The Association of IL-1 and HRAS Gene Polymorphisms with Breast Cancer Susceptibility in a Jordanian Population of Arab Descent: A Genotype–Phenotype Study
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Hardy–Weinberg Equilibrium (HWE) Test
2.3. IL-1 Gene Polymorphisms and their Associations with BC Risk
2.3.1. Genetic Association of rs16944 Polymorphisms with the Risk of BC
2.3.2. Genetic Association of rs1143634 with the Risk of BC
2.3.3. Genetic Association of IL-1Ra 86bp-VNTR with the Risk of BC
2.4. Genetic Association of the HRAS1 28bp-VNTR Polymorphism with the Risk of BC
2.5. Association between the IL-1 Cluster and HRAS1 Gene Polymorphisms and the Clinico–Pathological Characteristics of Breast Cancer (BC)
3. Discussion
4. Materials and Methods
4.1. Studied Population
4.2. DNA Extraction and Quantification of Isolated Genomic DNA
4.3. DNA Genotyping
4.4. DNA Genotyping Using PCR-RFLP
4.4.1. IL-1β rs16944 SNP Genotyping
4.4.2. IL-1β (rs1143634) and SNP genotyping
4.5. Statistical Analysis
4.6. Ethics Committee Approval and Patient Consent
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Yu, G.L.X. Current evidence on the relationship between HRAS1 polymorphism and breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2011, 128, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Alsaraireh, A.; Darawad, M.W. Impact of a Breast Cancer Educational Program on Female University Students’ Knowledge, Attitudes, and Practices. J. Cancer Educ. 2017, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razeq, H.; Attiga, F.; Mansour, A. Cancer care in Jordan. Hematol. Oncol. Stem Cell Ther. 2015, 8, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Z.; Shi, A.; Lu, C. Breast Cancer: Epidemiology and Etiology. Cell Biochem. Biophys. 2015, 72, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sùrlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [Green Version]
- Atoum, M.F.; Al-Kayed, S.A. Mutation analysis of the breast cancer gene BRCA1 among breast cancer Jordanian females. Saudi Med. J. 2004, 25, 60–63. [Google Scholar]
- Mahasneh, A.A.; Abdel-hafiz, S.S. Polymorphism of p53 gene in Jordanian population and possible associations with breast cancer and lung adenocarcinoma. Saudi Med. J. 2004, 25, 1568–1573. [Google Scholar]
- Al Zoubi, M.A. X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population. Saudi Med. J. 2015, 36, 1163–1167. [Google Scholar] [CrossRef]
- Awwad, N.; Yousef, A.; Abuhaliema, A.; Abdalla, I. Relationship between Genetic Polymorphisms in MTHFR (C677T, A1298C and their Haplotypes) and the Incidence of Breast Cancer among Jordanian Females—Case-Control Study. Asian Pac. J. Cancer Prev. 2015, 16, 5007–5011. [Google Scholar] [CrossRef]
- AL-Eitan, L.N.; Jamous, R.I.; Khasawneh, R.H. Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study. Cancer Investig. 2017, 35, 256–270. [Google Scholar] [CrossRef] [PubMed]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. Correlation between Candidate Single Nucleotide Variants and Several Clinicopathological Risk Factors Related to Breast Cancer in Jordanian Women: A Genotype-Phenotype Study. J. Cancer 2019, 10, 4647–4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. Association of GSTM1, GSTT1 and GSTP1 Polymorphisms with Breast Cancer among Jordanian Women. Onco Targets Ther. 2019, 12, 7757–7765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. Role of Four ABC Transporter Genes in Pharmacogenetic Susceptibility to Breast Cancer in Jordanian Patients. J. Oncol. 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. Association of CYP gene polymorphisms with breast cancer risk and prognostic factors in the Jordanian population. BMC Med. Genet. 2019, 20, 148. [Google Scholar] [CrossRef] [Green Version]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. The influence of an IL-4 variable number tandem repeat (VNTR) polymorphism on breast cancer susceptibility. Pharmgenom. Pers. Med. 2019, 12, 201–207. [Google Scholar] [CrossRef] [Green Version]
- AL-Eitan, L.; Rababa’h, D.; Alghamdi, M.; Khasawneh, R. Genetic association of XRCC5 gene polymorphisms with breast cancer among Jordanian women. Onco Targets Ther. 2019, 12, 7923–7928. [Google Scholar] [CrossRef] [Green Version]
- AL-Eitan, L.; Rababa’h, D. Correlation between a variable number tandem repeat (VNTR) polymorphism in SMYD3 gene and breast cancer: A genotype-phenotype study. Gene 2019, 728, 144281. [Google Scholar] [CrossRef]
- AL-Eitan, L.; Rababa’h, D.M.; Alghamdi, M.; Khasawneh, R. Association between ESR1, ESR2, HER2, UGT1A4, and UGT2B7 polymorphisms and breast Cancer in Jordan: A case-control study. BMC Cancer 2019, 19, 1257. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Park, S.K.; Hamajima, N.; Tajima, K.; Choi, J.; Noh, D.; Ahn, S.; Yoo, K.; Hirvonen, A. Genetic polymorphisms of interleukin-1 beta (IL-1B) and IL-1 receptor antagonist (IL-1RN) and breast cancer risk in Korean women. Breast Cancer Res. Treat. 2006, 96, 197–202. [Google Scholar] [CrossRef]
- Liu, J.; Zhai, X.; Jin, G.; Hu, Z.; Wang, S.; Wang, X.; Qin, J.; Gao, J. Functional variants in the promoter of interleukin-1 b are associated with an increased risk of breast cancer: A case-control analysis in a Chinese population. Int. J. Cancer 2006, 118, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Konwar, R.; Chaudhary, P.; Kumar, S.; Mishra, D.; Chattopadhyay, N.; Bid, H.K. Breast Cancer Risk Associated with Polymorphisms of IL-1RN and IL-4 Gene in Indian Women. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2009, 17, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Zienolddiny, S.; Ryberg, D.; Maggini, V.; Skaug, V.; Canzian, F.; Haugen, A. Polymorphisms of the interleukin-1 β gene are associated with increased risk of non-small cell lung cancer. Int. J. Cancer 2004, 109, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, R.M.; Hankinson, S.E.; Ding, S.; Gagalang, V.; Larson, G.P.; Spiegelman, D.; Colditz, G.A.; Krontiris, T.G.; Hunter, D.J. The HRAS1 Variable Number of Tandem Repeats and Risk of Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1528–1530. [Google Scholar]
- Yong, H.; Cells, E.; Yong, H.Y.; Hwang, J.; Son, H. Identification of H-Ras—Specific Motif for the Activation of Invasive Signaling Program in human breast epithelial cells. Neoplasia 2011, 13, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Myers, M.B.; Banda, M.; Mckim, K.L.; Wang, Y.; Powell, M.J.; Parsons, B.L. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal. Neoplasia 2016, 18, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Manchanda, P.K.; Bid, H.K.; Mittal, R.D. Ethnicity greatly influences the interleukin-1 gene cluster (IL-1b promoter, exon-5 and IL-1Ra) polymorphisms: A pilot study of a north Indian population. Asian Pac. J. Cancer Prev. 2005, 6, 541–546. [Google Scholar]
- Van Gils, C.H.; Conway, K.; Li, Y.; Taylor, J.A. HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer. Int. J. Cancer 2004, 100, 414–418. [Google Scholar] [CrossRef]
- Hefler, L.A.; Grimm, C.; Lantzsch, T.; Lampe, D.; Leodolter, S.; Koelbl, H.; Heinze, G.; Reinthaller, A.; Tong-Cacsire, D.; Tempter, C.; et al. Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in Caucasian women. Clin. Cancer Res. 2005, 11, 5718–5721. [Google Scholar] [CrossRef] [Green Version]
- AL-Eitan, L.; Haddad, Y. Emergence of pharmacogenomics in academic medicine and public health in Jordan: History, present state and prospects. Curr. Pharmacogenom. Pers. Med. 2014, 12, 167–175. [Google Scholar] [CrossRef]
- AL-Eitan, L.; Tarkhan, A. Practical challenges and translational issues in pharmacogenomics and personalized medicine from 2010 onwards. Curr. Pharmacogenom. Pers. Med. 2014, 14, 7–17. [Google Scholar] [CrossRef]
Clinical Characteristics | Frequency N (%) | Pathological Characteristics | Frequency N (%) | ||
---|---|---|---|---|---|
Body mass index (BMI) | ≤25 | 36 (24.6%) | Progesterone receptor | Positive | 57 (42.8%) |
>25 | 110 (75.4%) | Negative | 76 (57.2%) | ||
First pregnancy (age) | <20 | 38 (30.4%) | Estrogen receptor | Positive | 95 (73%) |
≥20 | 87 (69.6%) | Negative | 35 (27%) | ||
Age at breast cancer diagnosis | <45 | 50 (34.2%) | Tumor differentiation | Low. differentiation | 43 (32.5%) |
≥45 | 96 (75.8%) | Mid and High. differentiation | 89 (67.5%) | ||
Age at first menstruation | <13 | 45 (31.1%) | Axillary lymph nodes | Free of tumor | 72 (50%) |
≥13 | 100 (68.9%) | Show metastatic Carcinoma | 72 (50%) | ||
Breastfeeding status | Yes | 91 (62.8%) | Tumor stage | PT1-PT2 | 127 (93.3%) |
No | 54 (37.2%) | PT3-PT4 | 9 (6.7%) | ||
Age at menopause | <50 | 37 (56.1%) | Histology classification | in situ carcinoma | 24 (17.7%) |
≥50 | 29 (43.9%) | invasive carcinoma | 111 (82.2%) | ||
Family history | Yes | 45 (31%) | Tumor size | ≤2 cm | 36 (26.9%) |
No | 101 (69%) | 2 < x ≤ 5 | 53 (39.5%) | ||
Allergy | Yes | 37 (25.3%) | >5 | 45 (33.6%) | |
No | 109 (74.7%) | Lymph node involvement | Yes | 121 (84%) | |
Smoking | Yes | 38 (26.9%) | No | 23 (16%) | |
No | 103 (73.1%) | Human epidermal growth factor receptor 2 (Her2) marker | Positive | 43 (43.9%) | |
Co-morbidity | Yes | 68 (47.2%) | Negative | 55 (56.1%) | |
No | 75 (52.8%) |
Polymorphism | Allelic and Genotypic Frequencies in the Cases and Controls | ||||
---|---|---|---|---|---|
Allele/Genotype | Cases (n = 150) | Controls (n= 188) | p-value * | Chi-Square | |
Il-1β promoter rs16944 | C | 177 (58.6%) | 232 (62.4%) | 0.342 | 0.986 |
T | 125 (41.4%) | 140 (37.6%) | |||
CC | 56 (37.1%) | 74 (39.8%) | 0.521 | 1.364 | |
CT | 65 (43.0%) | 84 (45.2%) | |||
TT | 30 (19.9%) | 28 (15%) | |||
Il-1β exon5 rs1143634 | E1 | 213 (72.0%) | 240 (64.2%) | 0.038 | 4.577 |
E2 | 83 (28.0%) | 134 (35.8%) | |||
E1E1 | 78 (52.7%) | 74 (39.6%) | 0.057 | 5.747 | |
E1E2 | 57 (38.5%) | 92 (49.2%) | |||
IL-1RA 86bp-VNTR | 1 | 70 (24.1%) | 58 (15.59%) | 0.0003 | 18.258 |
2 | 8 (2.7%) | 1 (0.2%) | |||
3 | 196 (67.5%) | 299 (80.3%) | |||
4 | 16 (5.51%) | 14 (3.76%) | |||
1/1 | 9 (6.2%) | 5 (2.7%) | 0.014 | 18.364 | |
3/3 | 70 (48.3%) | 121 (65.1%) | |||
4/4 | 2 (1.4%) | 1 (0.5%) | |||
1/2 | 2 (1.4%) | 0 (0%) | |||
1/3 | 46 (31.7%) | 46 (24.7%) | |||
1/4 | 4 (2.8%) | 2 (1.1) | |||
2/3 | 4 (2.8%) | 1 (0.5%) | |||
2/4 | 2 (1.4%) | 0 (0%) | |||
3/4 | 6 (4.1%) | 9 (4.8%) | |||
HRAS1 gene 28bp-VNTR | CC * | 112 (76.7%) | 137 (76.1%) | 0.812 | 0.464 |
CR * | 20 (13.7%) | 22 (12.2%) | |||
RR * | 14 (9.6%) | 21 (11.7%) |
HRAS1 Alleles | Cases | Controls | p-value |
---|---|---|---|
Common Alleles | |||
A1 | 238 (81.5%) | 283 (78.6%) | 0.368 |
A2 | 6 (2.1%) | 11 (3.1%) | 0.423 |
A3 | 2 (0.7%) | 0 | 0.109 |
A4 | 1 (0.3%) | 2 (0.6%) | 0.689 |
Rare Alleles | |||
A1+2 | 13 (4.5%) | 15 (4.2%) | 0.841 |
A1+3 | 2 (0.7%) | 3 (0.8%) | 0.841 |
A1+4 | 5 (1.7%) | 0 | 0.011 |
A1+5 | 0 | 1 (0.3%) | 0.368 |
A1+6 | 2 (0.7%) | 0 | 0.109 |
A1−1 | 4 (1.4%) | 5 (1.4%) | 1 |
A1−2 | 2 (0.7%) | 8 (2.2%) | 0.109 |
A1−5 | 0 | 1 (0.3%) | 0.368 |
A2+2 | 0 | 5 (1.4%) | 0.045 |
A2+3 | 9 (3.1%) | 9 (2.5%) | 0.61 |
A2+4 | 1 (0.3%) | 0 | 0.31 |
A2+6 | 1 (0.3%) | 1 (0.3%) | 0.920 |
A3+3 | 2 (0.7%) | 0 | 0.109 |
A3+4 | 2 (0.7%) | 4 (1.1%) | 0.548 |
A3+6 | 0 | 1 (0.3%) | 0.368 |
A4+3 | 1 (0.3%) | 8 (2.2%) | 0.045 |
A4+4 | 1 (0.3%) | 0 | 0.31 |
A4+5 | 0 | 2 (0.6%) | 0.193 |
A4+6 | 0 | 1 (0.3%) | 0.368 |
Clinical Characteristics | Il-1gene Cluster | HRAS1gene | ||
---|---|---|---|---|
rs:16944 | rs1143634 | IL-1R 86 bp-VNTR | 28bp-VNTR | |
Body mass index | 0.802 a | 0.885 a | 0.944 a | 0.341 a |
0.221 c | 0.122 c | 0350 c | 1.084 c | |
Age at first pregnancy | 0.414 a | 0.188 a | 0.945 a | 0.498 a |
0.889 c | 1.694 c | 0.375 c | 0.701 c | |
Age at BC diagnosis | 0.344 a | 0.266 a | 0.646 a | 0.308 a |
1.08 c | 1.337 c | 0.769 c | 1.186 c | |
Allergy | 0.980 a | 0.866 a | 0.178 a | 0.481 a |
0.040 b | 0.122 c | 11.44 b | 1.464 b | |
Age at menarche | 0.957 a | 0.347 a | 0.765 a | 0.577 a |
0.044 c | 1.068 c | 0.614 c | 0.553 c | |
Breastfeeding status | 0.206 c | 0.285 a | 0.786 a | 0.044 a |
3.159 b | 2.508 b | 4.726 b | 6.264 b | |
Age at menopause | 0.364 a | 0.908 a | 0.02 a | 0.659 a |
1.027 c | 0.097 c | 2.791 c | 0.420 c | |
Family history | 0.835 a | 0.416 a | 0.489 a | 0.323 a |
0.361 b | 1.752 b | 7.448 b | 2.257 b | |
Co-morbidity | 0.452 a | 0.834 a | 0.438 a | <0.0001 a |
1.588 b | 0.363 b | 7.957 b | 151.2 b | |
Smoking | 0.369 a | 0.960 a | 0.327 a | 0.153 a |
0.127 b | 0.81 b | 9.182 b | 3.757 b | |
Progesterone receptor status | 0.425 a | 0.864 a | 0.605 a | 0.491 a |
1.713 b | 0.293 b | 6.377 b | 1.424 b | |
Estrogen receptor status | 0.940 a | 0.179 a | 0.184 a | 0.433 a |
0.124 b | 3.345 b | 11.32 b | 18.35 b | |
HER2 | 0.207 a | 0.649 a | 0.750 a | 0.633 a |
3.150 b | 0.865 b | 5.071 b | 0.914 b | |
Tumor differentiation | 0.697 a | <0.0001 a | 0.160 a | 0.304 a |
0.722 b | 138.5 b | 10.53 b | 10.59 b | |
Axillary lymph nodes | 0.505 a | 0.677 a | 0.316 a | 0.930 a |
1.367 b | 0.779 b | 9.322 b | 0.146 b | |
Tumor stage | 0.797 a | 0.459 a | 0.016 a | 0.606 a |
0.454 b | 1.559 b | 18.80 b | 1.627 b | |
Histology classification | 0.949 a | 0.721 a | 0.281 a | 0.347 a |
0.104 b | 0.655 b | 9.781 b | 2.119 b | |
Tumor size | 0.529 a | 0.924 a | 0.901 a | 0.519 a |
0.640 c | 0.079 c | 0.429 c | 0.659 c | |
Lymph node involvement | 0.794 a | 0.807 a | 0.180 a | 0.989 a |
0.460 b | 1.612 b | 11.39 b | 0.311 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Eitan, L.N.; Al-Ahmad, B.H.; Almomani, F.A. The Association of IL-1 and HRAS Gene Polymorphisms with Breast Cancer Susceptibility in a Jordanian Population of Arab Descent: A Genotype–Phenotype Study. Cancers 2020, 12, 283. https://doi.org/10.3390/cancers12020283
AL-Eitan LN, Al-Ahmad BH, Almomani FA. The Association of IL-1 and HRAS Gene Polymorphisms with Breast Cancer Susceptibility in a Jordanian Population of Arab Descent: A Genotype–Phenotype Study. Cancers. 2020; 12(2):283. https://doi.org/10.3390/cancers12020283
Chicago/Turabian StyleAL-Eitan, Laith N., Bashar H. Al-Ahmad, and Fouad A. Almomani. 2020. "The Association of IL-1 and HRAS Gene Polymorphisms with Breast Cancer Susceptibility in a Jordanian Population of Arab Descent: A Genotype–Phenotype Study" Cancers 12, no. 2: 283. https://doi.org/10.3390/cancers12020283
APA StyleAL-Eitan, L. N., Al-Ahmad, B. H., & Almomani, F. A. (2020). The Association of IL-1 and HRAS Gene Polymorphisms with Breast Cancer Susceptibility in a Jordanian Population of Arab Descent: A Genotype–Phenotype Study. Cancers, 12(2), 283. https://doi.org/10.3390/cancers12020283