterhoff, T.; Klevit, R.E.; Brzovic, P.S. E2 Enzymes: More than Just Middle Men. Nat. Publ. Group 2016, 26, 423–440. [Google Scholar] [CrossRef]
- Ito, S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers 2020, 12, 265. [Google Scholar] [CrossRef]
- DeMartino, G.N.; Gillette, T.G. Proteasomes: Machines for All Reasons. Cell 2007, 129, 659–662. [Google Scholar] [CrossRef]
- Richardson, P.G.; Mitsiades, C.; Hideshima, T.; Anderson, K.C. Proteasome Inhibition in the Treatment of Cancer. Cell Cycle 2005, 4, 289–295. [Google Scholar] [CrossRef]
- Zwickl, P.; Voges, D.; Baumeister, W. The Proteasome: A Macromolecular Assembly Designed for Controlled Proteolysis. Philos. Trans. R. Soc. B Biol. Sci. 1999, 354, 1501. [Google Scholar] [CrossRef]
- Crawford, L.J.; Walker, B.; Irvine, A.E. Proteasome Inhibitors in Cancer Therapy. J. Cell Commun. Signal. 2011, 5, 101–110. [Google Scholar] [CrossRef]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417. [Google Scholar] [CrossRef]
- Guo, N.; Peng, Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac. J. Clin. Oncol. 2013, 9, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The Proteasome and Proteasome Inhibitors in Multiple Myeloma. Cancer Metastasis Rev. 2017, 36, 561–584. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, L.; Lan, W.; Wei, X.; Wen, X.; Wu, P.; Zhang, X.; Xi, X.; Li, Y.; Wu, L.; et al. Enrichment of Wee1/CDC2 and NF-ΚB Signaling Pathway Constituents Mutually Contributes to CDDP Resistance in Human Osteosarcoma. Cancer Res. Treat. 2022, 54, 277–293. [Google Scholar] [CrossRef]
- Patatsos, K.; Shekhar, T.M.; Hawkins, C.J. Pre-Clinical Evaluation of Proteasome Inhibitors for Canine and Human Osteosarcoma. Vet. Comp. Oncol. 2018, 16, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, B.; Jiang, K.; Lao, L.; Shen, H.; Chen, Z.; Shen, H. Activation of TNF-a/NF-JB Axis Enhances CRL4B DCAF11 E3 Ligase Activity and Regulates Cell Cycle Progression in Human Osteosarcoma Cells. Mol. Oncol. 2018, 12, 476–494. [Google Scholar] [CrossRef]
- Lou, Z.; Ren, T.; Peng, X.; Sun, Y.; Jiao, G.; Lu, Q.; Zhang, S.; Lu, X.; Guo, W. Bortezomib Induces Apoptosis and Autophagy in Osteosarcoma Cells through Mitogen-Activated Protein Kinase Pathway in Vitro. J. Int. Med. Res. 2013, 41, 1505–1519. [Google Scholar] [CrossRef]
- Li, Y.-S.; Deng, Z.-H.; Zeng, C.; Lei, G.-H. JNK Pathway in Osteosarcoma: Pathogenesis and Therapeutics. J. Recept. Signal Transduct. 2015, 36, 465–470. [Google Scholar] [CrossRef]
- Lauricella, M.; D’Anneo, A.; Giuliano, M.; Calvaruso, G.; Emanuele, S.; Vento, R.; Tesoriere, G. Induction of Apoptosis in Human Osteosarcoma Saos-2 Cells by the Proteasome Inhibitor MG132 and the Protective Effect of PRb. Cell Death Differ. 2003, 10, 930–932. [Google Scholar] [CrossRef]
- Yao, D.; Cai, G.H.; Chen, J.; Ling, R.; Wu, S.X.; Li, Y.P. Prognostic Value of P53 Alterations in Human Osteosarcoma: A Meta Analysis. Int. J. Clin. Exp. Pathol. 2014, 7, 6725. [Google Scholar]
- Synoradzki, K.J.; Bartnik, E.; Czarnecka, A.M.; Fiedorowicz, M.; Firlej, W.; Brodziak, A.; Stasinska, A.; Rutkowski, P.; Grieb, P. Tp53 in Biology and Treatment of Osteosarcoma. Cancers 2021, 13, 4284. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, X.; Bao, H.; Shek, T.W.; Huang, Z.; Wang, Y.; Wu, X.; Wu, Y.; Chang, Z.; Wu, S.; et al. Genetic and Clonal Dissection of Osteosarcoma Progression and Lung Metastasis. Int. J. Cancer 2018, 143, 1134–1142. [Google Scholar] [CrossRef]
- Lopes, U.G.; Erhardt, P.; Yao, R.; Cooper, G.M. P53-Dependent Induction of Apoptosis by Proteasome Inhibitors. J. Biol. Chem. 1997, 272, 12893–12896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Chang, D.; Goh, M.; Klibanov, S.A.; Ljungman, M. Role of P53 in Cell Cycle Regulation and Apoptosis Following Exposure to Proteasome Inhibitors. Cell Growth Differ. 2000, 11, 239–246. [Google Scholar] [PubMed]
- Pandit, B.; Gartel, A.L. Proteasome Inhibitors Induce P53-Independent Apoptosis in Human Cancer Cells. Am. J. Pathol. 2011, 178, 355. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.; Dalda, N.; Zielke, S.; Dittmann, J.; van Wijk, S.; Vogler, M.; Fulda, S. Proteasome Inhibitors and Smac Mimetics Cooperate to Induce Cell Death in Diffuse Large B-Cell Lymphoma by Stabilizing NOXA and Triggering Mitochondrial Apoptosis. Int. J. Cancer 2020, 147, 1485–1498. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Xie, H.; Yuan, S.; Gao, C.; Yu, L.; Bi, Z. Non-Covalent Proteasome Inhibitor PI-1840 Induces Apoptosis and Autophagy in Osteosarcoma Cells. Oncol. Rep. 2019, 41, 2803. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, Y.; Xu, L.; Li, S.; Chen, X.; Zhang, L.; Wu, Y.; Li, J. Proteasome Inhibitor MG132 Enhances Cisplatin-Induced Apoptosis in Osteosarcoma Cells and Inhibits Tumor Growth. Oncol. Res. 2018, 26, 655–664. [Google Scholar] [CrossRef]
- Kazi, A.; Ozcan, S.; Tecleab, A.; Sun, Y.; Lawrence, H.; Sebti, S. Discovery of PI-1840, a Novel Noncovalent and Rapidly Reversible Proteasome Inhibitor with Anti-Tumor Activity. J. Biol. Chem. 2014, 289, 11906–11915. [Google Scholar] [CrossRef]
- Kabore, A.F.; Sun, J.; Hu, X.; McCrea, K.; Johnston, J.B.; Gibson, S.B. The TRAIL Apoptotic Pathway Mediates Proteasome Inhibitor Induced Apoptosis in Primary Chronic Lymphocytic Leukemia Cells. Apoptosis 2006, 11, 1175–1193. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Jiang, G.; Gong, W.; Qian, H.; Zou, C. Proteasome Inhibitor MG132 Enhances TRAIL-Induced Apoptosis and Inhibits Invasion of Human Osteosarcoma OS732 Cells. Biochem. Biophys. Res. Commun. 2013, 439, 179–186. [Google Scholar] [CrossRef]
- Mofers, A.; Pellegrini, P.; Linder, S.; D’Arcy, P. Proteasome-Associated Deubiquitinases and Cancer. Cancer Metastasis Rev. 2017, 36, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, R.J. Proteotoxic Crisis, the Ubiquitin-Proteasome System, and Cancer Therapy. BMC Biol. 2014, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.J.; Mendoza, A.; Koyen, A.; Lizardo, M.M.; Ren, L.; Waybright, T.J.; Hansen, R.J.; Gustafson, D.L.; Zhou, M.; Fan, T.M.; et al. MTOR Inhibition Mitigates Enhanced MRNA Translation Associated with the Metastatic Phenotype of Osteosarcoma Cells In Vivo. Clin. Cancer Res. 2016, 22, 6129–6141. [Google Scholar] [CrossRef] [PubMed]
- Guang, M.H.Z.; Kavanagh, E.; Dunne, L.; Dowling, P.; Zhang, L.; Lindsay, S.; Bazou, D.; Goh, C.; Hanley, C.; Bianchi, G.; et al. Targeting Proteotoxic Stress in Cancer: A Review of the Role That Protein Quality Control Pathways Play in Oncogenesis. Cancers 2019, 11, 66. [Google Scholar] [CrossRef]
- Liang, D.; Khoonkari, M.; Avril, T.; Chevet, E.; Kruyt, F.A. The Unfolded Protein Response as Regulator of Cancer Stemness and Differentiation: Mechanisms and Implications for Cancer Therapy. Biochem. Pharmacol. 2021, 192, 114737. [Google Scholar] [CrossRef]
- Choy, M.S.; Yusoff, P.; Lee, I.C.J.; Newton, J.C.; Goh, C.W.; Page, R.; Shenolikar, S.; Peti, W. Structural and Functional Analysis of the GADD34:PP1 EIF2α Phosphatase. Cell Rep. 2015, 11, 1885–1891. [Google Scholar] [CrossRef]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef]
- Obeng, E.A.; Carlson, L.M.; Gutman, D.M.; Harrington, W.J., Jr.; Lee, K.P.; Boise, L.H. Proteasome Inhibitors Induce a Terminal Unfolded Protein Response in Multiple Myeloma Cells. Blood 2006, 107, 4907–4916. [Google Scholar] [CrossRef]
- Orlowski, R.Z.; Kuhn, D.J. Proteasome Inhibitors in Cancer Therapy: Lessons from the First Decade. Clin. Cancer Res. 2008, 14, 1649–1657. [Google Scholar] [CrossRef]
- PM, V.; RZ, O. The Proteasome and Proteasome Inhibitors in Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 189–213. [Google Scholar] [CrossRef]
- Sterz, J.; von Metzler, I.; Hahne, J.-C.; Lamottke, B.; Rademacher, J.; Heider, U.; Terpos, E.; Sezer, O. The Potential of Proteasome Inhibitors in Cancer Therapy. Expert Opin. Investig. Drugs 2008, 17, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Kubiczkova, L.; Pour, L.; Sedlaříková, L.; Hajek, R.; Sevcikova, S. Proteasome Inhibitors-Molecular Basis and Current Perspectives in Multiple Myeloma. J. Cell. Mol. Med. 2014, 18, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-Z.; Ziffra, J.; Stennett, L.; Bodner, B.; Bonish, B.K.; Chaturvedi, V.; Bennett, F.; Pollock, P.; Trent, J.M.; Hendrix, M.J.C.; et al. Proteasome Inhibitors Trigger NOXA-Mediated Apoptosis in Melanoma and Myeloma Cells. Cancer Res. 2005, 65, 6282–6293. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog Models of Naturally Occurring Cancer. Trends Mol. Med. 2011, 17, 380. [Google Scholar] [CrossRef]
- Beck, J.; Ren, L.; Huang, S.; Berger, E.; Bardales, K.; Mannheimer, J.; Mazcko, C.; LeBlanc, A. Canine and Murine Models of Osteosarcoma. Vet. Pathol. 2022, 59, 399–414. [Google Scholar] [CrossRef]
- Simpson, S.; Dunning, M.D.; de Brot, S.; Grau-Roma, L.; Mongan, N.P.; Rutland, C.S. Comparative Review of Human and Canine Osteosarcoma: Morphology, Epidemiology, Prognosis, Treatment and Genetics. Acta Vet. Scand. 2017, 59, 71. [Google Scholar] [CrossRef]
- Fenger, J.M.; London, C.A.; Kisseberth, W.C. Canine Osteosarcoma: A Naturally Occurring Disease to Inform Pediatric Oncology. ILAR J. 2014, 55, 69–85. [Google Scholar] [CrossRef]
- Paoloni, M.; Davis, S.; Lana, S.; Withrow, S.; Sangiorgi, L.; Picci, P.; Hewitt, S.M.; Triche, T.; Meltzer, P.; Khanna, C. Canine Tumor Cross-Species Genomics Uncovers Targets Linked to Osteosarcoma Progression. BMC Genom. 2009, 10, 625. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Mazcko, C.N. Improving Human Cancer Therapy through the Evaluation of Pet Dogs. Nat. Rev. Cancer 2020, 20, 727–742. [Google Scholar] [CrossRef]
- Curran, M.P.; McKeage, K. Bortezomib. Drugs 2012, 69, 859–888. [Google Scholar] [CrossRef]
- Shapovalov, Y.; Benavidez, D.; Zuch, D.; Eliseev, R. Proteasome Inhibition with Bortezomib Suppresses Growth and Induces Apoptosis in Osteosarcoma. Int. J. Cancer 2010, 127, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G.; Kraft, A.S.; Scheu, K.; Yamada, J.; Wadler, S.; Antonescu, C.R.; Wright, J.J.; Schwartz, G.K. A Multicenter Phase II Study of Bortezomib in Recurrent or Metastatic Sarcomas. Cancer 2005, 103, 1431–1438. [Google Scholar] [CrossRef]
- Xian, M.; Cao, H.; Cao, J.; Shao, X.; Zhu, D.; Zhang, N.; Huang, P.; Li, W.; Yang, B.; Ying, M.; et al. Bortezomib Sensitizes Human Osteosarcoma Cells to Adriamycin-Induced Apoptosis through ROS-Dependent Activation of p-EIF2α/ATF4/CHOP Axis. Int. J. Cancer 2017, 141, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Bortezomib in Treating Patients with Advanced or Metastatic Sarcoma-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00027716?term=osteosarcoma&cond=bortezomib&draw=2&rank=1 (accessed on 12 September 2021).
- Bortezomib and Gemcitabine in Treating Older Patients with Advanced Solid Tumors-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00620295?term=osteosarcoma&cond=bortezomib&draw=2&rank=2 (accessed on 12 September 2021).
- Park, J.E.; Miller, Z.; Jun, Y.; Lee, W.; Kim, K.B. Next-Generation Proteasome Inhibitors for Cancer Therapy. Transl. Res. 2018, 198, 1–16. [Google Scholar] [CrossRef]
- Somarelli, J.A.; Rupprecht, G.; Altunel, E.; Flamant, E.M.; Rao, S.; Sivaraj, D.; Lazarides, A.L.; Hoskinson, S.M.; Sheth, M.U.; Cheng, S.; et al. A Comparative Oncology Drug Discovery Pipeline to Identify and Validate New Treatments for Osteosarcoma. Cancers 2020, 12, 3335. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.J.; Nerlakanti, N.; Lo, C.H.; Tauro, M.; Utset-Ward, T.J.; Reed, D.R.; Lynch, C.C. Histone Deacetylase Inhibition Prevents the Growth of Primary and Metastatic Osteosarcoma. Int. J. Cancer 2020, 147, 2811–2823. [Google Scholar] [CrossRef]
- Brown, J.; Plummer, R.; Bauer, T.M.; Anthony, S.; Sarantopoulos, J.; Vos, F.; White, M.; Schupp, M.; Ou, Y.; Vaishampayan, U. Pharmacokinetics of Carfilzomib in Patients with Advanced Malignancies and Varying Degrees of Hepatic Impairment: An Open-Label, Single-Arm, Phase 1 Study. Exp. Hematol. Oncol. 2017, 6, 27. [Google Scholar] [CrossRef]
- Thakur, S.; Ruan, Y.; Jayanthan, A.; Boklan, J.; Narendran, A. Cytotoxicity and Target Modulation in Pediatric Solid Tumors by the Proteasome Inhibitor Carfilzomib. Curr. Cancer Drug Targets 2021, 21, 804–811. [Google Scholar] [CrossRef]
- Extended Infusion Carfilzomib on a Weekly Schedule in Patients with Advanced Solid Tumors-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02257476?term=solid+tumors&cond=carfilzomib&draw=2&rank=3 (accessed on 20 September 2021).
- Phase 1b/2 Study of Carfilzomib in Relapsed Solid Tumors, Multiple Myeloma, or Lymphoma. Available online: https://clinicaltrials.gov/ct2/show/NCT00531284?term=solid+tumors&cond=carfilzomib (accessed on 20 September 2021).
- Lei, L.; Zhang, Y.; Jian, Q.; Lei, L.; Lv, N.; Williamson, R.A.; Chen, P.; Zhang, D.; Hu, J. Resistance of Osteosarcoma Cells to the Proapoptotic Effects of Carfilzomib Involves Activation of Mitogen Activated Protein Kinase Pathways. Exp. Physiol. 2021, 106, 438–449. [Google Scholar] [CrossRef]
- Carfilzomib in Combination with Cyclophosphamide and Etoposide for Children-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02512926?term=solid+tumors&cond=carfilzomib&draw=2&rank=1 (accessed on 20 September 2021).
- Gupta, N.; Hanley, M.J.; Venkatakrishnan, K.; Perez, R.; Norris, R.E.; Nemunaitis, J.; Yang, H.; Qian, M.G.; Falchook, G.; Labotka, R.; et al. Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Solid Tumour Patients with Moderate or Severe Hepatic Impairment. Br. J. Clin. Pharmacol. 2016, 82, 728. [Google Scholar] [CrossRef]
- Wilson-Robles, H.; Miller, T.; Sima, C.; Bittner, M. Evaluation of Two Novel Therapeutics against Human and Canine Osteosarcoma. Available online: https://www.researchsquare.com/article/rs-51104/v1 (accessed on 12 September 2021).
- Harris, M.A.; Miles, M.A.; Shekhar, T.M.; Cerra, C.; Georgy, S.R.; Ryan, S.D.; Cannon, C.M.; Hawkins, C.J. The Proteasome Inhibitor Ixazomib Inhibits the Formation and Growth of Pulmonary and Abdominal Osteosarcoma Metastases in Mice. Cancers 2020, 12, 1207. [Google Scholar] [CrossRef] [PubMed]
- Study of Ixazomib and Erlotinib in Solid Tumors-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02942095?term=Ixazomib&cond=solid+tumors&draw=1&rank=1 (accessed on 27 September 2021).
- MLN9708 and Vorinostat in Patients with Advanced P53 Mutant Malignancies-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02042989?term=Ixazomib&cond=solid+tumors&draw=1&rank=6 (accessed on 27 September 2021).
- Wang, Y.; Janku, F.; Piha-Paul, S.; Hess, K.; Broaddus, R.; Liu, L.; Shi, N.; Overman, M.; Kopetz, S.; Subbiah, V.; et al. Phase I Studies of Vorinostat with Ixazomib or Pazopanib Imply a Role of Antiangiogenesis-Based Therapy for TP53 Mutant Malignancies. Sci. Rep. 2020, 10, 3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaney, S.M.; Bernstein, M.; Neville, K.; Ginsberg, J.; Kitchen, B.; Horton, T.; Berg, S.L.; Krailo, M.; Adamson, P.C. Phase I Study of the Proteasome Inhibitor Bortezomib in Pediatric Patients with Refractory Solid Tumors: A Children’s Oncology Group Study (ADVL0015). J. Clin. Oncol. 2016, 22, 4752–4757. [Google Scholar] [CrossRef] [PubMed]
- Bortezomib With Gemcitabine/Doxorubicin in Patients with Urothelial Cancer and Other Solid Tumors-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00479128?recrs=d&cond=bortezomib+in+metastatic+tumors&draw=2&rank=2 (accessed on 25 May 2022).
- Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; van Leeuwen, F.; Chanan-Khan, A.A.; et al. Potent Activity of Carfilzomib, a Novel, Irreversible Inhibitor of the Ubiquitin-Proteasome Pathway, against Preclinical Models of Multiple Myeloma. Blood 2007, 110, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.; Martin, T.; Nooka, A.; Harvey, R.D.; Vij, R.; Niesvizky, R.; Badros, A.Z.; Jagannath, S.; McCulloch, L.; Rajangam, K.; et al. Integrated Safety Profile of Single-Agent Carfilzomib: Experience from 526 Patients Enrolled in 4 Phase II Clinical Studies. Haematologica 2013, 98, 1753. [Google Scholar] [CrossRef] [PubMed]
- A Study of Extended Carfilzomib Therapy for Patients Previously Enrolled in Carfilzomib Treatment Protocols-Study Results -ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00884312?term=solid+tumors&cond=carfilzomib&draw=2&rank=4 (accessed on 20 September 2021).
- Moreau, P.; Masszi, T.; Grzasko, N.; Bahlis, N.J.; Hansson, M.; Pour, L.; Sandhu, I.; Ganly, P.; Baker, B.W.; Jackson, S.R.; et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 374, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Kupperman, E.; Lee, E.C.; Cao, Y.; Bannerman, B.; Fitzgerald, M.; Berger, A.; Yu, J.; Yang, Y.; Hales, P.; Bruzzese, F.; et al. Evaluation of the Proteasome Inhibitor MLN9708 in Preclinical Models of Human Cancer. Cancer Res. 2010, 70, 1970–1980. [Google Scholar] [CrossRef]
- Gupta, N.; Hanley, M.J.; Venkatakrishnan, K.; Wang, B.; Sharma, S.; Bessudo, A.; Hui, A.-M.; Nemunaitis, J. The Effect of a High-Fat Meal on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Patients with Advanced Solid Tumors or Lymphoma. J. Clin. Pharmacol. 2016, 56, 1288–1295. [Google Scholar] [CrossRef]
- Pharmacokinetics Study of Oral Ixazomib (MLN9708) in Relapsed/Refractory Multiple Myeloma and Advanced Solid Tumors Participants with Normal Renal Function or Severe Renal Impairment-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01830816 (accessed on 20 September 2021).
- Gupta, N.; Zhang, S.; Pusalkar, S.; Plesescu, M.; Chowdhury, S.; Hanley, M.J.; Wang, B.; Xia, C.; Zhang, X.; Venkatakrishnan, K.; et al. A Phase I Study to Assess the Mass Balance, Excretion, and Pharmacokinetics of [14C]-Ixazomib, an Oral Proteasome Inhibitor, in Patients with Advanced Solid Tumors. Investig. New Drugs 2018, 36, 407–415. [Google Scholar] [CrossRef]
- Dolloff, N.G. Emerging Therapeutic Strategies for Overcoming Proteasome Inhibitor Resistance. Adv. Cancer Res. 2015, 127, 191–226. [Google Scholar] [CrossRef]
- Phase 1 Study of Oprozomib Administered Orally in Patients with Advanced Refractory or Recurrent Solid Tumors-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01129349?term=solid+tumors&cond=oprozomib&draw=2&rank=1 (accessed on 27 September 2021).
- Phase I Study of the Proteosome Inhibitor CEP 18770 in Patients with Solid Tumours or Non-Hodgkin’s Lymphomas-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00572637?term=solid+tumors&cond=delanzomib&draw=2&rank=1 (accessed on 27 September 2021).
- Lee, H.K.; Park, S.-H.; Nam, M.J. Proteasome Inhibitor MG132 Induces Apoptosis in Human Osteosarcoma U2OS Cells. Hum. Exp. Toxicol. 2021, 40, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-B.; Yang, D.-S.; Gao, X.; Feng, J.; Shi, Z.-L.; Ye, Z. Caspase-8 Dependent Osteosarcoma Cell Apoptosis Induced by Proteasome Inhibitor MG132. Cell Biol. Int. 2007, 31, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.J.; Khanna, C. Osteosarcoma Genetics and Epigenetics: Emerging Biology and Candidate Therapies. Crit. Rev. Oncog. 2015, 20, 173. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, Q.; Yuan, Q.; Jia, M.; Niu, H.; Liu, X.; Zhang, J.; Young, C.Y.; Yuan, H. Proteasome Inhibition Boosts Autophagic Degradation of Ubiquitinated-AGR2 and Enhances the Antitumor Efficiency of Bevacizumab. Oncogene 2019, 38, 3458–3474. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Gu, Y.; Ta, L.; Wang, K.; Xu, Z. Induction of Autophagy by the MG-132 Proteasome Inhibitor Is Associated with Endoplasmic Reticulum Stress in MCF-7 Cells. Mol. Med. Rep. 2016, 13, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Vianello, C.; Cocetta, V.; Catanzaro, D.; Dorn, G.W.; de Milito, A.; Rizzolio, F.; Canzonieri, V.; Cecchin, E.; Roncato, R.; Toffoli, G.; et al. Cisplatin Resistance Can Be Curtailed by Blunting Bnip3-Mediated Mitochondrial Autophagy. Cell Death Dis. 2022, 13, 398. [Google Scholar] [CrossRef]
- Schott, C.R.; Ludwig, L.; Mutsaers, A.J.; Foster, R.A.; Wood, G.A. The Autophagy Inhibitor Spautin-1, Either Alone or Combined with Doxorubicin, Decreases Cell Survival and Colony Formation in Canine Appendicular Osteosarcoma Cells. PLoS ONE 2018, 13, e0206427. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Wu, B.; Yang, Y.; Lai, F.; Chen, X.; Xiao, Z. Design, Synthesis and Biological Evaluation of Triaryl Compounds as Novel 20S Proteasome Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127508. [Google Scholar] [CrossRef] [PubMed]
- Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L.; et al. Tumor Vascular Targeted Liposomal-Bortezomib Minimizes Side Effects and Increases Therapeutic Activity in Human Neuroblastoma. J. Control. Release 2015, 211, 44–52. [Google Scholar] [CrossRef]
- Zhang, X.; Linder, S.; Bazzaro, M. Drug Development Targeting the Ubiquitin–Proteasome System (UPS) for the Treatment of Human Cancers. Cancers 2020, 12, 902. [Google Scholar] [CrossRef]
- Lai, K.P.; Chen, J.; Tse, W.K.F. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int. J. Mol. Sci. 2020, 21, 2548. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Cai, H.; Yang, W.; Lei, H.; Xu, H.; Wang, W.; Zhu, Q.; Kang, J.; Yin, T.; et al. Targeting USP9x/SOX2 Axis Contributes to the Anti-Osteosarcoma Effect of Neogambogic Acid. Cancer Lett. 2020, 469, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, H.; Zhong, N.; Jiang, Z.; Xu, L.; Deng, Y.; Jiang, Z.; Wang, H.; Wang, J. Gene Silencing of USP1 by Lentivirus Effectively Inhibits Proliferation and Invasion of Human Osteosarcoma Cells. Int. J. Oncol. 2016, 49, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xiong, M.; Dai, G.; Yu, L.; Zhang, Z.; Chen, J.; Guo, W. MicroRNA-192-5p Suppresses the Initiation and Progression of Osteosarcoma by Targeting USP1. Oncol. Lett. 2018, 15, 6947–6956. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, W.; Li, J. USP17 Is Upregulated in Osteosarcoma and Promotes Cell Proliferation, Metastasis, and Epithelial–Mesenchymal Transition through Stabilizing SMAD4. Tumor Biol. 2017, 39, 1–10. [Google Scholar] [CrossRef]
- Luu, A.K.; Cadieux, M.; Wong, M.; Macdonald, R.; Jones, R.; Choi, D.; Oblak, M.; Brisson, B.; Sauer, S.; Chafitz, J.; et al. Proteomic Assessment of Extracellular Vesicles from Canine Tissue Explants as a Pipeline to Identify Molecular Targets in Osteosarcoma: PSMD14/Rpn11 as a Proof of Principle. Int. J. Mol. Sci. 2022, 23, 3256. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, Y.; Zhou, X.; Xu, J.; Zhu, W.; Shu, Y.; Liu, P. Efficacy of Therapy with Bortezomib in Solid Tumors: A Review Based on 32 Clinical Trials. Future Oncol. 2014, 10, 1795–1807. [Google Scholar] [CrossRef]
- Meister, S.; Schubert, U.; Neubert, K.; Herrmann, K.; Burger, R.; Gramatzki, M.; Hahn, S.; Schreiber, S.; Wilhelm, S.; Herrmann, M.; et al. Extensive Immunoglobulin Production Sensitizes Myeloma Cells for Proteasome Inhibition. Cancer Res. 2007, 67, 1783–1792. [Google Scholar] [CrossRef]
- Annunziata, C.M.; Davis, R.E.; Demchenko, Y.; Bellamy, W.; Gabrea, A.; Zhan, F.; Lenz, G.; Hanamura, I.; Wright, G.; Xiao, W.; et al. Frequent Engagement of the Classical and Alternative NF-ΚB Pathways by Diverse Genetic Abnormalities in Multiple Myeloma. Cancer Cell 2007, 12, 115–130. [Google Scholar] [CrossRef]
- Keats, J.J.; Fonseca, R.; Chesi, M.; Schop, R.; Baker, A.; Chng, W.-J.; van Wier, S.; Tiedemann, R.; Shi, C.-X.; Sebag, M.; et al. Promiscuous Mutations Activate the Noncanonical NF-ΚB Pathway in Multiple Myeloma. Cancer Cell 2007, 12, 131–144. [Google Scholar] [CrossRef]
- Zagirova, D.; Autenried, R.; Nelson, M.E.; Rezvani, K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J. Cancer 2021, 12, 2472. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.C.; Harris, C.P.; Lu, X.-Y.; Perlaky, L.; Gogineni, S.; Chintagumpala, M.; Hicks, J.; Johnson, M.E.; Davino, N.A.; Huvos, A.G.; et al. Frequent Amplification and Rearrangement of Chromosomal Bands 6p12-P21 and 17p11.2 in Osteosarcoma. Genes Chromosomes Cancer 2004, 39, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Bridge, J.A.; Nelson, M.; McComb, E.; McGuire, M.H.; Rosenthal, H.; Vergara, G.; Maale, G.E.; Spanier, S.; Neff, J.R. Cytogenetic Findings in 73 Osteosarcoma Specimens and a Review of the Literature. Cancer Genet. Cytogenet. 1997, 95, 74–87. [Google Scholar] [CrossRef]
- Muff, R.; Rath, P.; Kumar, R.M.R.; Husmann, K.; Born, W.; Baudis, M.; Fuchs, B. Genomic Instability of Osteosarcoma Cell Lines in Culture: Impact on the Prediction of Metastasis Relevant Genes. PLoS ONE 2015, 10, e0125611. [Google Scholar] [CrossRef] [PubMed]
- Maeda, J.; Yurkon, C.R.; Fujisawa, H.; Kaneko, M.; Genet, S.C.; Roybal, E.J.; Rota, G.W.; Saffer, E.R.; Rose, B.J.; Hanneman, W.H.; et al. Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells. PLoS ONE 2012, 7, e43355. [Google Scholar] [CrossRef]
- Torres, E.M.; Sokolsky, T.; Tucker, C.M.; Chan, L.Y.; Boselli, M.; Dunham, M.J.; Amon, A. Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast. Science 2007, 317, 916–924. [Google Scholar] [CrossRef]
- Oromendia, A.B.; Dodgson, S.E.; Amon, A. Aneuploidy Causes Proteotoxic Stress in Yeast. Genes Dev. 2012, 26, 2696–2708. [Google Scholar] [CrossRef]
- Levine, R.A.; Forest, T.; Smith, C. Tumor Suppressor PTEN Is Mutated in Canine Osteosarcoma Cell Lines and Tumors. Vet. Pathol. 2002, 39, 372–378. [Google Scholar] [CrossRef]
- Moriarity, B.S.; Otto, G.M.; Rahrmann, E.P.; Rathe, S.K.; Wolf, N.K.; Weg, M.T.; Manlove, L.A.; LaRue, R.S.; Temiz, N.A.; Molyneux, S.D.; et al. A Sleeping Beauty Forward Genetic Screen Identifies New Genes and Pathways Driving Osteosarcoma Development and Metastasis. Nat. Genet. 2015, 47, 615–624. [Google Scholar] [CrossRef]
- Freeman, S.S.; Allen, S.W.; Ganti, R.; Wu, J.; Ma, J.; Su, X.; Neale, G.; Dome, J.S.; Daw, N.C.; Khoury, J.D. Copy number gains in egfr and copy number losses in pten are common events in osteosarcoma tumors. Cancer 2008, 113, 1453. [Google Scholar] [CrossRef]
- Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational Biology of Osteosarcoma. Nat. Rev. Cancer. 2014, 14, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.-Y.; Pan, Y.-F.; Wan, Z.-H.; Lin, Y.-K.; Zhu, B.; Yuan, Z.-G.; Ma, Y.-H.; Shi, Y.-Y.; Zeng, T.-M.; Dong, L.-W.; et al. PTEN Status Determines Chemosensitivity to Proteasome Inhibition in Cholangiocarcinoma. Sci. Transl. Med. 2020, 12, eaay0152. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hendershot, L.M. The Role of the Unfolded Protein Response in Tumor Development: Friend or Foe? Nat. Rev. Cancer 2004, 4, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Siwecka, N.; Rozpędek, W.; Pytel, D.; Wawrzynkiewicz, A.; Dziki, A.; Dziki, Ł.; Diehl, J.A.; Majsterek, I. Dual Role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int. J. Mol. Sci. 2019, 20, 4354. [Google Scholar] [CrossRef]
- Chaiyawat, P.; Sungngam, P.; Teeyakas, P.; Sirikaew, N.; Klangjorhor, J.; Settakorn, J.; Diskul-Na-Ayudthaya, P.; Chokchaichamnankit, D.; Srisomsap, C.; Svasti, J.; et al. Protein Profiling of Osteosarcoma Tissue and Soft Callus Unveils Activation of the Unfolded Protein Response Pathway. Int. J. Oncol. 2019, 54, 1704–1718. [Google Scholar] [CrossRef]
- Lizardo, M.M.; Morrow, J.J.; Miller, T.E.; Hong, E.S.; Ren, L.; Mendoza, A.; Halsey, C.H.; Scacheri, P.C.; Helman, L.J.; Khanna, C. Upregulation of Glucose-Regulated Protein 78 in Metastatic Cancer Cells Is Necessary for Lung Metastasis Progression. Neoplasia 2016, 18, 699–710. [Google Scholar] [CrossRef]
- Yarapureddy, S.; Abril, J.; Foote, J.; Kumar, S.; Asad, O.; Sharath, V.; Faraj, J.; Daniel, D.; Dickman, P.; White-Collins, A.; et al. ATF6α Activation Enhances Survival against Chemotherapy and Serves as a Prognostic Indicator in Osteosarcoma. Neoplasia 2019, 21, 516. [Google Scholar] [CrossRef]
- Yan, M.; Ni, J.; Song, D.; Ding, M.; Huang, J. Activation of Unfolded Protein Response Protects Osteosarcoma Cells from Cisplatin-Induced Apoptosis through NF-ΚB Pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 10204. [Google Scholar]
- Luo, J.; Xia, Y.; Luo, J.; Li, J.; Zhang, C.; Ma, T.; Yang, L.; Kong, L. GRP78 Inhibition Enhances ATF4-Induced Cell Death by the Deubiquitination and Stabilization of CHOP in Human Osteosarcoma. Cancer Lett. 2017, 410, 112–123. [Google Scholar] [CrossRef]
- Wang, E.R. Targeting Heat Shock Proteins 70/90 and Proteasome for Cancer Therapy. Curr. Med. Chem. 2011, 18, 4250–4264. [Google Scholar] [CrossRef]
- Rodrigues, J.; Sarmento, B.; Pereira, C.L. Osteosarcoma Tumor Microenvironment: The Key for the Successful Development of Biologically Relevant 3D in Vitro Models. In Vitro Models 2022, 1, 5–27. [Google Scholar] [CrossRef]
- Benvenuto, M.; Ciuffa, S.; Focaccetti, C.; Sbardella, D.; Fazi, S.; Scimeca, M.; Tundo, G.R.; Barillari, G.; Segni, M.; Bonanno, E.; et al. Proteasome Inhibition by Bortezomib Parallels a Reduction in Head and Neck Cancer Cells Growth, and an Increase in Tumor-Infiltrating Immune Cells. Sci. Rep. 2021, 11, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Qiao, Z.; Kong, Y.; Liang, H.; Sun, Y.; Lu, H.; Xu, Z.; Liu, H. Modulating Proteasome Inhibitor Tolerance in Multiple Myeloma: An Alternative Strategy to Reverse Inevitable Resistance. Br. J. Cancer 2020, 124, 770–776. [Google Scholar] [CrossRef] [PubMed]
Agent | Disease Agent is Approved for | Key Findings from In Vitro Studies | Key Findings from In Vivo Studies | Key Findings from Human Trials or Current Clinical Trials |
---|---|---|---|---|
Bortezomib [MLN-341; PS-341; Velcade®] | First-line therapy for MM in combination with an alkylating agent and a corticosteroid. Second-line therapy for MM alone. Second-line therapy for MCL alone, in patients who received at least one previous therapy [81]. | OS cell line sensitivity: Canine (D17, OSCA8, OSCA40, OSCA78) and human (SaOS2, SJSA1, OS9, OS17) cell lines treated for 48 hrs showed high sensitivity [45]. | Human OS xenograft apoptosis: 143B luciferase-expressing cells grown in Nu/Nu mice. After 3 weeks, bortezomib treatment reduced growth and induced OS cell apoptosis. These results correlated with increased immunoreactivity for BAX [82]. | Human Trials: A multicenter phase II study of bortezomib in recurrent or metastatic sarcoma patients. All patients had not received chemotherapy for metastatic disease. One leiomyosarcoma patient had a partial response. A single OS patient was included but their response was not specified [83]. |
Canine OS apoptosis and cell cycle arrest: Bortezomib inhibited proteasome activity and caused caspase-dependent cell death after treatment for 24 hrs. G2 cell cycle arrest occurred after 7 to 24 h [45]. | Co-treatment in Human OS xenografts: KHOS/NP cells were injected into Nu/Nu mice. The combination of bortezomib and doxorubicin resulted in significant tumor growth inhibition and activated the ROS and p-eIF2α/ATF4/CHOP axis in the UPR pathway [84]. | Ongoing clinical trials: Bortezomib is being investigated alone (Phase II; NCT00027716) and in combination with the chemotherapeutic agent gemcitabine hydrocholoride (Phase II; NCT00620295) in patients with advanced or metastatic tumors [85,86]. | ||
Human OS apoptosis and autophagy: Bortezomib treatment of HOS cells for up to 48 h induced growth inhibition in a time- and dose-dependent manner, and autophagy and apoptosis in a dose-dependent manner [47]. | ||||
Co-treatment in canine OS: Bortezomib in combination with doxorubicin or carboplatin exerts more potent cytotoxicity than either agent alone on canine OS cells [45]. | ||||
Carfilzomib [PR-171; Kyprolis®] | Approved as a second-line therapy for relapsed and/or refractory MM [87]. | OS cell line sensitivity: Canine (D17, OSCA8, OSCA40. OSCA78) and human (SaOS2, SJSA1, OS9, OS17) cell lines exposed to carfilzomib for 48 hrs respond comparably to bortezomib [45]. An average of >95% cytotoxic effect by carfilzomib in both canine (Abrams, Moresco, D17, D418) and human (143B, MG63, SAOS, U2OS, 17-3X) OS cells [88]. | Co-treatment in OS xenografts: K7M2 or SAOS2-LM7 luciferase-expressing cells were injected into BalB/c or NSG mice, respectively. Carfilzomib, as a single agent, had no effect on primary or metastatic OS growth. However, the combination of carfilzomib and panobinostat attenuated metastatic growth [89]. | Human Trials: Patients with normal hepatic function (normal) or hepatic impairment (mild, moderate, or severe) received carfilzomib infusions in 28-day cycles. Exacerbation of hepatic disfunction was observed in patients with mild and moderate hepatic impairment versus normal hepatic function patients. However, differences were not statistically significant [90]. |
Effectivity in cells with treatment resistance and metastatic properties. Carfilzomib had cytotoxic effects on pediatric solid tumor cell lines, including OS cells. Combination with chemotherapeutic agents enhanced the effects [91]. | Ongoing clinical trials evaluating safety, tolerability, and PK: A phase I study (NCT01949545) aims to find the safest dose level of carfilzomib in advanced solid tumors when given over a different period of time (days 1, 8, 15 of a 21-day cycle) compared to the typical dosing schedule (dosed on days 1, 2, 8, 9, 15, and 16 of a 28-day cycle to a maximum of 12 cycles) [92]. A phase 1b/2 study (NCT00531284) is evaluating the overall response rate (ORR) after four cycles of carfilzomib in patients with relapsed solid tumors, MM, or lymphoma [93]. | |||
Co-treatment in human OS: Carfilzomib-induced cell death was enhanced when combined with MAPK inhibitors U0126, SP00125, or SB203580 in OS cells. Inhibition of ERK1/2 or JNK MAPK pathways significantly decreased the expression of anti-apoptotic Bcl-2 proteins [94]. | Ongoing clinical trials examining co-treatments: In a phase I trial (NCT02257476), patients receive dexamethasone prior to weekly doses of carfilzomib over a 21-day cycle [92]. In another phase I trial (NCT02512926), pediatric patients with relapsed and/or refractory tumors receive carfilzomib in combination with cyclophosphamide and etoposide to examine dose-limiting toxicities (DLTs) until the maximum tolerated dose (MTD) is reached [95]. | |||
Ixazomib [MLN-9708; Ninlaro®] | Approved in combination with lenalidomide and dexamethasone for the treatment of MM after at least one prior therapy [96]. | OS cell line sensitivity: Canine (D17, OSCA8, OSCA40, OSCA78) and human (SaOS2, SJSA1, OS9, OS17) cell lines were incubated for 48 h with ixazomib and cells showed less sensitivity in comparison to bortezomib [45]. | Single agent in OS xenografts: Canine (MCKOS and Abrams) and human (HOS and 143B) cells were injected into athymic nude female mice. Ixazomib inhibited growth and metastases in 143B cells [97]. | Human Trials: A phase I trial assessed whether the PK of ixazomib would be altered if administered after a high-calorie, high-fat meal. The results support the administration of ixazomib on an empty stomach, at least 1 h before or at least 2 h after food [95]. |
Co-treatment in OS cells: Ixazomib alone and in combination with SH4-54 [97]. | Co-treatment in OS xenografts: The combination of ixazomib with SH4-54 inhibited growth of canine MCKOS cells grown bilaterally in the flank of athymic nude mice [97]. In xenografts of luciferase-expressing KRIB or 143B OS cells in athymic nude mice, neither ixazomib nor bortezomib reduced primary KRIB tumor growth, but both inhibited pulmonary metastatic growth. Only ixazomib slowed KRIB metastases and inhibited the growth of 143B pulmonary and abdominal metastases, significantly enhancing the survival of mice injected with 143B cells [98]. | Ongoing and completed clinical trials: A phase I trial (NCT02942095) is assessing the MTD of ixazomib in combination with erlotinib in patients with advanced cancer over a 28-day cycle [99]. In a completed phase I trial (NCT02042989), patients with advanced p53 mutant malignancies were administered ixazomib in combination with vorinostat over a 28-day cycle [100]. This did not elicit an objective response in any of the patients and was associated with poor PFS and overall survival [101]. |
Agent | Key Findings from In Vitro Studies | Key Findings from In Vivo Studies | Key Findings from Human Trials or Current Clinical Trials |
---|---|---|---|
Oprozomib [ONX-0912] and Delanzomib [CEP-18770] | OS cell line sensitivity: IC50 in canine (D17, OSCA8, OSCA40, OSCA78) and human (SaOS2, SJSA1, OS9, OS17) cell lines were <10 nM for both inhibitors, but 2–3 times higher than the IC50 for bortezomib [45]. | No data on the efficacy of oprozomib and delanzomib in vivo to date. | Ongoing clinical trials: A phase I study (NCT01129349) is assessing the oral administration of oprozomib in patients with advanced refractory or recurrent solid tumors [113]. Another phase I trial (NCT00572637) is assessing the safety, tolerability, PK, and PD of delanzomib given intravenously as a single agent in patients with advanced, incurable solid tumors [114]. |
MG132 | Human OS apoptosis: Suppressed proliferation and induced apoptosis in human (U2OS) OS cells. This is accompanied by the downregulation of the NF-κB pathway and anti-apoptotic proteins. Its effect on TRAIL-induced apoptosis in human (OS732) OS cells associates with upregulation of DR5 expression and suppression of invasion capabilities [115]. | Co-treatment in OS cells: The combination of MG132 with cisplatin significantly inhibited tumor growth with greater efficacy than single-agent treatments in MG-63 and HOS xenografts in Balb/c nude mice [58]. | No current data on the efficacy of MG132 in clinical trials. |
Influence of Rb and p53 on apoptosis: The rescue of Rb gene expression into human (SaOS2) OS cells protects against MG132-induced apoptosis, while re-expressing p53 potentiates the apoptotic effect induced by MG132 [49]. | |||
PI-1840 | Human OS apoptosis and autophagy: Inhibited the proliferation and induced apoptosis of MG-63 and U2-OS human OS cells, partly due to attenuation of the NF-κB pathway. Induced autophagy, and inhibiting autophagy led to enhanced survival of U2-OS cells. Hindered migration and invasion of the above OS cell lines [57]. | No data on the efficacy of PI-1840 in vivo to date. | No reports on the efficacy of PI-1840 in clinical trials to date. |
Targeted USP | USP Inhibitor | Key Findings from In Vitro Studies | Key Findings from In Vivo Studies |
---|---|---|---|
USP9x | Neogambogic acid (NGA) | NGA significantly inhibited the proliferation of OS cells and promoted ubiquitin-mediated proteasome degradation of SOX2. USP9x was identified as a deubiquitinase for SOX2, and NGA directly interacts with USP9x in cells. Knockdown of USP9x inhibited the proliferation and colony formation of OS cells [126]. | Knockdown of USP9x inhibited the growth of OS xenografts in mice [126]. |
USP1 | Lentiviral vector harboring RNA interference (RNAi) targeting USP1 [127]. | Significant suppression of the mRNA and protein expression of USP1 in U2OS cells, resulting in inhibition of cell growth, colony formation, and invasion. The suppression of USP1 expression downregulated the expression of many proteins, including Bcl-2 [127]. | No in vivo studies with this or similar viral vectors to date. |
MicroRNA (miR)-192-5p | Low miR-192-5p levels in OS tissues and cell lines (143B, U2OS, hFOB) associate with high levels of USP1. Upregulating miR-192-5p expression inhibited cell proliferation, apoptosis, migration, and invasion, and increased OS cell sensitivity to cisplatin. USP1 was observed to be a direct target gene of miR-192-5p in OS. Upregulating USP1 promoted cell proliferation, migration, and invasion, and decreased cell chemo-sensitivity. This was partially reversed via the overexpression of miR-192-5p in OS cell lines [128]. | No in vivo testing conducted with miR-192-5p to date. | |
USP17 | To our knowledge, USP17 does not have a defined inhibitor. USP17 expression has only been correlated with the stabilization of tumor-suppressor proteins. | USP17 was upregulated in OS tissues and cell lines (MG-63, U2OS). In the latter, it was found to promote proliferation, as well as migration and invasion, via SMAD4-mediated epithelial-mesenchymal transition [129]. | No in vivo testing involving USP17 inhibition to date. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Stiphout, C.M.; Luu, A.K.; Viloria-Petit, A.M. Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers 2022, 14, 4544. https://doi.org/10.3390/cancers14194544
Van Stiphout CM, Luu AK, Viloria-Petit AM. Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers. 2022; 14(19):4544. https://doi.org/10.3390/cancers14194544
Chicago/Turabian StyleVan Stiphout, Cassidy M., Anita K. Luu, and Alicia M. Viloria-Petit. 2022. "Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment" Cancers 14, no. 19: 4544. https://doi.org/10.3390/cancers14194544
APA StyleVan Stiphout, C. M., Luu, A. K., & Viloria-Petit, A. M. (2022). Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers, 14(19), 4544. https://doi.org/10.3390/cancers14194544