De-Escalating the Management of In Situ and Invasive Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. De-Escalation of DCIS Treatment
3. De-Escalation of Surgical Treatment for Invasive Breast Cancer
4. De-Escalation of Surgery after Neoadjuvant Systemic Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.-J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.E.; Okines, A.F.C. De-escalating and escalating systemic therapy of early breast cancer. Breast 2017, 34, S5–S9. [Google Scholar] [CrossRef] [PubMed]
- van Seijen, M.; Precision on behalf of the PRECISION team; Lips, E.H.; Thompson, A.M.; Nik-Zainal, S.; Futreal, A.; Hwang, E.S.; Verschuur, E.; Lane, J.; Jonkers, J.; et al. Ductal carcinoma in situ: To treat or not to treat, that is the question. Br. J. Cancer 2019, 121, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Lazzeroni, M.; DeCensi, A. De-escalating treatment of low-risk breast ductal carcinoma in situ. J. Clin. Oncol. 2020, 38, 1252–1254. [Google Scholar] [CrossRef]
- Narod, S.A.; Iqbal, J.; Giannakeas, V.; Sopik, V.; Sun, P. Breast Cancer Mortality After a Diagnosis of Ductal Carcinoma In Situ. JAMA Oncol. 2015, 1, 888–896. [Google Scholar] [CrossRef]
- Silverstein, M.J.; Lagios, M.D.; Martino, S.; Lewinsky, B.S.; Craig, P.H.; Beron, P.J.; Gamagami, P.; Waisman, J.R. Outcome after invasive local recurrence in patients with ductal carcinoma in situ of the breast. J. Clin. Oncol. 1998, 16, 1367–1373. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Pinder, S.E.; Ellis, I.O.; Forsyth, S.; Bundred, N.J.; Forbes, J.F.; Bishop, H.; Fentiman, I.S.; George, W.D. Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: Long-term results from the UK/ANZ DCIS trial. Lancet Oncol. 2011, 12, 21–29. [Google Scholar] [CrossRef]
- Wapnir, I.L.; Dignam, J.J.; Fisher, B.; Mamounas, E.P.; Anderson, S.J.; Julian, T.B.; Land, S.R.; Margolese, R.G.; Swain, S.M.; Costantino, J.P.; et al. Long-term outcomes of invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. J. Natl. Cancer Inst. 2011, 103, 478–488. [Google Scholar] [CrossRef]
- Donker, M.; Litiere, S.; Werutsky, G.; Julien, J.P.; Fentiman, I.S.; Agresti, R.; Rouanet, P.; de lara, C.T.; Bartelink, H.; Duez, N.; et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma In Situ: 15-year recurrence rates and outcome after a recurrence, from the EORTC 10853 randomized phase III trial. J. Clin. Oncol. 2013, 31, 4054–4059. [Google Scholar] [CrossRef]
- Wärnberg, F.; Garmo, H.; Emdin, S.; Hedberg, V.; Adwall, L.; Sandelin, K.; Ringberg, A.; Karlsson, P.; Arnesson, L.-G.; Anderson, H.; et al. Effect of radiotherapy after breast-conserving surgery for ductal carcinoma in situ: 20 years follow-up in the randomized SweDCIS Trial. J. Clin. Oncol. 2014, 32, 3613–3618. [Google Scholar] [CrossRef]
- Welch, H.G.; Black, W.C. Using autopsy series to estimate the disease "reservoir" for ductal carcinoma in situ of the breast: How much more breast cancer can we find? Ann. Intern. Med. 1997, 127, 1023–1028. [Google Scholar] [CrossRef]
- Collins, L.C.; Tamimi, R.M.; Baer, H.J.; Connolly, J.L.; Colditz, G.A.; Schnitt, S.J. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: Results from the Nurses’ Health Study. Cancer 2005, 103, 1778–1784. [Google Scholar] [CrossRef]
- Sanders, M.E.; Schuyler, P.A.; Dupont, W.D.; Page, D.L. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 2005, 103, 2481–2484. [Google Scholar] [CrossRef]
- Ryser, M.D.; Weaver, D.L.; Zhao, F.; Worni, M.; Grimm, L.J.; Gulati, R.; Etzioni, R.; Hyslop, T.; Lee, S.J.; Hwang, E.S. Cancer Outcomes in DCIS Patients Without Locoregional Treatment. J. Natl. Cancer Inst. 2019, 111, 952–960. [Google Scholar] [CrossRef]
- Sanders, M.E.; Schuyler, P.A.; Simpson, J.F.; Page, D.L.; Dupont, W.D. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod. Pathol. 2015, 28, 662–669. [Google Scholar] [CrossRef]
- Bleyer, A.; Welch, H.G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef]
- Ernster, V.L.; Barclay, J. Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: A dilemma. J. Natl. Cancer Inst. Monogr. 1997, 1997, 151–156. [Google Scholar] [CrossRef]
- Page, D.L.; Dupont, W.D.; Rogers, L.W.; Landenberger, M. Intraductal carcinoma of the breast: Follow-up after biopsy only. Cancer 1982, 49, 751–758. [Google Scholar] [CrossRef]
- Page, D.L.; Dupont, W.D.; Rogers, L.W.; Jensen, R.A.; Schuyler, P.A. Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer 1995, 76, 1197–1200. [Google Scholar] [CrossRef]
- Eusebi, V.; Foschini, M.P.; Cook, M.G.; Berrino, F.; Azzopardi, J.G. Long-term follow-up of in situ carcinoma of the breast with special emphasis on clinging carcinoma. Semin Diagn. Pathol. 1989, 6, 165–173. [Google Scholar]
- Hwang, E.S.; Hyslop, T.; Hendrix, L.H.; Duong, S.; Bedrosian, I.; Price, E.; Caudle, A.; Hieken, T.; Guenther, J.; Hudis, C.A.; et al. Phase II Single-Arm Study of Preoperative Letrozole for Estrogen Receptor Positive Postmenopausal Ductal Carcinoma In Situ: CALGB 40903 (Alliance). J. Clin. Oncol. 2020, 38, 1284–1292. [Google Scholar] [CrossRef]
- Gourd, E. Preoperative endocrine therapy for ductal carcinoma in situ. Lancet Oncol. 2020, 21, e184. [Google Scholar] [CrossRef]
- Grantzau, T.; Mellemkjaer, L.; Overgaard, J. Second primary cancers after adjuvant radiotherapy in early breast cancer patients: A national population based study under the Danish Breast Cancer Cooperative Group (DBCG). Radiother. Oncol. 2013, 106, 42–49. [Google Scholar] [CrossRef]
- Ganz, P.A.; Cecchini, R.S.; Julian, T.B.; Margolese, R.G.; Costantino, J.P.; Vallow, L.A.; Albain, K.S.; Whitworth, P.W.; Cianfrocca, M.E.; Brufsky, A.M.; et al. Patient-reported outcomes with anastrozole versus tamoxifen for postmenopausal patients with ductal carcinoma in situ treated with lumpectomy plus radiotherapy (NSABP B-35): A randomised, double-blind, phase 3 clinical trial. Lancet 2016, 387, 857–865. [Google Scholar] [CrossRef]
- Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Dodwell, D.; Ewertz, M.; Gray, R.; Jagsi, R.; et al. Estimating the Risks of Breast Cancer Radiotherapy: Evidence from Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials. J. Clin. Oncol. 2017, 35, 1641–1649. [Google Scholar] [CrossRef]
- Elshof, L.E.; Tryfonidis, K.; Slaets, L.; van Leeuwen-Stok, A.E.; Skinner, V.P.; Dif, N.; Pijnappel, R.M.; Bijker, N.; Rutgers, E.J.; Wesseling, J. Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ—The LORD study. Eur. J. Cancer 2015, 51, 1497–1510. [Google Scholar] [CrossRef]
- Hwang, E.S.; Hyslop, T.; Lynch, T.; Frank, E.; Pinto, D.; Basila, D.; Collyar, D.; Bennett, A.; Kaplan, C.; Rosenberg, S.; et al. The COMET (Comparison of Operative versus Monitoring and Endocrine Therapy) trial: A phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS). BMJ Open 2019, 9, e026797.26. [Google Scholar] [CrossRef]
- Francis, A.; Thomas, J.; Fallowfield, L.; Wallis, M.; Bartlett, J.M.S.; Brookes, C.; Roberts, T.; Pirrie, S.; Gaunt, C.; Young, J.; et al. Addressing overtreatment of screen detected DCIS; the LORIS trial. Eur. J. Cancer 2015, 51, 2296–2303. [Google Scholar] [CrossRef]
- Single-Arm Confirmatory Trial of Endocrine Therapy alone for Estrogen Receptor Positive l-Rdcisotbj, LORETTA Trial. Available online: https://upload.umin.ac.jp/cgi-openbin/ctr_e/ctr_view.cgi?recptno=R000032260 (accessed on 9 August 2022).
- Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Krause, M.; Stenbygaard, L.; Mjaaland, I.; Schreiber, A.; Kasti, U.-M.; et al. Hypofractionated Versus Standard Fractionated Radiotherapy in Patients with Early Breast Cancer or Ductal Carcinoma in a Randomized Phase III Trial: The DBCG HYPO Trial. J. Clin. Oncol. 2020, 38, 3615–3625. [Google Scholar] [CrossRef]
- King, M.T.; Link, E.K.; Whelan, T.J.; Olivotto, I.A.; Kunkler, I.; Westenberg, A.H.; Gruber, G.; Schofield, P.; Chua, B.H.; BIG 3-07/TROG 07. 01 trial investigators. Quality of life after breast-conserving therapy and adjuvant radiotherapy for non-low-risk ductal carcinoma in situ (BIG 3-07/TROG 07.01): 2-year results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 685–698. [Google Scholar] [CrossRef]
- McCormick, B.; Winter, K.; Hudis, C.; Kuerer, H.M.; Rakovitch, E.; Smith, B.L.; Sneige, N.; Moughan, J.; Shah, A.; Germain, I.; et al. RTOG 9804: A prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J. Clin. Oncol. 2015, 33, 709–715. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Breast Cancer (Version 3.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed on 9 August 2022).
- Correa, C.; Harris, E.E.; Leonardi, M.C.; Smith, B.D.; Taghian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract. Radiat. Oncol. 2017, 7, 73–79. [Google Scholar] [CrossRef]
- Di Saverio, S.; Catena, F.; Santini, N.; Ansaloni, L.; Fogacci, T.; Mignani, S.; Leone, A.; Gazzotti, F.; Gagliardi, S.; De Cataldis, A.; et al. 259 Patients with DCIS of the breast applying USC/Van Nuys prognostic index: A retrospective review with long term follow up. Breast Cancer Res. Treat. 2008, 109, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Gilleard, O.; Goodman, A.; Cooper, M.; Davies, M.; Dunn, J. The significance of the Van Nuys prognostic index in the management of ductal carcinoma in situ. World J. Surg. Oncol. 2008, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.L.; Wang, M.; Page, D.L.; Gray, R.; Solin, L.J.; Davidson, N.E.; Lowen, M.A.; Ingle, J.N.; Recht, A.; Wood, W.C. Local excision alone without irradiation for ductal carcinoma in situ of the breast: A trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2009, 27, 5319–5324. [Google Scholar] [CrossRef]
- Solin, L.J.; Gray, R.; Hughes, L.L.; Wood, W.C.; Lowen, M.A.; Badve, S.S.; Baehner, F.L.; Ingle, J.N.; Perez, E.A.; Recht, A.; et al. Surgical excision without radiation for ductal carcinoma in situ of the breast: 12-Year results from the ECOG-ACRIN E5194 study. J. Clin. Oncol. 2015, 33, 3938–3944. [Google Scholar] [CrossRef]
- Wong, J.S.; Chen, Y.H.; Gadd, M.A.; Gelman, R.; Lester, S.C.; Schnitt, S.J.; Sgroi, D.C.; Silver, B.J.; Smith, B.L.; Troyan, S.L.; et al. Eight-year update of a prospective study of wide excision alone for small low- or intermediate-grade ductal carcinoma in situ (DCIS). Breast Cancer Res. Treat. 2014, 143, 343–350. [Google Scholar] [CrossRef]
- Rakovitch, E.; Gray, R.; Baehner, F.L.; Sutradhar, R.; Crager, M.; Gu, S.; Nofech-Mozes, S.; Badve, S.S.; Hanna, W.; Hughes, L.L.; et al. Refined estimates of local recurrence risks by DCIS score adjusting for clinicopathological features: A combined analysis of ECOG-ACRIN E5194 and Ontario DCIS cohort studies. Breast Cancer Res. Treat. 2018, 169, 359–369. [Google Scholar] [CrossRef]
- Bremer, T.; Whitworth, P.W.; Patel, R.; Savala, J.; Barry, T.; Lyle, S.; Leesman, G.; Linke, S.P.; Jirström, K.; Zhou, W.; et al. A biological signature for breast ductal carcinoma in situ to predict radiotherapy benefit and assess recurrence risk. Clin. Cancer Res. 2018, 24, 5895–5901. [Google Scholar] [CrossRef]
- Grimm, L.J.; Ryser, M.D.; Partridge, A.H.; Thompson, A.M.; Thomas, J.S.; Wesseling, J.; Hwang, E.S. Surgical Upstaging Rates for Vacuum Assisted Biopsy Proven DCIS: Implications for Active Surveillance Trials. Ann. Surg. Oncol. 2017, 24, 3534–3540. [Google Scholar] [CrossRef]
- Patel, G.V.; Van Sant, E.P.; Taback, B.; Ha, R. Patient Selection for Ductal Carcinoma In Situ Observation Trials: Are the Lesions Truly Low Risk? AJR Am. J. Roentgenol. 2018, 211, 712–713. [Google Scholar] [CrossRef]
- Oseni, T.O.; Smith, B.L.; Lehman, C.D.; Vijapura, C.A.; Pinnamaneni, N.; Bahl, M. Do Eligibility Criteria for Ductal Carcinoma In Situ (DCIS) Active Surveillance Trials Identify Patients at Low Risk for Upgrade to Invasive Carcinoma? Ann. Surg. Oncol. 2020, 27, 4459–4465. [Google Scholar] [CrossRef]
- Pilewskie, M.; Olcese, C.; Patil, S.; Van Zee, K.J. Women with Low-Risk DCIS Eligible for the LORIS Trial After Complete Surgical Excision: How Low Is Their Risk After Standard Therapy? Ann. Surg. Oncol. 2016, 23, 4253–4261. [Google Scholar] [CrossRef]
- Muhsen, S.; Barrio, A.V.; Miller, M.; Olcese, C.; Patil, S.; Morrow, M.; Van Zee, K.J. Outcomes for Women with Minimal-Volume Ductal Carcinoma In Situ Completely Excised at Core Biopsy. Ann. Surg. Oncol. 2017, 24, 3888–3895. [Google Scholar] [CrossRef]
- Halsted, W.S.I. The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann. Surg. 1894, 20, 497–555. [Google Scholar] [CrossRef]
- Moore, C.H. On the Influence of Inadequate Operations on the Theory of Cancer. Med. Chir. Trans. 1867, 50, 245–280. [Google Scholar] [CrossRef]
- Banks, W.M. On Free Removal of Mammary Cancer, with Extirpation of the Axillary Glands as a Necessary Accompaniment. Br. Med. J. 1882, 2, 1138–1141. [Google Scholar] [CrossRef]
- Halsted, W.S.I. The Results of Radical Operations for the Cure of Carcinoma of the Breast. Ann. Surg. 1907, 46, 1–19. [Google Scholar] [CrossRef]
- Patey, D.H.; Dyson, W.H. The prognosis of carcinoma of the breast in relation to the type of operation performed. Br. J. Cancer 1948, 2, 7–13. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Patey, D.H. A review of 146 cases of carcinoma of the breast operated on between 1930 and 1943. Br. J. Cancer 1967, 21, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Keynes, G. The place of radium in the treatment of cancer of the breast. Ann. Surg. 1937, 106, 619–630. [Google Scholar] [CrossRef]
- Newmark, J.J. “No ordinary meeting”: Robert McWhirter and the decline of radical mastectomy. J. R. Coll. Physicians Edinb. 2016, 46, 43–48. [Google Scholar] [CrossRef] [PubMed]
- McWhirter, R. The value of simple mastectomy and radiotherapy in the treatment of cancer of the breast. Br. J. Radiol. 1948, 21, 599–610. [Google Scholar] [CrossRef] [PubMed]
- McWhirter, R. Treatment of cancer of breast by simple mastectomy and roentgenotherapy. Arch. Surg. 1949, 59, 830–842. [Google Scholar] [CrossRef]
- Kaae, S. Radiotherapy in cancer of the breast; with particular reference to the value of preoperative irradiation as a supplement to radical mastectomy; analysis of 1418 new cases. Acta Radiol. Suppl. 1952, 98, 1–189. [Google Scholar]
- Fisher, B.; Montague, E.; Redmond, C.; Barton, B.; Borland, D.; Fisher, E.R.; Deutsch, M.; Schwarz, G.; Margolese, R.; Donegan, W.; et al. Comparison of radical mastectomy with alternative treatments for primary breast cancer: A first report of results from a prospective randomized clinical trial. Cancer 1977, 39, 2827–2839. [Google Scholar] [CrossRef]
- Veronesi, U.; Saccozzi, R.; Del Vecchio, M.; Banfi, A.; Clemente, C.; De Lena, M.; Gallus, G.; Greco, M.; Luini, A.; Marubini, E.; et al. Comparing radical mastectomy with quadrantectomy, axillary dissection, and radiotherapy in patients with small cancers of the breast. N. Engl. J. Med. 1981, 305, 6–11. [Google Scholar] [CrossRef]
- Fisher, B.; Bauer, M.; Margolese, R.; Poisson, R.; Pilch, Y.; Redmond, C.; Fisher, E.; Wolmark, N.; Deutsch, M.; Montague, E.; et al. Five-year results of a randomized clinical trial comparing total mastectomy and segmental mastectomy with or without radiation in the treatment of breast cancer. N. Engl. J. Med. 1985, 312, 665–673. [Google Scholar] [CrossRef]
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.; Wolmark, N. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Houssami, N.; Macaskill, P.; Marinovich, M.L.; Dixon, J.M.; Irwig, L.; Brennan, M.E.; Solin, L.J. Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur. J. Cancer Oxf. Engl. 1990, 2010, 46, 3219–3232. [Google Scholar] [CrossRef]
- Houssami, N.; Macaskill, P.; Marinovich, M.L.; Morrow, M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: A meta-analysis. Ann. Surg. Oncol. 2014, 21, 717–730. [Google Scholar] [CrossRef]
- Moran, M.S.; Schnitt, S.J.; Giuliano, A.E. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J. Clin. Oncol. 2014, 32, 1507–1515. [Google Scholar] [CrossRef]
- Shah, C.; Hobbs, B.P.; Vicini, F.; Al-Hilli, Z.; Manyam, B.V.; Verma, V.; Jia, X.; Goldstein, N.; Recht, A. The Diminishing Impact of Margin Definitions and Width on Local Recurrence Rates following Breast-Conserving Therapy for Early-Stage Invasive Cancer: A Meta-Analysis. Ann. Surg. Oncol. 2020, 27, 4628–4636. [Google Scholar] [CrossRef]
- Chan, B.K.Y.; Wiseberg-Firtell, J.A.; Jois, R.H.S.; Jensen, K.; Audisio, R.A. Localization techniques for guided surgical excision of non-palpable breast lesions. Cochrane Database Syst. Rev. 2015, CD009206. [Google Scholar] [CrossRef]
- Landercasper, J.; Whitacre, E.; Degnim, A.C.; Al-Hamadani, M. Reasons for re-excision after lumpectomy for breast cancer: Insight from the American Society of Breast Surgeons Mastery(SM) database. Ann. Surg. Oncol. 2014, 21, 3185–3191. [Google Scholar] [CrossRef]
- Wright, F.; Escallon, J.; Cukier, M.; Tsang, M.; Hameed, U. Breast Cancer. In Surgical Oncology Manual, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 41–75. [Google Scholar]
- Chen, A.M.; Meric-Bernstam, F.; Hunt, K.K.; Thames, H.D.; Oswald, M.J.; Outlaw, E.D.; Strom, E.A.; McNeese, M.D.; Kuerer, H.M.; Ross, M.I.; et al. Breast conservation after neoadjuvant chemotherapy: The MD Anderson cancer center experience. J. Clin. Oncol. 2004, 22, 2303–2312. [Google Scholar] [CrossRef]
- Killelea, B.K.; Yang, V.Q.; Mougalian, S.; Horowitz, N.R.; Pusztai, L.; Chagpar, A.B.; Lannin, D.R. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: Results from the National Cancer Database. J. Am. Coll. Surg. 2015, 220, 1063–1069. [Google Scholar] [CrossRef]
- Alliance for Clinical Trials in Oncology. Impact of Breast Conservation Surgery on Surgical Outcomes and Cosmesis in Patients with Multiple Ipsilateral Breast Cancers (MIBC). clinicaltrials.gov. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT01556243 (accessed on 2 March 2022).
- Rosenkranz, K.M.; Ballman, K.; McCall, L.; Kubicky, C.; Cuttino, L.; Le-Petross, H.; Hunt, K.K.; Giuliano, A.; Van Zee, K.J.; Haffty, B.; et al. The Feasibility of Breast-Conserving Surgery for Multiple Ipsilateral Breast Cancer: An Initial Report from ACOSOG Z11102 (Alliance) Trial. Ann. Surg. Oncol. 2018, 25, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, K.M.; Ballman, K.; McCall, L.; McCarthy, C.; Kubicky, C.D.; Cuttino, L.; Hunt, K.K.; Giuliano, A.; Ms, K.J.V.Z.; Haffty, B.; et al. Cosmetic Outcomes Following Breast-Conservation Surgery and Radiation for Multiple Ipsilateral Breast Cancer: Data from the Alliance Z11102 Study. Ann. Surg. Oncol. 2020, 27, 4650–4661. [Google Scholar] [CrossRef] [PubMed]
- Shubeck, S.; Sevilimedu, V.; Berger, E.; Robson, M.; Heerdt, A.S.; Pilewskie, M.L. Comparison of outcomes between BRCA pathogenic variant carriers undergoing breast-conserving surgery versus mastectomy. Ann. Surg. Oncol. 2022, 29, 4706–4713. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.J. Oncoplastic Breast Surgery: From Oblivion to Mainstream. Ann. Surg. Oncol. 2019, 26, 3409–3412. [Google Scholar] [CrossRef]
- Barchiesi, G.; Mazzotta, M.; Krasniqi, E. Neoadjuvant endocrine therapy in breast cancer: Current knowledge and future perspectives. Int. J. Mol. Sci. 2020, 21, 3528. [Google Scholar] [CrossRef]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; Regan, M.A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Maggi, N.; Nussbaumer, R.; Holzer, L.; Weber, W.P. Axillary surgery in node-positive breast cancer. Breast 2022, 62 (Suppl. 1), S50–S53. [Google Scholar] [CrossRef]
- Hamood, R.; Hamood, H.; Merhasin, I.; Keinan-Boker, L. Chronic pain and other symptoms among breast cancer survivors: Prevalence, predictors, and effects on quality of life. Breast Cancer Res. Treat. 2018, 167, 157–169. [Google Scholar] [CrossRef]
- Wang, L.; Guyatt, G.H.; Kennedy, S.A.; Romerosa, B.; Kwon, H.Y.; Kaushal, A.; Busse, J.W. Predictors of persistent pain after breast cancer surgery: A systematic review and meta-analysis of observational studies. CMAJ 2016, 188, E352–E361. [Google Scholar] [CrossRef]
- Khansa, I.; Colakoglu, S.; Curtis, M.S.; Yueh, J.H.; Ogunleye, A.; Tobias, A.M.; Lee, B.T. Postmastectomy breast reconstruction after previous lumpectomy and radiation therapy: Analysis of complications and satisfaction. Ann. Plast. Surg. 2011, 66, 444–451. [Google Scholar] [CrossRef]
- Kim, H.K.; Ju, Y.W.; Lee, J.W.; Kim, K.E.; Jung, J.; Kim, Y.; Han, W. Association between Number of Retrieved Sentinel Lymph Nodes and Breast Cancer-related Lymphedema. J. Breast Cancer 2021, 24, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, M.; Narui, K.; Suganuma, N.; Chishima, T.; Yamada, A.; Sugae, S.; Ishikawa, T. Clinical and pathological predictors of recurrence in breast cancer patients achieving pathological complete response to neoadjuvant chemotherapy. Eur. J. Surg. Oncol. 2019, 45, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Broglio, K.R.; Quintana, M.; Foster, M.; Olinger, M.; McGlothlin, A.; Berry, S.M.; Berry, D.A. Association of Pathologic Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer With Long-Term Outcomes: A Meta-Analysis. JAMA Oncol. 2016, 2, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Samiei, S.; Simons, J.M.; Engelen, S.M.; Beets-Tan, R.G.; Classe, J.M.; Smidt, M.L. Axillary Pathologic Complete Response After Neoadjuvant Systemic Therapy by Breast Cancer Subtype in Patients with Initially Clinically Node-Positive Disease: A Systematic Review and Meta-analysis. JAMA Surg. 2021, 156, e21089. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.A.; Reynolds, K.L.; Smith, B.L.; Alexander, B.M.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Esgueva, A.; Siso, C.; Espinosa-Bravo, M.; Sobrido, C.; Miranda, I.; Salazar, J.P.; Rubio, I.T. Leveraging the increased rates of pathologic complete response after neoadjuvant treatment in breast cancer to de-escalate surgical treatments. J. Surg. Oncol. 2021, 123, 71–79. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Loibl, S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Palshof, F.K.; Lanng, C.; Kroman, N.; Benian, C.; Vejborg, I.; Bak, A.; Talman, M.-L.; Balslev, E.; Tvedskov, T.F. Prediction of pathologic complete response in breast cancer patients comparing magnetic resonance imaging with ultrasound in neoadjuvant setting. Ann. Surg. Oncol. 2021, 28, 7421–7429. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Swigart, L.; Wu, H.-T.; Hirst, G.; Yau, C.; Wolf, D.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Heil, J.; Pfob, A.; Sinn, H.P.; Rauch, G.; Bach, P.; Thomas, B. Diagnosing Pathologic Complete Response in the Breast After Neoadjuvant Systemic Treatment of Breast Cancer Patients by Minimal Invasive Biopsy: Oral Presentation at the San Antonio Breast Cancer Symposium on Friday, December 13, 2019, Program Number GS5-03. Ann. Surg. 2022, 275, 576–581. [Google Scholar]
- Heil, J.; Sinn, P.; Richter, H.; Pfob, A.; Schaefgen, B.; Hennigs, A.; Golatta, M. RESPONDER-diagnosis of pathological complete response by vacuum-assisted biopsy after neoadjuvant chemotherapy in breast Cancer—A multicenter, confirmative, one-armed, intra-individually-controlled, open, diagnostic trial. BMC Cancer 2019, 18, 851. [Google Scholar] [CrossRef]
- Pfob, A.; Sidey-Gibbons, C.; Lee, H.-B.; Tasoulis, M.K.; Koelbel, V.; Golatta, M.; Rauch, G.M.; Smith, B.D.; Valero, V.; Han, W.; et al. Identification of breast cancer patients with pathologic complete response in the breast after neoadjuvant systemic treatment by an intelligent vacuum-assisted biopsy. Eur. J. Cancer 2021, 143, 134–146. [Google Scholar] [CrossRef]
- Eliminating Surgery or Radiotherapy After Systemic Therapy in Treating Patients with HER2 Positive or Triple Negative Breast Cancer. Available online: https://ClinicalTrials.gov/show/NCT02945579 (accessed on 9 August 2022).
COMET [28] | LORD [27] | LORETTA [30] | LORIS [29] | |
---|---|---|---|---|
Coordinating country | United States of America | Netherlands | Japan | United Kingdom |
Phase | III | III | III | III |
Study design | Randomized controlled trial | Patient preference | Single arm | Randomized controlled trial |
Eligible age range (years old) | ≥40 | ≥45 | ≥40, ≥75 | ≥46 |
Year of study activation | 2017 | 2017 | 2017 | 2014 |
Target accrual | 1200 | 1240 | 340 | 932 (closed 2020) |
DCIS maximum size | Any size | Any size | 2.5 cm | - |
Nuclear grade | 1 or 2 | 1 | 1 or 2 | 1 or 2 |
Comedo necrosis | Yes | No | No | No |
Estrogen receptor | Positive | - | Positive | - |
HER2 | Negative (if tested) | - | Negative | - |
Endocrine therapy | Permitted | Not permitted | Permitted | Permitted |
Primary outcome | 2, 5, and 7 years | 10 years | 5 and 10 years | 10 years |
Clinical Trial | N | Tumor Size (cm) | Margin | Interval Reported (Years) | Local Recurrence Rate (%) | Overall Survival Rate (%) | ||
---|---|---|---|---|---|---|---|---|
Breast Conserving Therapy | Mastectomy | Breast Conserving Therapy | Mastectomy | |||||
NSABP | 1851 | 4 | Tumor free | 20 | 14 | 10 | 46 | 47 |
EORTC | 868 | 5 | 1 cm | 20 | 20 | 12 | 65 | 66 |
Danish | 793 | Any | Grossly free | 20 | - | - | 58 | 51 |
Milan | 701 | 2 | - | 20 | 9 | 2 | 42 | 41 |
NCI | 247 | 5 | Grossly free | 25 | 22 | 6 | 59 | 58 |
IGR | 179 | 2 | 2 cm | 15 | 9 | 14 | 73 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angarita, F.A.; Brumer, R.; Castelo, M.; Esnaola, N.F.; Edge, S.B.; Takabe, K. De-Escalating the Management of In Situ and Invasive Breast Cancer. Cancers 2022, 14, 4545. https://doi.org/10.3390/cancers14194545
Angarita FA, Brumer R, Castelo M, Esnaola NF, Edge SB, Takabe K. De-Escalating the Management of In Situ and Invasive Breast Cancer. Cancers. 2022; 14(19):4545. https://doi.org/10.3390/cancers14194545
Chicago/Turabian StyleAngarita, Fernando A., Robert Brumer, Matthew Castelo, Nestor F. Esnaola, Stephen B. Edge, and Kazuaki Takabe. 2022. "De-Escalating the Management of In Situ and Invasive Breast Cancer" Cancers 14, no. 19: 4545. https://doi.org/10.3390/cancers14194545
APA StyleAngarita, F. A., Brumer, R., Castelo, M., Esnaola, N. F., Edge, S. B., & Takabe, K. (2022). De-Escalating the Management of In Situ and Invasive Breast Cancer. Cancers, 14(19), 4545. https://doi.org/10.3390/cancers14194545