Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence on Non-Active Treatment in Intermediate-Risk PC
2.1. Prognosis in Intermediate-Risk PC by Observation vs. Active Treatment
2.2. Oncological Outcomes by AS in Intermediate-Risk versus Low-Risk PC
2.3. Patients-Reported Outcomes in AS
3. Risk Stratification of Intermediate-Risk PC in AS
3.1. High-Volume GS 6
3.2. Percentage of Gleason 4 Pattern
3.3. PSA Density
3.4. Race/Ethnicity
3.5. Age
3.6. Genetic Tests
3.7. Genetic Alterations
3.8. New Imaging Modalities
3.9. Guideline Recommendations Based on Risk Factors
4. Criteria for Inclusion, Monitoring, and Trigger for Intervention
4.1. Inclusion Criteria for AS in Intermediate-Risk PC
4.2. Monitoring and Triggering in Intermediate-Risk PC
5. Intervention during AS
5.1. Non-Medical Intervention
5.2. Medical Intervention
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Goodkind, D.; Kowal, P. An Aging World. 2015. Available online: https://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf (accessed on 12 June 2022).
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2020, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- NCCN. Prostate Cancer Prostate Cancer, Version 4. 10 May 2022. Available online: https://www.nccn.org (accessed on 20 June 2022).
- Chen, R.C.; Rumble, R.B.; Loblaw, D.A.; Finelli, A.; Ehdaie, B.; Cooperberg, M.R.; Morgan, S.C.; Tyldesley, S.; Haluschak, J.J.; Tan, W.; et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J. Clin. Oncol. 2016, 34, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Mahal, B.A.; Butler, S.; Franco, I.; Spratt, D.E.; Rebbeck, T.R.; D’Amico, A.V.; Nguyen, P.L. Use of Active Surveillance or Watchful Waiting for Low-Risk Prostate Cancer and Management Trends Across Risk Groups in the United States, 2010-2015. JAMA 2019, 321, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Folkvaljon, Y.; Curnyn, C.; Robinson, D.; Bratt, O.; Stattin, P. Uptake of active surveillance for very-low-risk prostate cancer in Sweden. JAMA Oncol. 2017, 3, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Prostate Cancer Intervention versus Observation Trial (PIVOT) Study Group. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 2012, 367, 203–213, Erratum in: N. Engl. J. Med. 2012, 367, 582. [Google Scholar] [CrossRef] [PubMed]
- Bill-Axelson, A.; Holmberg, L.; Garmo, H.; Rider, J.R.; Taari, K.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.O.; Spångberg, A.; et al. Radical prostatectomy or watchful waiting in early prostate cancer. N. Engl. J. Med. 2014, 370, 932–942. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. ProtecT Study Group. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Stattin, P.; Holmberg, E.; Johansson, J.E.; Holmberg, H.; Adolfsson, J.; Hugosson, J. Outcomes in localized prostate cancer: National prostate cancer register of Sweden follow-up study. J. Natl. Cancer Inst. 2010, 102, 950–958. [Google Scholar] [CrossRef]
- Thomsen, F.B.; Røder, M.A.; Jakobsen, H.; Langkilde, N.C.; Borre, M.; Jakobsen, E.B.; Frey, A.; Lund, L.; Lunden, D.; Dahl, C.; et al. Active Surveillance Versus Radical Prostatectomy in Favorable-risk Localized Prostate Cancer. Clin. Genitourin. Cancer 2019, 17, e814–e821. [Google Scholar] [CrossRef]
- Klotz, L. Active surveillance in intermediate-risk prostate cancer. BJU Int. 2019, 125, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, H.B.; Yamamoto, T.; Klotz, L.; Ghanem, G.; Mamedov, A.; Sethukavalan, P.; Jethava, V.; Jain, S.; Zhang, L.; Vesprini, D.; et al. Active Surveillance for Intermediate Risk Prostate Cancer: Survival Outcomes in the Sunnybrook Experience. J. Urol. 2016, 196, 1651–1658. [Google Scholar] [CrossRef]
- Courtney, P.T.; Deka, R.; Kotha, N.V.; Cherry, D.R.; Salans, M.A.; Nelson, T.J.; Kumar, A.; Luterstein, E.; Yip, A.T.; Nalawade, V.; et al. Metastasis and Mortality in Men With Low- and Intermediate-Risk Prostate Cancer on Active Surveillance. JNCCN J. Natl. Compr. Cancer Netw. 2022, 20, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Enikeev, D.; Morozov, A.; Taratkin, M.; Barret, E.; Kozlov, V.; Singla, N.; Rivas, J.G.; Podoinitsin, A.; Margulis, V.; Glybochko, P. Active Surveillance for Intermediate-Risk Prostate Cancer: Systematic Review and Meta-analysis of Current Protocols and Outcomes. Clin. Genitourin. Cancer 2020, 18, e739–e753. [Google Scholar] [CrossRef]
- Marzouk, K.; Assel, M.; Ehdaie, B.; Vickers, A. Long-Term Cancer Specific Anxiety in Men Undergoing Active Surveillance of Prostate Cancer: Findings from a Large Prospective Cohort. J Urol. 2018, 200, 1250–1255. [Google Scholar] [CrossRef]
- Carter, G.; Clover, K.; Britton, B.; Mitchell, A.J.; White, M.; McLeod, N.; Denham, J.; Lambert, S.D. Wellbeing during Active Surveillance for localised prostate cancer: A systematic review of psychological morbidity and quality of life. Cancer Treat. Rev. 2015, 41, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.; Murphy, M.; Sweeney, P.; Richards, H.L. Patient reported factors influencing the decision-making process of men with localised prostate cancer when considering Active Surveillance-A systematic review and thematic synthesis. Psycho-Oncology 2021, 31, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Donachie, K.; Cornel, E.; Pelgrim, T.; Michielsen, L.; Langenveld, B.; Adriaansen, M.; Bakker, E.; Lechner, L. What interventions affect the psychosocial burden experienced by prostate cancer patients undergoing active surveillance ? A scoping review. Support. Care Cancer 2022, 30, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.J.; Eggener, S.E.; Shindel, A.W.; Andriole, G.L. Variability in Outcomes for Patients with Intermediate-risk Prostate Cancer (Gleason Score 7, International Society of Urological Pathology Gleason Group 2–3) and Implications for Risk Stratification: A Systematic Review. Eur. Urol. Focus 2017, 3, 487–497. [Google Scholar] [CrossRef]
- Zumsteg, Z.S.; Spratt, D.E.; Pei, I.; Zhang, Z.; Yamada, Y.; Kollmeier, M.; Zelefsky, M.J. A new risk classification system for therapeutic decision making with intermediate-risk prostate cancer patients undergoing dose-escalated external-beam radiation therapy. Eur. Urol. 2013, 64, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.E.; Jeong, C.W.; Washington, S.L., III; Herlemann, A.; Gomez, S.L.; Carroll, P.R.; Cooperberg, M.R. Active surveillance in intermediate-risk prostate cancer with PSA 10–20 ng/mL: Pathological outcome analysis of a population-level database. Prostate Cancer Prostatic Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cooley, L.F.; Emeka, A.A.; Meyers, T.J.; Cooper, P.R.; Lin, D.W.; Finelli, A.; Eastham, J.A.; Logothetis, C.J.; Marks, L.S.; Vesprini, D.; et al. Factors Associated with Time to Conversion from Active Surveillance to Treatment for Prostate Cancer in a Multi-Institutional Cohort. J. Urol. 2021, 206, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Savdie, R.; Aning, J.; So, A.I.; Black, P.C.; Gleave, M.E.; Goldenberg, S.L. Identifying intermediate-risk candidates for active surveillance of prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 605.e1–605.e8. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Kong, M.X.; Zhou, M.; Rosenkrantz, A.B.; Taneja, S.S.; Melamed, J.; Deng, F.M. Gleason score 3 + 4 = 7 prostate cancer with minimal quantity of gleason pattern 4 on needle biopsy is associated with low-risk tumor in radical prostatectomy specimen. Am. J. Surg. Pathol. 2014, 38, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Miyamoto, H. Percent Gleason pattern 4 in stratifying the prognosis of patients with intermediate-risk prostate cancer. Transl. Androl. Urol. 2018, 7 (Suppl. S4), S484–S489. [Google Scholar] [CrossRef]
- Patel, H.D.; Tosoian, J.J.; Carter, H.B.; Epstein, J.I. Adverse Pathologic Findings for Men Electing Immediate Radical Prostatectomy: Defining a Favorable Intermediate-Risk Group. JAMA Oncol. 2018, 4, 89–92. [Google Scholar] [CrossRef]
- Saeter, T.; Vlatkovic, L.; Waaler, G.; Servoll, E.; Nesland, J.M.; Axcrona, K.; Axcrona, U. Intraductal Carcinoma of the Prostate on Diagnostic Needle Biopsy Predicts Prostate Cancer Mortality: A Population-Based Study. Prostate 2017, 77, 859–865. [Google Scholar] [CrossRef]
- Kweldam, C.F.; Kümmerlin, I.P.; Nieboer, D.; Verhoef, E.I.; Steyerberg, E.W.; van der Kwast, T.H.; Roobol, M.J.; van Leenders, G.J. Disease-specific survival of patients with invasive cribriform and intraductal prostate cancer at diagnostic biopsy. Mod. Pathol. 2016, 29, 630–636. [Google Scholar] [CrossRef]
- Petrelli, F.; Vavassori, I.; Cabiddu, M.; Coinu, A.; Ghilardi, M.; Borgonovo, K.; Lonati, V.; Barni, S. Predictive Factors for Reclassification and Relapse in Prostate Cancer Eligible for Active Surveillance: A Systematic Review and Meta-analysis. Urology 2016, 91, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Abern, M.R.; Bassett, M.R.; Tsivian, M.; Bañez, L.L.; Polascik, T.J.; Ferrandino, M.N.; Robertson, C.N.; Freedland, S.J.; Moul, J.W. Race is associated with discontinuation of active surveillance of low-risk prostate cancer: Results from the Duke Prostate Center. Prostate Cancer Prostatic Dis. 2012, 16, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundi, D.; Faisal, F.A.; Trock, B.J.; Landis, P.K.; Feng, Z.; Ross, A.E.; Carter, H.B.; Schaeffer, E.M. Reclassification rates are higher among African American men than Caucasians on active surveillance. Urology 2014, 85, 155–160. [Google Scholar] [CrossRef]
- Deka, R.; Courtney, P.T.; Parsons, J.K.; Nelson, T.J.; Nalawade, V.; Luterstein, E.; Cherry, D.R.; Simpson, D.R.; Mundt, A.J.; Murphy, J.D.; et al. Association Between African American Race and Clinical Outcomes in Men Treated for Low-Risk Prostate Cancer With Active Surveillance. JAMA 2020, 324, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Iremashvili, V.; Soloway, M.S.; Rosenberg, D.L.; Manoharan, M. Clinical and demographic characteristics associated with prostate cancer progression in patients on active surveillance. J. Urol. 2012, 187, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Mahal, B.A.; Berman, R.A.; Taplin, M.E.; Huang, F.W. Prostate Cancer-Specific Mortality Across Gleason Scores in Black vs Nonblack Men. JAMA 2018, 320, 2479–2481. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, D.F.; Trinh, Q.D.; Krasnova, A.; Lipsitz, S.R.; Sun, M.; Nguyen, P.L.; Kibel, A.S.; Choueiri, T.K.; Weissman, J.S.; Menon, M.; et al. Racial Disparity in Delivering Definitive Therapy for Intermediate/High-risk Localized Prostate Cancer: The Impact of Facility Features and Socioeconomic Characteristics. Eur. Urol. 2017, 73, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Moul, J. African American Men With Low-Risk Prostate Cancer Are Candidates for Active Surveillance: The Will-Rogers Effect? Am. J. Men’s Health 2017, 11, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Leapman, M.S.; Freedland, S.J.; Aronson, W.J.; Kane, C.J.; Terris, M.K.; Walker, K.; Amling, C.L.; Carroll, P.R.; Cooperberg, M.R. Pathological and Biochemical Outcomes among African-American and Caucasian Men with Low Risk Prostate Cancer in the SEARCH Database: Implications for Active Surveillance Candidacy. J. Urol. 2016, 196, 1408–1414. [Google Scholar] [CrossRef]
- Leapman, M.S.; Cowan, J.E.; Nguyen, H.G.; Shinohara, K.K.; Perez, N.; Cooperberg, M.R.; Catalona, W.J.; Carroll, P.R. Active Surveillance in Younger Men With Prostate Cancer. J. Clin. Oncol. 2017, 35, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Press, B.H.; Jones, T.; Olawoyin, O.; Lokeshwar, S.D.; Rahman, S.N.; Khajir, G.; Lin, D.W.; Cooperberg, M.R.; Loeb, S.; Darst, B.F.; et al. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. Eur. Urol. Open Sci. 2022, 37, 113–119. [Google Scholar] [CrossRef]
- Kim, H.L.; Li, P.; Huang, H.C.; Deheshi, S.; Marti, T.; Knudsen, B.; Abou-Ouf, H.; Alam, R.; Lotan, T.L.; Lam, L.L.C.; et al. Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019, 22, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Herlemann, A.; Huang, H.C.; Alam, R.; Tosoian, J.J.; Kim, H.L.; Klein, E.A.; Simko, J.P.; Chan, J.M.; Lane, B.R.; Davis, J.W.; et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2019, 23, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Karnes, R.J.; Choeurng, V.; Ross, A.E.; Schaeffer, E.M.; Klein, E.A.; Freedland, S.J.; Erho, N.; Yousefi, K.; Takhar, M.; Davicioni, E.; et al. Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur. Urol. 2017, 73, 168–175. [Google Scholar] [CrossRef]
- Spratt, D.E.; Yousefi, K.; Deheshi, S.; Ross, A.E.; Den, R.B.; Schaeffer, E.M.; Trock, B.J.; Zhang, J.; Glass, A.G.; Dicker, A.P.; et al. Individual patient-level meta-Analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J. Clin. Oncol. 2017, 35, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Manceau, C.; Fromont, G.; Beauval, J.B.; Barret, E.; Brureau, L.; Créhange, G.; Dariane, C.; Fiard, G.; Gauthé, M.; Mathieu, R.; et al. Biomarker in Active Surveillance for Prostate Cancer: A Systematic Review. Cancers 2021, 13, 4251. [Google Scholar] [CrossRef]
- Leapman, M.S.; Westphalen, A.C.; Ameli, N.; Lawrence, H.J.; Febbo, P.G.; Cooperberg, M.R.; Carroll, P.R. Association between a 17-gene genomic prostate score and multi-parametric prostate MRI in men with low and intermediate risk prostate cancer (PCa). PLoS ONE 2017, 12, e0185535. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, A.; Said, J.; Shindel, A.W.; Khoshnoodi, P.; Felker, E.R.; Sisk, A.E., Jr.; Grogan, T.; McCullough, D.; Bennett, J.; Bailey, H.; et al. A 17-Gene Genomic Prostate Score Assay Provides Independent Information on Adverse Pathology in the Setting of Combined Multiparametric Magnetic Resonance Imaging Fusion Targeted and Systematic Prostate Biopsy. J. Urol. 2018, 200, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Olivier, J.; Stavrinides, V.; Kay, J.; Freeman, A.; Pye, H.; Ahmed, Z.; Carmona Echeverria, L.; Heavey, S.; Simmons, L.A.M.; Kanthabalan, A.; et al. Immunohistochemical biomarker validation in highly selective needle biopsy microarrays derived from mpMRI-characterized prostates. Prostate 2018, 78, 1229–1237. [Google Scholar] [CrossRef]
- Lynch, J.A.; Rothney, M.P.; Salup, R.R.; Ercole, C.E.; Mathur, S.C.; Duchene, D.A.; Basler, J.W.; Hernandez, J.; Liss, M.A.; Porter, M.P.; et al. Improving risk stratification among veterans diagnosed with prostate cancer: Impact of the 17-gene prostate score assay. Am. J. Manag. Care 2018, 24, S4–S10. [Google Scholar]
- Lin, D.W.; Zheng, Y.; McKenney, J.K.; Brown, M.D.; Lu, R.; Crager, M.; Boyer, H.; Tretiakova, M.; Brooks, J.D.; Dash, A.; et al. 17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. J. Clin. Oncol. 2020, 38, 1549–1557. [Google Scholar] [CrossRef]
- Blume-Jensen, P.; Berman, D.M.; Rimm, D.L.; Shipitsin, M.; Putzi, M.; Nifong, T.P.; Small, C.; Choudhury, S.; Capela, T.; Coupal, L.; et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin. Cancer Res. 2015, 21, 2591–2600. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.C.; Tosoian, J.J.; Qi, J.; Kaye, D.; Johnson, A.; Linsell, S.; Montie, J.E.; Ghani, K.R.; Miller, D.C.; Wojno, K.; et al. Clinical Utility of Gene Expression Classifiers in Men With Newly Diagnosed Prostate Cancer. JCO Precis. Oncol. 2018, 2, 1–15. [Google Scholar] [CrossRef]
- Eggener, S.E.; Rumble, R.B.; Armstrong, A.J.; Morgan, T.M.; Crispino, T.; Cornford, P.; van der Kwast, T.; Grignon, D.J.; Rai, A.J.; Agarwal, N.; et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1474–1494. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.B.; Helfand, B.; Mamawala, M.; Wu, Y.; Landis, P.; Yu, H.; Wiley, K.; Na, R.; Shi, Z.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. Eur. Urol. 2018, 75, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Eeles, R.; Raghallaigh, H.N. Men with a susceptibility to prostate cancer and the role of genetic based screening. Transl. Androl. Urol. 2018, 7, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Lokman, U.; Erickson, A.M.; Vasarainen, H.; Rannikko, A.S.; Mirtti, T. PTEN Loss but Not ERG Expression in Diagnostic Biopsies Is Associated with Increased Risk of Progression and Adverse Surgical Findings in Men with Prostate Cancer on Active Surveillance. Eur. Urol. Focus 2017, 4, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Glaser, Z.A.; Gordetsky, J.B.; Porter, K.K.; Varambally, S.; Rais-Bahrami, S. Prostate cancer imaging and biomarkers guiding safe selection of active surveillance. Front. Oncol. 2017, 7, 256. [Google Scholar] [CrossRef]
- Schoots, I.G.; Petrides, N.; Giganti, F.; Bokhorst, L.P.; Rannikko, A.; Klotz, L.; Villers, A.; Hugosson, J.; Moore, C.M. Magnetic resonance imaging in active surveillance of prostate cancer: A systematic review. Eur. Urol. 2015, 67, 627–636. [Google Scholar] [CrossRef]
- Bhanji, Y.; Rowe, S.P.; Pavlovich, C.P. New imaging modalities to consider for men with prostate cancer on active surveillance. World J. Urol. 2021, 40, 51–59. [Google Scholar] [CrossRef]
- Pavlovich, C.P.; Hyndman, M.E.; Eure, G.; Ghai, S.; Caumartin, Y.; Herget, E.; Young, J.D.; Wiseman, D.; Caughlin, C.; Gray, R.; et al. A multi-institutional randomized controlled trial comparing first-generation transrectal high-resolution micro-ultrasound with conventional frequency transrectal ultrasound for prostate biopsy. BJUI Compass 2020, 2, 126–133. [Google Scholar] [CrossRef]
- Bokhorst, L.P.; Valdagni, R.; Rannikko, A.; Kakehi, Y.; Pickles, T.; Bangma, C.H.; Roobol, M.J.; PRIAS Study Group. A Decade of Active Surveillance in the PRIAS Study: An Update and Evaluation of the Criteria Used to Recommend a Switch to Active Treatment. Eur. Urol. 2016, 70, 954–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masic, S.; Cowan, J.E.; Washington, S.L.; Nguyen, H.G.; Shinohara, K.; Cooperberg, M.R.; Carroll, P.R. Effects of Initial Gleason Grade on Outcomes during Active Surveillance for Prostate Cancer. Eur. Urol. Oncol. 2018, 1, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Selvadurai, E.D.; Singhera, M.; Thomas, K.; Mohammed, K.; Woode-Amissah, R.; Horwich, A.; Huddart, R.A.; Dearnaley, D.P.; Parker, C.C. Medium-term outcomes of active surveillance for localised prostate cancer. Eur. Urol. 2013, 64, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Thostrup, M.; Thomsen, F.B.; Iversen, P.; Brasso, K. Active surveillance for localized prostate cancer: Update of a prospective single-center cohort. Scand. J. Urol. 2017, 52, 14–19. [Google Scholar] [CrossRef]
- Thompson, J.E.; Hayen, A.; Landau, A.; Haynes, A.M.; Kalapara, A.; Ischia, J.; Matthews, J.; Frydenberg, M.; Stricker, P.D. Medium-term oncological outcomes for extended vs saturation biopsy and transrectal vs transperineal biopsy in active surveillance for prostate cancer. BJU Int. 2014, 115, 884–891. [Google Scholar] [CrossRef]
- Godtman, R.A.; Holmberg, E.; Khatami, A.; Pihl, C.G.; Stranne, J.; Hugosson, J. Long-term Results of Active Surveillance in the Göteborg Randomized, Population-based Prostate Cancer Screening Trial. Eur. Urol. 2016, 70, 760–766. [Google Scholar] [CrossRef]
- Butler, S.S.; Mahal, B.A.; Lamba, N.; Mossanen, M.; Martin, N.E.; Mouw, K.W.; Nguyen, P.L.; Muralidhar, V. Use and early mortality outcomes of active surveillance in patients with intermediate-risk prostate cancer. Cancer 2019, 125, 3164–3171. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, F.B.; Jakobsen, H.; Langkilde, N.C.; Borre, M.; Jakobsen, E.B.; Frey, A.; Lund, L.; Lunden, D.; Dahl, C.; Helgstrand, J.T.; et al. Active Surveillance for Localized Prostate Cancer: Nationwide Observational Study. J. Urol. 2018, 201, 520–527. [Google Scholar] [CrossRef]
- Loeb, S.; Folkvaljon, Y.; Makarov, D.V.; Bratt, O.; Bill-Axelson, A.; Stattin, P. Five-year nationwide follow-up study of active surveillance for prostate cancer. Eur. Urol. 2015, 67, 233–238. [Google Scholar] [CrossRef]
- Yamamoto, T.; Musunuru, H.B.; Vesprini, D.; Zhang, L.; Ghanem, G.; Loblaw, A.; Klotz, L. Metastatic Prostate Cancer in Men Initially Treated with Active Surveillance. J. Urol. 2015, 195, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Bul, M.; van den Bergh, R.C.; Zhu, X.; Rannikko, A.; Vasarainen, H.; Bangma, C.H.; Schröder, F.H.; Roobol, M.J. Outcomes of initially expectantly managed patients with low or intermediate risk screen-detected localized prostate cancer. BJU Int. 2012, 110, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Herden, J.; Heidenreich, A.; Weissbach, L. Risk stratification: A tool to predict the course of active surveillance for localized prostate cancer? BJU Int. 2016, 120, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.B.; Paivanas, T.A.; Buffington, P.; Ruyle, S.R.; Cohen, E.S.; Natale, R., II; Mehlhaff, B.; Suh, R.; Bradford, T.J.; Koo, A.S.; et al. Three-year Active Surveillance Outcomes in a Contemporary Community Urology Cohort in the United States. Urology 2019, 130, 72–78. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Cowan, J.E.; Hilton, J.F.; Reese, A.C.; Zaid, H.B.; Porten, S.P.; Shinohara, K.; Meng, M.V.; Greene, K.L.; Carroll, P.R. Outcomes of active surveillance for men with intermediate-risk prostate cancer. J. Clin. Oncol. 2011, 29, 228–234. [Google Scholar] [CrossRef]
- Nyame, Y.A.; Almassi, N.; Haywood, S.C.; Greene, D.J.; Ganesan, V.; Dai, C.; Zabell, J.; Reichard, C.; Arora, H.; Zampini, A.; et al. Intermediate-Term Outcomes for Men with Very Low/Low and Intermediate/High Risk Prostate Cancer Managed by Active Surveillance. J. Urol. 2017, 198, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, L.F.; Thompson, I.M., Jr.; Boyer, H.D.; Brooks, J.D.; Carroll, P.R.; Cooperberg, M.R.; Dash, A.; Ellis, W.J.; Fazli, L.; Feng, Z.; et al. Canary PASS Investigators. Outcomes of Active Surveillance for Clinically Localized Prostate Cancer in the Prospective, Multi-Institutional Canary PASS Cohort. J. Urol. 2016, 195, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Benfante, N.; Alvim, R.; Sjoberg, D.D.; Vickers, A.; Reuter, V.E.; Fine, S.W.; Vargas, H.A.; Wiseman, M.; Mamoor, M.; et al. Risk of Metastasis in Men with Grade Group 2 Prostate Cancer Managed with Active Surveillance at a Tertiary Cancer Center. J. Urol. 2020, 203, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Willemse, P.M.; Davis, N.F.; Grivas, N.; Zattoni, F.; Lardas, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Dell’Oglio, P.; Donaldson, J.F.; et al. Systematic Review of Active Surveillance for Clinically Localised Prostate Cancer to Develop Recommendations Regarding Inclusion of Intermediate-risk Disease, Biopsy Characteristics at Inclusion and Monitoring, and Surveillance Repeat Biopsy Strategy. Eur. Urol. 2021, 81, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, K.B.; Auffenberg, G.B.; Qi, J.; Powell, I.J.; Linsell, S.M.; Montie, J.E.; Miller, D.C.; Cher, M.L. Risk of Becoming Lost to Follow-up During Active Surveillance for Prostate Cancer. Eur. Urol. 2018, 74, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Schoots, I.G.; Nieboer, D.; Giganti, F.; Moore, C.M.; Bangma, C.H.; Roobol, M.J. Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int. 2018, 122, 946–958. [Google Scholar] [CrossRef]
- Chesnut, G.T.; Vertosick, E.A.; Benfante, N.; Sjoberg, D.D.; Fainberg, J.; Lee, T.; Eastham, J.; Laudone, V.; Scardino, P.; Touijer, K.; et al. Role of Changes in Magnetic Resonance Imaging or Clinical Stage in Evaluation of Disease Progression for Men with Prostate Cancer on Active Surveillance. Eur. Urol. 2019, 77, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Kith, G.; Lisker, S.; Sarkar, U.; Barr-walker, J.; Breyer, B.N. Defining and Measuring Adherence in Observational Studies Assessing Outcomes of Real-world Active Surveillance for Prostate Cancer: A Systematic Review. Eur. Urol. Oncol. 2019, 4, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Ornish, D.; Weidner, G.; Fair, W.R.; Marlin, R.; Pettengill, E.B.; Raisin, C.J.; Dunn-Emke, S.; Crutchfield, L.; Jacobs, F.N.; Barnard, R.J.; et al. Intensive lifestyle changes may affect the progression of prostate cancer. J. Urol. 2005, 174, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Frattaroli, J.; Weidner, G.; Dnistrian, A.M.; Kemp, C.; Daubenmier, J.J.; Marlin, R.O.; Crutchfield, L.; Yglecias, L.; Carroll, P.R.; Ornish, D. Clinical Events in Prostate Cancer Lifestyle Trial: Results From Two Years of Follow-Up. Urology 2008, 72, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.W.; Fairey, A.S.; Boulé, N.G.; Field, C.J.; Wharton, S.A.; Courneya, K.S. Effects of Exercise on Cardiorespiratory Fitness and Biochemical Progression in Men With Localized Prostate Cancer Under Active Surveillance: The ERASE Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1487. [Google Scholar] [CrossRef] [PubMed]
- Kellogg Parsons, J.; Zahrieh, D.; Patel, D.; Mohler, J.L.; Chen, R.C.; Paskett, E.D.; Liu, H.; Peil, E.S.; Rock, C.L.; Hahn, O.; et al. Diet and Health-related Quality of Life Among Men on Active Surveillance for Early-stage Prostate Cancer: The Men’s Eating and Living Study (Cancer and Leukemia Group 70807 [Alliance]). Eur. Urol. Focus 2022, in press. [Google Scholar] [CrossRef]
- Shore, N.D.; Renzulli, J.; Fleshner, N.E.; Hollowell, C.M.P.; Vourganti, S.; Silberstein, J.; Siddiqui, R.; Hairston, J.; Elsouda, D.; Russell, D.; et al. Active Surveillance Plus Enzalutamide Monotherapy vs Active Surveillance Alone in Patients With Low-risk or Intermediate-risk Localized Prostate Cancer. JAMA Oncol. 2022, 8, 1128. [Google Scholar] [CrossRef]
- Bruinsma, S.M.; Zhang, L.; Roobol, M.J.; Bangma, C.H.; Steyerberg, E.W.; Nieboer, D.; Van Hemelrijck, M. The Movember Foundation’s GAP3 cohort: A profile of the largest global prostate cancer active surveillance database to date. BJU Int. 2017, 121, 737–744. [Google Scholar] [CrossRef]
- Ahlberg, M.S.; Adami, H.O.; Beckmann, K.; Bertilsson, H.; Bratt, O.; Cahill, D.; Egevad, L.; Garmo, H.; Holmberg, L.; Johansson, E.; et al. PCASTt/SPCG-17-A randomised trial of active surveillance in prostate cancer: Rationale and design. BMJ Open 2019, 9, e027860. [Google Scholar] [CrossRef] [Green Version]
Authors | Study Name | Number of Patients Intermediate Risk/Total, n (%) | Type | Initiation | Comparator | Gleason 4 | Median Follow-Up | PC Mortality | Non-PC Mortality | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Hamdy et al. | ProtecT | 490/1634 (31%) | Prospective RCT | 2001–2009 | AS vs. PR vs. RT | NA | 10 years | Similar deaths per 1000 person year of 1.5, 0.9 and 0.7 for AS, RP, and RT, respectively | Similar all cause mortality per 1000 person year AS = 10.9; RP = 10.1; and RT = 10.3 | [10] |
Wilt et al. | PIVOT | Observation = 120/348 (34.5%) RP = 129/383 (33.6%) | Prospective RCT | 1994–2002 | RP vs. observation (WW) | NA | 12.7 years | Slightly higher 10-year PC mortality in RP (9.0% vs. 8.6%) | Higher 10 year mortality in AS (71.2% vs. 62.6%) | [8] |
Bill-Axelson et al. | The Scandinavian Prostate Cancer Group 4 Study | Observation = 133/348 (38.2%) RP = 148/347 (42.7%) | Prospective RCT | 1989–1999 | RP vs. observation (WW) | 54/116 (46.5%) | 13.4 years | Higher number of deaths by PC during follow-up in WW (99 vs. 63) | Higher number of deaths by any cause during follow-up in WW (247 vs. 200) | [9] |
Thomsen et al. | Active surveillance versus radical prostatectomy in favorable-risk localized prostate cancer | AS = 271/647 (42%) RP = 276/647 (43%) | Retrospective | 2002–2012 for AS 1995–2011 for RP | RP vs. AS | NA | 8.6 years | Slightly higher 10-year PC mortality in RP (1.5% vs. 0.4%) | Slightly higher 10-year non-PC mortality in RP (12.0% vs. 10.7%) | [12] |
Stattin et al. | Outcomes in localized PC: National PC Register of Sweden follow-up study | AS/WW = 936/2021 (42%) RP = 2172/3399 (52.5%) | Retrospective | 1997–2002 | RP vs. AS/WW | NA | 8.2 years | Higher 10-year PC mortality in AS/WW (5.2% vs. 3.4%) | Higher 10-year non-PC mortality in AS (23.4% vs. 11.3%) * | [11] |
Authors | Institution | Patients, n (%) | Type | Inclusion Criteria for IR | Gleason 4, n (%) | Follow-Up Protocol | Trigger for Intervention | Median Age in Years | Median Follow-Up | Continued on AS | Outcomes | Reference Number | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IR | Musunuru et al. | University of Toronto | 213/945 (22.5%) | Prospective | PSA 10–20 ng/mL, GS 3+4 | 128 (60%) | Confirmatory biopsy at 6–12 months and then every 3–4 years. PSA every 3 months for 2 years and then every 6 months | Upgrade. PSADT | 72 | 6.7 years | 61% at 10-year, 48% at 15 years | 10 and 15-year CSS, 97% and 89%; 10, and 15- years OS, 67% and 51%; 10 and 15-year, MFS 91% and 82% | [14] |
LR | 732/945 (77.5%) | 67 | 6.5 years | 64% at 10-years, 58% at 15 years | 10 and 15-year CSS, 98% and 97%; 10 and 15-year OS, 84% and 67%; 10 and 15-year, MFS 96% and 95% | ||||||||
IR | Cooley et al. | Multi-institutional | 1288/6775 (19.0%) | Retrospective | cT2, PSA 10–20 ng/mL, GS 3+4 | 563 (43.7) | Varied among institutions. | − | 64 | 6.1 years | 64.1% at 5- years | CSS, 99.8%; OS, 98.6% * | [24] |
LR | 4604/6775 (67.9%) | 6.8 years | 78.6% at 5- years | ||||||||||
IR | Savdie et al. | Vancouver Prostate Centre | 144/651 (22.1%) | Retrospective | ≤T2, PSA <20 ng/mL, GS 4+3 | 65 (45.1) | Confirmatory biopsy within 18 months, then every 1–2 years, DRE and PSA every 6 months. | Upgrade, upstage, PSA DT | 67.2 | 4.4 years | 50% at 5-year, 34.1% at 10-year | CSS, 99.3% for IR; OS, 97.7% (5- year and 10-year OS, 98.6% and 94.1%) * | [25] |
LR | 262/651 (40.2%) | 64.4 | 4.5 years | 55.5% at 5-years, 38.8% at 10-years | CSS, 99.6% | ||||||||
IR | Bokhorst et al. ** | PRIAS | 31/5302 (1%) | Prospective | ≤T2c, PSA <20 ng/mL, GS 3+4 without invasive CR/IDC, ≤50% of PPC | 31 (0.5) | Confirmatory biopsy at 1, 4, 7, and 10 years then every 5 years. PSA every 3, and DRE every 6 months for 2 years, then PSA every 6 months and DRE once a year. | Upgrade, cribriform or intraductal carcinoma, >50% PPC, upstage ≥ cT3 | 65.9 | 10 years | 48% at 5-years, 27% at 10 years * | 10-year CSS > 99% * | [63] |
IR | Masic et al. | University of California San Francisco | 188/1243 (15.1%) | Prospective | ≤T2, PSA <20 ng/mL, GS 3+4, CAPRA | 124 (65.9) | Confirmatory biopsy at 1 year, then every 1–2 years, 2 PSA every 3 months. TRUS every 6 months. | Upgrade | 62 * | 62 months | 49% at 5-years | CSS, 100%; 5-year MFS, 98% | [64] |
LR | 1011/1243 (84%) | 64% at 5-years | CSS, 100%; 5-year MFS, 99% | ||||||||||
IR | Selvadurai et al. ** | Royal Marsden | 88/471 (18.6%) | Prospective | >65 y, ≤T2, PSA <15 ng/mL, GS 3+4, and PPC < 50%. | 33 (37.5) | Confirmatory biopsy 18–24 months and every 2 years. PSA and DRE every 3 months in year 1, every 4 months in year 2, then every 6 months | PSA velocity, GS ≥4 + 3, PPC > 50%. | 66 | 5.7 years | 63.2% * | 5-year rate of adverse histology and treatment-free probability, 22% and 70% *; 2 deaths for PC and 10 for any-cause | [65] |
IR | Thostrup et al. | University of Copenhagen | 107/451 (23.7%) | Prospective | ≤T2, PSA <20 ng/mL, GS 4+3 | 39 (36.4) | PSA and DRE every 3 months for 2 years. TRUS-guided biopsy after 1 and 2 years. After 3 y PSA and DRE every 6 months. | Upgrade, upstage, PSADT | 65.6 * | 5.1 years | 54.0% at 5 years | − | [66] |
LR | 180/451 (39.9%) | 70.9% at 5 years | |||||||||||
IR | Thompson et al. ** | St. Vincent’s Australia | 59/650 (9.1%) | Retrospective | 1-2 among: age < 55, >T2a, PSA > 10 ng/mL, low-volume GS 3+4, >20% of PPC | 26 (44.1) | Confirmatory biopsy at 1 year, 1–2 years later, then every 3–5 years, PSA every 3 months for 3 years, then every 6 months; DRE every 6 months for 3 years, then annually | Upstage, upgrade in pattern 4, volume progression | 63 | 55 months | 60.3% * | CSS and OS, 100% | [67] |
IR | Godtman et al. | Goteborg | 104/474 (22.0%) | Retrospective | <71 y, ≤T2, PSA <20 ng/mL, GS 7 | − | Confirmatory biopsy every 2–3 years, DRE and PSA every 3-6 months (up to 12 months). | Upgrade, upstage, PSA DT | 66 * | 8.0 years * | 41% at 10-years, and 13% at 15-years | 10-year and 15-year CSS, 98% and 90% for IR; 10-year and 15-year OS, 80% and 51% *; 10- and 15-year MFS, 99% and 93% * | [68] |
LR | 126/474 (27%) | 42% at 10-years, and 27% at 15-years | 10-y and 15-year CSS, 100% and 94% | ||||||||||
IR | Butler et al. | SEER | 3223 | Retrospective | ≤T2, PSA <20 ng/mL, GS 7 | − | − | − | 67.9 | 39 months | − | 5 y CSS, 98.9%; 5-year OS, 90.6% | [69] |
IR | Thomsen et al. | 2 Danish cohort | 259/936 (27.7%) | Retrospective | ≤T2, PSA < 20 ng/mL, GS 4+3 | − | − | − | 66 * | 7.5 years | 73.5% at 5 years and 69% at 10-years | 10-year CSS, 99.5%; 5-year OS, 95.8%; 10-year OS, 83.9% | [70] |
LR | 436/936 (46.6%) | 64.5% at 5 years and 55.7% at 10-years | 10-year CSS, 99.3%; 5-year OS, 95.2%; 10-year OS, 87.9% | ||||||||||
IR | Loeb et al. | National Prostate Cancer Register of Sweden | 328/1729 (18.9%) | Retrospective | <70 y, ≤T2, PSA <20 ng/mL, GS 7 | 116 (35.4) | Confirmatory biopsy after 18 months, then every 1–2 years, PSA and DRE every 3 months. | Upgrade, PSA DT | 64 | 5 years | 59% at 5-years | − | [71] |
LR | 757/1729 (44%) | 67% at 5-years | |||||||||||
IR | Yamamoto et al. | University of Toronto | 211/980 (21.5%) | Prospective | ≤T2, PSA <20 ng/mL, GS 7 | − | Confirmatory biopsy at 1 years, then every 3–4 years. PSA every 3 months for 2 years, then every 6 months. | Upgrade, upstage, PSA DT | − | 6.4 years | − | MFS, 93.4% | [72] |
LR | 769/980 (78.4%) | MFS, 98% | |||||||||||
IR | Bul et al. | Rotterdam and Helsinki | 128/509 (25.1%) | Prospective | PSA <20 ng/mL, GS 7, <3 cores | 29 (22.6) | At doctors’ discretion | − | 67.4 | 7.4 years | 30.3% at 10-years | 10-year CSS, 96.1%; 10-year OS, 64.5%; 10-year MFS, 96.4% | [73] |
LR | 381/509 (74.9%) | 67.6 | 49.7% at 10-years | 10-year CSS, 99.1%; 10-year OS, 79%; 10-year MFS, 99.7% | |||||||||
IR | Herden et al. | University Hospital Cologne | 82/482 (17.5%) | Prospective | ≤T2, PSA <20 ng/mL, GS 7 | 30 (36.6) | Confirmatory biopsy at 1 year, then every 3 years. PSA every 3 months for 2 years, then every 6 months. | Upgrade, upstage, PSA DT | 69.3 | 27.4 months | 75.6% | CSS, OS, and MFS, 100% | [74] |
LR | 142/482 (30.3%) | 68.2 | 78.9% | CSS, OS, and MFS, 100% | |||||||||
IR | Shelton et al. | Multi-institutional | 70/548 (12.7%) | Retrospective | <75 y, ≤T2, PSA <20 ng/mL, GS 7 | 33 (47.1) | At doctors’ discretion | − | − | 3.35 years | 59.1% | − | [75] |
LR | 218/548 (39.8%) | 64.4% | |||||||||||
IR | Coperberg et al. | UCSF | 90/466 (19.3%) | Prospective | ≤T2, PSA < 20 ng/mL, GS < 8, CAPRA < 6 | 29 (32.2) | Biopsies every 12-24 months, DRE and PSA every 3 months, TRUS every 6–12 months. | − | 65 | 51 months | 61% at 4-years | − | [76] |
LR | 376/466 (80.7%) | 62.3 | 47 months | 54% at -4 years | |||||||||
IR | Nyame et al. | Cleveland Clinic | 108/635 (17.0%) | Retrospective | ≤T2, PSA <20 ng/mL, GS 4+3 | 68 (63.0) | Confirmatory biopsy within 1 year, PSA and DRE every 6–12 months, and every 1–3 years. | Upgrade, upstage | 68.6 | 44.2 months | 94.8% at 5 years and 88.4% at 10 years for IR/HR | 5-year and 10-year CSS 100%; 5- and 10-year OS, 95.6% and 77%; 5 and 10-year MFS 99.0% and 99% for IR/HR | [77] |
LR | 301/635 (47.4%) | 65.1 | 51.2 months | 97.7% at 5 years and 90.1% at 10 years for VLR/LR | 5- and 10-year CSS 100%, 5- and 10-year OS 98.4% and 96.5%; 5- and 10-year MFS 99.2% and 97.4% for VLR/LR | ||||||||
IR | Newcomb et al. ** | Canary PASS | 115/905 (13.0%) | Prospective | ≤T2c, PSA 10–20 ng/mL, GS 7 | 56 (6.5) | Confirmatory biopsy after 1, 2, 4 and 6 years, PSA every 3 months, DRE at every 6 months. | Upgrade, volume, PPC | 63 | 28 months | 72.2% | CSS, 100% | [78] |
IR | Carlsson et al. ** | Memorial Sloan Kettering Center | 219 | Retrospective | GS 3+4 | 219 (100) | Confirmatory biopsy, PSA and DRE every 6 months. | Upgrade, upstage | 67 | 3.1 years | 61% at 5 years and 49% at 10 years | CSS and MFS, 100% | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blas, L.; Shiota, M.; Eto, M. Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data. Cancers 2022, 14, 4161. https://doi.org/10.3390/cancers14174161
Blas L, Shiota M, Eto M. Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data. Cancers. 2022; 14(17):4161. https://doi.org/10.3390/cancers14174161
Chicago/Turabian StyleBlas, Leandro, Masaki Shiota, and Masatoshi Eto. 2022. "Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data" Cancers 14, no. 17: 4161. https://doi.org/10.3390/cancers14174161
APA StyleBlas, L., Shiota, M., & Eto, M. (2022). Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data. Cancers, 14(17), 4161. https://doi.org/10.3390/cancers14174161