Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy
Abstract
Simple Summary
Abstract
1. Introduction
2. History and Reputation of Electrons
2.1. Short History of Electron Radiotherapy
2.2. FLASH and Ultra-High Dose Rate Irradiation
3. Very High-Energy Electrons and Their Potential Application in Radiation Therapy
3.1. Many Advantages Related to the Physical and Dosimetric Properties
3.2. Conformation Techniques
3.3. Biological Specificities of High-Energy Electrons
3.4. Treatment Planning Comparisons
3.5. Radioprotection Aspects
4. Accelerators for VHEEs
4.1. General Specifications
4.2. Linacs
4.3. Laser-Driven VHEE
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdel-Wahab, M.; Gondhowiardjo, S.S.; Rosa, A.A.; Lievens, Y.; El-Haj, N.; Rubio, J.A.P.; Ben Prajogi, G.; Helgadottir, H.; Zubizarreta, E.; Meghzifene, A.; et al. Global Radiotherapy: Current Status and Future Directions—White Paper. JCO Glob. Oncol. 2021, 7, 827–842. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, C.; Moskvin, V.; Bielajew, A.F.; Papiez, L. 150–250 MeV electron beams in radiation therapy. Phys. Med. Biol. 2000, 45, 1781–1805. [Google Scholar] [CrossRef] [PubMed]
- Gerbi, B.J.; Antolak, J.A.; Deibel, F.C.; Followill, D.S.; Herman, M.G.; Higgins, P.D.; Huq, M.S.; Mihailidis, D.N.; Yorke, E.D.; Hogstrom, K.R.; et al. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25. Med. Phys. 2009, 36, 3239. [Google Scholar] [CrossRef]
- Hogstrom, K.R.; Almond, P.R. Review of electron beam therapy physics. Phys. Med. Biol. 2006, 51, R455–R489. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Fix, M.K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M.F.M.; Manser, P. Electron beam collimation with a photon MLC for standard electron treatments. Phys. Med. Biol. 2017, 63, 025017. [Google Scholar] [CrossRef]
- Míguez, C.; Jiménez-Ortega, E.; Palma, B.A.; Miras, H.; Ureba, A.; Arráns, R.; Carrasco-Peña, F.; Illescas-Vacas, A.; Leal, A. Clinical implementation of combined modulated electron and photon beams with conventional MLC for accelerated partial breast irradiation. Radiother. Oncol. 2017, 124, 124–129. [Google Scholar] [CrossRef][Green Version]
- Jin, L.; Eldib, A.; Li, J.; Emam, I.; Fan, J.; Wang, L.; Ma, C.-M. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator. J. Appl. Clin. Med Phys. 2014, 15, 177–186. [Google Scholar] [CrossRef]
- Lee, M.C.; Jiang, S.B.; Ma, C.-M. Monte Carlo and experimental investigations of multileaf collimated electron beams for modulated electron radiation therapy. Med. Phys. 2000, 27, 2708–2718. [Google Scholar] [CrossRef]
- Eldib, A.; Jin, L.; Li, J.; Ma, C.C. Investigation of the clinical potential of scattering foil free electron beams. Phys. Med. Biol. 2014, 59, 819. [Google Scholar] [CrossRef]
- Connell, T.; Seuntjens, J. Design and validation of novel scattering foils for modulated electron radiation therapy. Phys. Med. Biol. 2014, 59, 2381–2391. [Google Scholar] [CrossRef]
- Rodrigues, A.; Yin, F.F.; Wu, Q. Dynamic electron arc radiotherapy (DEAR): A feasibility study. Phys. Med. Biol. 2014, 59, 327–345. [Google Scholar] [CrossRef]
- Korevaar, E.W.; Huizenga, H.; Löf, J.; Stroom, J.C.; Leer, J.W.H.; Brahme, A. Investigation of the added value of high-energy electrons in intensity-modulated radiotherapy: Four clinical cases. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 236–253. [Google Scholar] [CrossRef]
- Hensley, F.W. Present state and issues in IORT Physics. Radiat. Oncol. 2017, 12, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R.; Roeder, F. Intraoperative radiation therapy (IORT) in pancreatic cancer. Radiat. Oncol. 2017, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Fastner, G.; Gaisberger, C.; Kaiser, J.; Scherer, P.; Ciabattoni, A.; Petoukhova, A.; Sperk, E.; Poortmans, P.; Calvo, F.A.; Sedlmayer, F.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy with electrons (IOERT) in breast cancer. Radiother. Oncol. 2020, 149, 150–157. [Google Scholar] [CrossRef]
- Shah, C. Intraoperative Radiation Therapy for Breast Cancer: Are We There Yet? Ann. Surg. Oncol. 2021, 28, 20–21. [Google Scholar] [CrossRef]
- Chetty, I.J.; Curran, B.; Cygler, J.E.; Demarco, J.J.; Ezzell, G.; Faddegon, B.A.; Kawrakow, I.; Keall, P.J.; Liu, H.; Ma, C.-M.C.; et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med. Phys. 2007, 34, 4818–4853. [Google Scholar] [CrossRef]
- Schüler, E.; Trovati, S.; King, G.; Lartey, F.; Rafat, M.; Villegas, M.; Praxel, A.J.; Loo, B.W.; Maxim, P.G. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int. J. Radiat. Oncol. Biol. Phys. 2016, 97, 195–203. [Google Scholar] [CrossRef]
- Petersson, K.; Jaccard, M.; Germond, J.-F.; Buchillier, T.; Bochud, F.; Bourhis, J.; Vozenin, M.-C.; Bailat, C. High dose-per-pulse electron beam dosimetry—A model to correct for the ion recombination in the Advanced Markus ionization chamber. Med. Phys. 2017, 44, 1157–1167. [Google Scholar] [CrossRef]
- Jaccard, M.; Durán, M.T.; Petersson, K.; Germond, J.-F.; Liger, P.; Vozenin, M.-C.; Bourhis, J.; Bochud, F.; Bailat, C. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Med. Phys. 2017, 45, 863–874. [Google Scholar] [CrossRef]
- Lansonneur, P.; Favaudon, V.; Heinrich, S.; Fouillade, C.; Verrelle, P.; De Marzi, L. Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies. Phys. Med. 2019, 60, 50–57. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin. Cancer Res. 2018, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Vozenin, M.-C.; Hendry, J.; Limoli, C. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Levy, K.; Natarajan, S.; Wang, J.; Chow, S.; Eggold, J.T.; Loo, P.E.; Manjappa, R.; Melemenidis, S.; Lartey, F.M.; Schüler, E.; et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci. Rep. 2020, 10, 21600. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Labarbe, R.; Limoli, C.L. Model studies of the role of oxygen in the FLASH effect. Med. Phys. 2021, 00, 1–14. [Google Scholar]
- Inada, T.; Nishio, H.; Amino, S.; Abe, K.; Saito, K. High Dose-rate Dependence of Early Skin Reaction in Mouse. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980, 38, 139–145. [Google Scholar] [CrossRef]
- Soto, L.A.; Casey, K.M.; Wang, J.; Blaney, A.; Manjappa, R.; Breitkreutz, D.; Skinner, L.; Dutt, S.; Ko, R.B.; Bush, K.; et al. FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiat. Res. 2020, 194, 618–624. [Google Scholar] [CrossRef]
- Montay-Gruel, P.-G.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.-F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef]
- Allen, B.D.; Acharya, M.M.; Montay-Gruel, P.; Jorge, P.G.; Bailat, C.; Petit, B.; Vozenin, M.-C.; Limoli, C. Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiat. Res. 2020, 194, 625–635. [Google Scholar]
- Alaghband, Y.; Cheeks, S.N.; Allen, B.D.; Montay-Gruel, P.; Doan, N.-L.; Petit, B.; Jorge, P.G.; Giedzinski, E.; Acharya, M.M.; Vozenin, M.-C.; et al. Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers 2020, 12, 1671. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Acharya, M.M.; Gonçalves Jorge, P.; Petit, B.; Petridis, I.G.; Fuchs, P.; Leavitt, R.; Petersson, K.; Gondré, M.; Bailat, C.; et al. Hypo-fractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin. Cancer Res. 2021, 27, 775–784. [Google Scholar] [CrossRef]
- Hendry, J.H.; Moore, J.V.; Hodgson, B.W.; Keene, J.P. The Constant Low Oxygen Concentration in All the Target Cells for Mouse Tail Radionecrosis. Radiat. Res. 1982, 92, 172. [Google Scholar] [CrossRef]
- Fouillade, C.; Alonso, S.C.; Giuranno, L.; Quelennec, E.; Heinrich, S.; Bonnet-Boissinot, S.; Beddok, A.; Leboucher, S.; Karakurt, H.U.; Bohec, M.; et al. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clin. Cancer Res. 2019, 26, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Montay-Gruel, P.; Markarian, M.; Allen, B.D.; Baddour, J.D.; Giedzinski, E.; Jorge, P.G.; Petit, B.; Bailat, C.; Vozenin, M.-C.; Limoli, C.; et al. Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiat. Res. 2020, 194, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.-F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol. 2020, 17, 1563. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Montay-Gruel, P.; Jorge, P.G.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef]
- Patriarca, A.; Fouillade, C.; Auger, M.; Martin, F.; Pouzoulet, F.; Nauraye, C.; Heinrich, S.; Favaudon, V.; Meyroneinc, S.; Dendale, R.; et al. Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 619–626. [Google Scholar] [CrossRef]
- Maxim, P.G.; Tantawi, S.G.; Loo, B.W. PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 2019, 139, 28–33. [Google Scholar] [CrossRef]
- Bayart, E.; Flacco, A.; Delmas, O.; Pommarel, L.; Levy, D.; Cavallone, M.; Megnin-Chanet, F.; Deutsch, E.; Malka, V. Fast dose fractionation using ultra-short laser accelerated proton pulses can increase cancer cell mortality, which relies on functional PARP1 protein. Sci. Rep. 2019, 9, 10132. [Google Scholar] [CrossRef] [PubMed]
- Kokurewicz, K.; Brunetti, E.; Welsh, G.H.; Wiggins, S.M.; Boyd, M.; Sorensen, A.; Chalmers, A.J.; Schettino, G.; Subiel, A.; Desrosiers, C.; et al. Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements. Sci. Rep. 2019, 9, 10837. [Google Scholar] [CrossRef] [PubMed]
- Felici, G.; Barca, P.; Barone, S.; Bortoli, E.; Borgheresi, R.; De Stefano, S.; Di Francesco, M.; Grasso, L.; Linsalata, S.; Marfisi, D.; et al. Transforming an IORT Linac Into a FLASH Research Machine: Procedure and Dosimetric Characterization. Front. Phys. 2020, 8, 374. [Google Scholar] [CrossRef]
- Friedl, A.A.; Prise, K.M.; Butterworth, K.T.; Montay-Gruel, P.; Favaudon, V. Radiobiology of the flash effect. Med. Phys. 2021, 1–21. [Google Scholar]
- Esplen, N.; Mendonca, M.S.; Bazalova-Carter, M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: A topical review. Phys. Med. Biol. 2020, 65, 23TR03. [Google Scholar] [CrossRef]
- Papiez, L.; Desrosiers, C.; Moskvin, V. Very High Energy Electrons (50–250 MeV) and Radiation Therapy. Technol. Cancer Res. Treat. 2002, 1, 105–110. [Google Scholar] [CrossRef]
- DesRosiers, C.M. An Evaluation of very High Energy Electron Beams (up to 250 MeV) in Radiation Therapy. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2004. [Google Scholar]
- Lagzda, A.; Angal-Kalinin, D.; Jones, J.; Aitkenhead, A.; Kirkby, K.J.; MacKay, R.; Van Herk, M.; Farabolini, W.; Zeeshan, S.; Jones, R.M. Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 482, 70–81. [Google Scholar] [CrossRef]
- Glinec, Y.; Faure, J.; Malka, V.; Fuchs, T.; Szymanowski, H.; Oelfke, U. Radiotherapy with laser-plasma accelerators: Monte Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam. Med. Phys. 2005, 33, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.; Szymanowski, H.; Oelfke, U.; Glinec, Y.; Rechatin, C.; Faure, J.; Malka, V. Treatment planning for laser-accelerated very-high energy electrons. Phys. Med. Biol. 2009, 54, 3315–3328. [Google Scholar] [CrossRef]
- Lagzda, A. VHEE Radiotherapy Studies at CLARA and CLEAR Facilities; The University of Manchester: Manchester, UK, 2019. [Google Scholar]
- Kokurewicz, K.; Brunetti, E.; Curcio, A.; Gamba, D.; Garolfi, L.; Gilardi, A.; Senes, E.; Ness Sjobak, K.; Farabolini, W.; Corsini, R.; et al. An experimental study of focused very high energy electron beams for radiotherapy. Commun. Phys. 2021, 4, 33. [Google Scholar] [CrossRef]
- Whitmore, L.; Mackay, R.I.; van Herk, M.; Jones, J.K.; Jones, R.M. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Sci. Rep. 2021, 11, 10837. [Google Scholar] [CrossRef]
- Ovaida, J.; McAllister, J. Dose distribution in grid therapy with 15 to 35 MeV electrons. Radiology 1961, 76, 118–119. [Google Scholar] [CrossRef] [PubMed]
- De Marzi, L.; Nauraye, C.; Lansonneur, P.; Pouzoulet, F.; Patriarca, A.; Schneider, T.; Guardiola, C.; Mammar, H.; Dendale, R.; Prezado, Y. Spatial fractionation of the dose in proton therapy: Proton minibeam radiation therapy. Cancer Radiother. 2019, 23, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rovira, I.; Fois, G.; Prezado, Y. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med. Phys. 2015, 42, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Brahme, A.; Kraepelien, T.; Svensson, H. Electron and Photon Beams from a 50 MeV Racetrack Microtron. Acta Radiol. Oncol. 1980, 19, 305–319. [Google Scholar] [CrossRef]
- Böhlen, T.T.; Germond, J.; Traneus, E.; Bourhis, J.; Vozenin, M.; Bailat, C.; Bochud, F.; Moeckli, R. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets. Med. Phys. 2021, 48, 3958–3967. [Google Scholar] [CrossRef]
- Lanzl, L.H. Electron pencil beam scanning and its application in radiation therapy. Front. Radiat. Ther. Oncol. 1968, 2, 55–66. [Google Scholar]
- Stewart, K.; Moskvin, V.; DesRosiers, C. Design aspects for Very High Energy Electron (150 to 250 MeV) Acceleration for Use in Radiation Therapy: Beam Shaping, Slectromagnetic Scanning. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; pp. 1622–1627. [Google Scholar]
- Jeong, D.H.; Lee, M.; Lim, H.; Kang, S.K.; Lee, S.J.; Kim, H.C.; Lee, K.; Kim, S.H.; Lee, D.E.; Jang, K.W. Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC. Nucl. Eng. Technol. 2020, 53, 1289–1296. [Google Scholar] [CrossRef]
- Grusell, E.; Montelius, A.; Brahme, A.; Rikner, G.; Russell, K. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams. Phys. Med. Biol. 1994, 39, 2201–2216. [Google Scholar] [CrossRef]
- Jolly, S.; Owen, H.; Schippers, M.; Welsch, C. Technical challenges for FLASH proton therapy. Phys. Med. 2020, 78, 71–82. [Google Scholar] [CrossRef]
- Griem, M.L.; Kuchnir, F.T.; Lanzl, L.H.; Skaggs, L.S.; Sutton, H.G.; Tokars, R. Experience with High-Energy Electron Beam Therapy at the University of Chicago (CONF-7909122--1). 1979. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:11546843 (accessed on 30 September 2021).
- Griem, M.L.; Skaggs, L.S.; Lanzl, L.H.; Malkinson, F.D. Experience in radiobiological dosimetry with high-dose-rate electrons. Ann. N. Y. Acad. Sci. 1969, 161, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Carpender, J.W.; Skaggs, L.S.; Lanzl, L.H.; Griem, M.L. Radiation Therapy with High-Energy Electrons using Pencil Beam Scanning. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1963, 90, 221–230. [Google Scholar] [PubMed]
- Nikjoo, H.; Lindborg, L. RBE of low energy electrons and photons. Phys. Med. Biol. 2010, 55, R65–R109. [Google Scholar] [CrossRef] [PubMed]
- Leduc, A.; Chaouni, S.; Pouzoulet, F.; De Marzi, L.; Megnin-Chanet, F.; Corre, E.; Stefan, D.; Habrand, J.L.; Sichel, F.; Laurent, C. Differential normal skin transcriptomic response in total body irradiated mice exposed to scattered versus scanned proton beams. Sci. Rep. 2021, 12, 5876. [Google Scholar] [CrossRef]
- Chaouni, S.; LeDuc, A.; Pouzoulet, F.; De Marzi, L.; Megnin-Chanet, F.; Stefan, D.; Habrand, J.-L.; Sichel, F.; Laurent, C. Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation. Antioxidants 2020, 9, 1170. [Google Scholar] [CrossRef]
- Delorme, R.; Masilela, T.A.M.; Etoh, C.; Smekens, F.; Prezado, Y. First theoretical determination of relative biological effectiveness of very high energy electrons. Sci. Rep. 2021, 11, 11242. [Google Scholar] [CrossRef] [PubMed]
- Small, K.L.; Henthorn, N.T.; Angal-Kalinin, D.; Chadwick, A.L.; Santina, E.; Aitkenhead, A.; Kirkby, K.J.; Smith, R.J.; Surman, M.; Jones, J.; et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. 2021, 11, 3341. [Google Scholar] [CrossRef] [PubMed]
- Sorcini, B.B.; Hyödynmaa, S.; Brahme, A. The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry. Phys. Med. Biol. 1996, 41, 2657–2677. [Google Scholar] [CrossRef]
- Tilikidis, A.; Lind, B.; Näfstadius, P.; Brahme, A. An estimation of the relative biological effectiveness of 50 MV bremsstrahlung beams by microdosimetric techniques. Phys. Med. Biol. 1996, 41, 55–69. [Google Scholar] [CrossRef]
- Zackrisson, B.; Johansson, B.; Ostbergh, P. Relative Biological Effectiveness of High-Energy Photons (up to 50 MV) and Electrons (50 MeV). Radiat. Res. 1991, 128, 192. [Google Scholar] [CrossRef]
- Yeboah, C.; Sandison, G.A.; Moskvin, V. Optimization of intensity-modulated very high energy (50–250 MeV) electron therapy. Phys. Med. Biol. 2002, 47, 1285–1301. [Google Scholar] [CrossRef]
- Yeboah, C.; Sandison, G.A. Optimized treatment planning for prostate cancer comparing IMPT, VHEET and 15 MV IMXT. Phys. Med. Biol. 2002, 47, 2247–2261. [Google Scholar] [CrossRef]
- Bazalova-Carter, M.; Qu, B.; Palma, B.; Hårdemark, B.; Hynning, E.; Jensen, C.; Maxim, P.G.; Loo, B.W. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 2015, 42, 2615–2625. [Google Scholar] [CrossRef]
- Schüler, E.; Eriksson, K.; Hynning, E.; Hancock, S.L.; Hiniker, S.M.; Bazalova-Carter, M.; Wong, T.; Le, Q.T.; Loo, B.W., Jr.; Maxim, P.G. Very high-energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS. Med. Phys. 2017, 44, 2544–2555. [Google Scholar] [CrossRef] [PubMed]
- Palma, B.; Bazalova-Carter, M.; Hårdemark, B.; Hynning, E.; Qu, B.; Loo, B.W.; Maxim, P.G. Assessment of the quality of very high-energy electron radiotherapy planning. Radiother. Oncol. 2016, 119, 154–158. [Google Scholar] [CrossRef]
- Yuly, M.; Mittelstaedt, J.; Kinney, E.; Maher, C.; Matthews, J.; Sapp, W.; Soós, T.; Owens, R. A test of high-energy electron bremsstrahlung calculations. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 488, 262–270. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiological Safety Aspects of the Operation of Electron Linear Accelerators; Technical Reports Series No. 188; IAEA: Vienna, Austria, 1979. [Google Scholar]
- Loo, B.W.; Maxim, P.G.; Dolgashev, V.A. Pluridirectional very High Electron Energy Radiation Therapy Systems and Processes. U.S. Patent 13/765,017, 12 February 2013. [Google Scholar]
- Subiel, A.; Moskvin, V.; Welsh, G.; Cipiccia, S.; Reboredo, D.; Evans, P.; Partridge, M.; Desrosiers, C.; Anania, M.P.; Cianchi, A.; et al. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: Using radiochromic film measurements and Monte Carlo simulations. Phys. Med. Biol. 2014, 59, 5811–5829. [Google Scholar] [CrossRef] [PubMed]
- Zha, H.; Grudiev, A. Design and optimization of Compact Linear Collider main linac accelerating structure. Phys. Rev. Accel. Beams 2016, 19, 111003. [Google Scholar] [CrossRef]
- Simakov, E.I.; Dolgashev, V.A.; Tantawi, S.G. Advances in high gradient normal conducting accelerator structures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 907, 221–230. [Google Scholar] [CrossRef]
- Geschonke, G.; Ghigo, A. CTF3 Design Report; Technical Report CERN-PS-2002-008-RF; CERN: Geneva, Switzerland, 2002. [Google Scholar]
- Poppinga, D.; Kranzer, R.; Farabolini, W.; Gilardi, A.; Corsini, R.; Wyrwoll, V.; Looe, H.K.; Delfs, B.; Gabrisch, L.; Poppe, B. VHEE beam dosimetry at CERN Linear Electron Accelerator for Research under ultra-high dose rate conditions. Biomed. Phys. Eng. Express 2020, 7, 015012. [Google Scholar] [CrossRef]
- McManus, M.; Romano, F.; Lee, N.D.; Farabolini, W.; Gilardi, A.; Royle, G.; Palmans, H.; Subiel, A. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Sci. Rep. 2020, 10, 9089. [Google Scholar] [CrossRef]
- Adolphsen, C.; Chu, T.S.; Colby, E.R.; Dunning, M.P.; Gilevich, A.; Hast, C.; Jobe, R.K.; Walz, D.R.; Wang, F.; Xiang, D.; et al. Status and Upgrades of the NLCTA for Studies of Advanced Beam Acceleration, Dynamics, and Manipulation. Conf. Proc. C 2011, 110328, 130–132. [Google Scholar]
- Bazalova-Carter, M.; Liu, M.; Palma, B.; Dunning, M.; McCormick, D.; Hemsing, E.; Nelson, J.; Jobe, K.; Colby, E.; Koong, A.; et al. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom. Med. Phys. 2015, 42, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; et al. The SPARC project: A high-brightness electron beamsource at LNF to drive a SASE-FEL experiment, Nuclear Instruments and Methods. Phys. Res. Sec. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 507, 345–349. [Google Scholar] [CrossRef][Green Version]
- Angal-Kalinin, D.; Bainbridge, A.; Brynes, A.D.; Buckley, R.K.; Buckley, S.R.; Burt, G.C.; Cash, R.J.; Cortes, H.M.C.; Christie, D.; Clarke, J.A.; et al. Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end. Phys. Rev. Accel. Beams 2020, 23, 044801. [Google Scholar] [CrossRef]
- Stephan, F. New FLASH Radiation Therapy R&D Options at PITZ. In Proceedings of the Very High Energy Electron Radiotherapy Workshop (VHEE’2020), Geneva, Switzerland, 5–7 October 2020. [Google Scholar]
- Chunguang, J. Capabilites of the AWA Facility for Potental Medical Applications. In Proceedings of the Very High Energy Electron Radiotherapy Workshop (VHEE’2020), Geneva, Switzerland, 5–7 October 2020. [Google Scholar]
- Jiaru, S. Inverse Compton Scattering Source at Tsinghua University. In Proceedings of the Very High Energy Electron Radiotherapy Workshop (VHEE’2020), Geneva, Switzerland, 5–7 October 2020. [Google Scholar]
- McGuffey, C.; Thomas, A.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.J.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; et al. Ionization Induced Trapping in a Laser Wakefield Accelerator. Phys. Rev. Lett. 2010, 104, 025004. [Google Scholar] [CrossRef]
- Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, C.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P. Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches. Phys. Rev. Lett. 2008, 100, 215004. [Google Scholar] [CrossRef]
- Schmid, K.; Buck, A.; Sears, C.M.S.; Mikhailova, J.M.; Tautz, R.; Herrmann, D.; Geissler, M.; Krausz, F.; Veisz, L. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 2010, 13, 091301. [Google Scholar] [CrossRef]
- Thaury, C.; Guillaume, E.; Lifschitz, A.; Phuoc, K.T.; Hansson, M.; Grittani, G.; Gautier, J.; Goddet, J.-P.; Tafzi, A.; Lundh, O.; et al. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 2015, 5, 1631. [Google Scholar] [CrossRef]
- Faure, J.; Rechatin, C.; Lifschitz, A.F.; Davoine, X.; Lefebvre, E.; Malka, V. Experiments and Simulations of the Colliding Pulse Injection of Electrons in Plasma Wakefields. IEEE Trans. Plasma Sci. 2008, 36, 1751–1759. [Google Scholar] [CrossRef]
- Pak, A.; Marsh, K.A.; Martins, S.F.; Lu, W.; Mori, W.B.; Joshi, C. Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes. Phys. Rev. Lett. 2010, 104, 025003. [Google Scholar] [CrossRef] [PubMed]
- Golovin, G.; Chen, S.; Powers, N.; Liu, C.; Banerjee, S.; Zhang, J.; Zeng, M.; Sheng, Z.; Umstadter, D. Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection. Phys. Rev. Spec. Top. Accel. Beams 2015, 18, 011301. [Google Scholar] [CrossRef]
- Gizzi, L.; Labate, L.; Baffigi, F.; Brandi, F.; Bussolino, G.; Fulgentini, L.; Koester, P.; Palla, D.; Rossi, F. Laser–plasma acceleration of electrons for radiobiology and radiation sources. Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interact. Mater. Atoms 2015, 355, 241–245. [Google Scholar] [CrossRef]
- Malka, V.; Fritzler, S.; Lefebvre, E.; D’Humières, E.; Ferrand, R.; Grillon, G.; Albaret, C.; Meyroneinc, S.; Chambaret, J.-P.; Antonetti, A.; et al. Practicability of protontherapy using compact laser systems. Med. Phys. 2004, 31, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, M.; Zhang, G.; Li, S.; Gao, K.; Li, G.; Ain, Q.; Hafz, N. Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator. Phys. Plasmas 2018, 25, 043106. [Google Scholar] [CrossRef]
- Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 2016, 6, srep32441. [Google Scholar] [CrossRef] [PubMed]
- Andreassi, M.G.; Borghini, A.; Pulignani, S.; Baffigi, F.; Fulgentini, L.; Koester, P.; Cresci, M.; Vecoli, C.; Lamia, D.; Russo, G.; et al. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability. Radiat. Res. 2016, 186, 245–253. [Google Scholar] [CrossRef]
- Laschinsky, L.; Baumann, M.; Beyreuther, E.; Enghardt, W.; Kaluza, M.; Karsch, L.; Lessmann, E.; Naumburger, D.; Nicolai, M.; Richter, C.; et al. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. J. Radiat. Res. 2012, 53, 395–403. [Google Scholar] [CrossRef]
- Oppelt, M.; Baumann, M.; Bergmann, R.; Beyreuther, E.; Brüchner, K.; Hartmann, J.; Karsch, L.; Krause, M.; Laschinsky, L.; Leßmann, E.; et al. Comparison study of in vivo dose response to laser-driven versus conventional electron beam. Radiat. Environ. Biophys. 2015, 54, 155–166. [Google Scholar] [CrossRef]
- Albert, F.; Couprie, M.-E.; Debus, A.D.; Downer, M.C.; Faure, J.; Flacco, A.; Gizzi, L.A.; Grismayer, T.; Huebl, A.; Joshi, C.; et al. 2020 roadmap on plasma accelerators. New J. Phys. 2020, 23, 031101. [Google Scholar] [CrossRef]
- Cavallone, M.; Rovige, L.; Huijts, J.; Bayart, É.; Delorme, R.; Vernier, A.; Jorge, P.G.; Moeckli, R.; Deutsch, E.; Faure, J.; et al. Dosimetric characterisation and application to radiation biology of a kHz laser-driven electron beam. Appl. Phys. B 2021, 127, 57. [Google Scholar] [CrossRef]
- Hooker, S. Developments in laser-driven plasma accelerators. Nat. Photonics 2013, 7, 775–782. [Google Scholar] [CrossRef]
- Labate, L.; Palla, D.; Panetta, D.; Avella, F.; Baffigi, F.; Brandi, F.; Di Martino, F.; Fulgentini, L.; Giulietti, A.; Köster, P.; et al. Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes. Sci. Rep. 2020, 10, 17307. [Google Scholar] [CrossRef]
- Svendsen, K.; Guénot, D.; Svensson, J.B.; Petersson, K.; Persson, A.; Lundh, O. A focused very high energy electron beam for fractionated stereotactic radiotherapy. Sci. Rep. 2021, 11, 5844. [Google Scholar] [CrossRef]
- Nakajima, K.; Yuan, J.; Chen, L.; Sheng, Z. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System. Appl. Sci. 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Papiez, L.; Bortfeld, T.; Hendee, W.R. Very high energy electromagnetically-scanned electron beams are an attractive alternative to photon IMRT. For the proposition. Med. Phys. 2004, 31, 1945–1946. [Google Scholar] [CrossRef] [PubMed]
- Dal Forno, M.; Dolgashev, V.; Bowden, G.; Clarke, C.; Hogan, M.; McCormick, D.; Nanni, E.A.; Neilson, J.; Novokhatski, A.; O’Shea, B.; et al. High gradient mm-wave metallicaccelerating structures. Proc. AIP Conf. 2017, 1812, 060011. [Google Scholar]
- Othman, M.A.K.; Picard, J.; Schaub, S.; Dolgashev, V.A.; Lewis, S.M.; Neilson, J. Experimental demonstration of externally driven millimeter-wave particle accelerator structure. Appl. Phys. Lett. 2020, 117, 073502. [Google Scholar] [CrossRef]
- Folkerts, M.M.; Abel, E.; Busold, S.; Perez, J.R.; Krishnamurthi, V.; Ling, C.C. A framework for defining FLASH dose rate for pencil beam scanning. Med. Phys. 2020, 47, 6396–6404. [Google Scholar] [CrossRef]
- Verhaegen, F.; Wanders, R.-G.; Wolfs, C.; Eekers, D. Considerations for shoot-through FLASH proton therapy. Phys. Med. Biol. 2021, 66, 06NT01. [Google Scholar] [CrossRef]
Beam Parameters | CLEAR | SPARC | NLCTA |
---|---|---|---|
Energy (MeV) | 50–220 | 170 | 50–120 |
Bunch charge (pC/shot) | 150 | 60 | 30 |
Bunch length rms (ps) | 0.1–10 | 0.87 | 1 |
Repetition rate (Hz) | 0.8–10 | 0.1–10 | 0.1–10 |
Beam size at water phantom surface (σ mm) | 1.2 | 3.4 | 2 |
Beam Parameters | PHASER | CLARA | PITZ | Argonne | Tsinghua University |
---|---|---|---|---|---|
Energy (MeV) | 100–200 | 50 (−250) | 20 (−250) | 6–63 | 45 (−350) |
Bunch charge (pC/shot) | - | 20–100 | 0.1–5000 | 100–105 | 200 |
Bunch length rms (ps) | 3.105 | 0.3−5 | 30 | 0.3 | <2 |
Repetition rate (Hz) | 10 | 10 (−100) | 10 | 0.5–10 | 5–50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronga, M.G.; Cavallone, M.; Patriarca, A.; Leite, A.M.; Loap, P.; Favaudon, V.; Créhange, G.; De Marzi, L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers 2021, 13, 4942. https://doi.org/10.3390/cancers13194942
Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers. 2021; 13(19):4942. https://doi.org/10.3390/cancers13194942
Chicago/Turabian StyleRonga, Maria Grazia, Marco Cavallone, Annalisa Patriarca, Amelia Maia Leite, Pierre Loap, Vincent Favaudon, Gilles Créhange, and Ludovic De Marzi. 2021. "Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy" Cancers 13, no. 19: 4942. https://doi.org/10.3390/cancers13194942
APA StyleRonga, M. G., Cavallone, M., Patriarca, A., Leite, A. M., Loap, P., Favaudon, V., Créhange, G., & De Marzi, L. (2021). Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers, 13(19), 4942. https://doi.org/10.3390/cancers13194942