Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radiobiology of Ablative Radiotherapy
3. SBRT as Monotherapy
3.1. Prospective Evidence
3.2. SBRT Dose
3.3. SBRT Fractionation
4. HDRBT as Monotherapy
4.1. HDRBT vs. LDRBT
4.2. Evidence for HDRBT Monotherapy
4.3. HDRBT Fractionation
5. Comparisons between HDRBT and SBRT
6. Future Directions for SBRT and HDRBT for Localized Disease
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Carroll, P.R.; Parsons, J.K.; Andriole, G.; Bahnson, R.R.; Barocas, D.A.; Castle, E.P.; Catalona, W.J.; Dahl, D.M.; Davis, J.W.; Epstein, J.I.; et al. NCCN Clinical Practice Guidelines Prostate Cancer Early Detection, Version 2.2015. J. Natl. Compr. Cancer Netw. JNCCN 2015, 13, 1534–1561. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Z.; Li, X.A.; Yu, C.X.; DiBiase, S.J. The low alpha/beta ratio for prostate cancer: What does the clinical outcome of HDR brachytherapy tell us? Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 1101–1108. [Google Scholar] [CrossRef]
- Brenner, D.J.; Hall, E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 1095–1101. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Catton, C.N.; Lukka, H.; Gu, C.S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef]
- Hoffman, K.E.; Voong, K.R.; Levy, L.B.; Allen, P.K.; Choi, S.; Schlembach, P.J.; Lee, A.K.; McGuire, S.E.; Nguyen, Q.; Pugh, T.J.; et al. Randomized Trial of Hypofractionated, Dose-Escalated, Intensity-Modulated Radiation Therapy (IMRT) Versus Conventionally Fractionated IMRT for Localized Prostate Cancer. J. Clin. Oncol. 2018, 36, 2943–2949. [Google Scholar] [CrossRef]
- Morgan, S.C.; Hoffman, K.; Loblaw, D.A.; Buyyounouski, M.K.; Patton, C.; Barocas, D.; Bentzen, S.; Chang, M.; Efstathiou, J.; Greany, P.; et al. Hypofractionated Radiation Therapy for Localized Prostate Cancer: An ASTRO, ASCO, and AUA Evidence-Based Guideline. J. Urol. 2018. [Google Scholar] [CrossRef]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Brand, D.H.; Tree, A.C.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): Acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet. Oncol. 2019, 20, 1531–1543. [Google Scholar] [CrossRef]
- Kishan, A.U.; Dang, A.; Katz, A.J.; Mantz, C.A.; Collins, S.P.; Aghdam, N.; Chu, F.I.; Kaplan, I.D.; Appelbaum, L.; Fuller, D.B.; et al. Long-term Outcomes of Stereotactic Body Radiotherapy for Low-Risk and Intermediate-Risk Prostate Cancer. JAMA Netw. Open 2019, 2, e188006. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef] [Green Version]
- NCCN. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Available online: http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 19 October 2020).
- Tselis, N.; Hoskin, P.; Baltas, D.; Strnad, V.; Zamboglou, N.; Rödel, C.; Chatzikonstantinou, G. High Dose Rate Brachytherapy as Monotherapy for Localised Prostate Cancer: Review of the Current Status. Clin. Oncol. R. Coll. Radiol. 2017, 29, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Hauswald, H.; Kamrava, M.R.; Fallon, J.M.; Wang, P.C.; Park, S.J.; Van, T.; Borja, L.; Steinberg, M.L.; Demanes, D.J. High-Dose-Rate Monotherapy for Localized Prostate Cancer: 10-Year Results. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 667–674. [Google Scholar] [CrossRef]
- Nahum, A.E. The radiobiology of hypofractionation. Clin. Oncol. R. Coll. Radiol. 2015, 27, 260–269. [Google Scholar] [CrossRef]
- Kirkpatrick, J.P.; Meyer, J.J.; Marks, L.B. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin. Radiat. Oncol. 2008, 18, 240–243. [Google Scholar] [CrossRef]
- Song, C.W.; Cho, L.C.; Yuan, J.; Dusenbery, K.E.; Griffin, R.J.; Levitt, S.H. Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 18–19. [Google Scholar] [CrossRef]
- Park, H.J.; Griffin, R.J.; Hui, S.; Levitt, S.H.; Song, C.W. Radiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat. Res. 2012, 177, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Wu, Z.Q.; Qian, D.; Zaorsky, N.G.; Qiu, M.H.; Cheng, J.J.; Jiang, C.; Wang, J.; Zeng, X.L.; Liu, C.L.; et al. Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 49–62. [Google Scholar] [CrossRef]
- Keam, S.P.; Halse, H.; Nguyen, T.; Wang, M.; Van Kooten Losio, N.; Mitchell, C.; Caramia, F.; Byrne, D.J.; Haupt, S.; Ryland, G.; et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J. Immunother. Cancer 2020, 8, e000792. [Google Scholar] [CrossRef]
- Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru, A.H.; Neijssen, J.; et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [Google Scholar] [CrossRef]
- Garnett, C.T.; Palena, C.; Chakraborty, M.; Tsang, K.Y.; Schlom, J.; Hodge, J.W. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004, 64, 7985–7994. [Google Scholar] [CrossRef]
- Lin, A.J.; Roach, M.; Bradley, J.; Robinson, C. Combining stereotactic body radiation therapy with immunotherapy: Current data and future directions. Transl. Lung Cancer Res. 2019, 8, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Fraga, A.; Ribeiro, R.; Príncipe, P.; Lopes, C.; Medeiros, R. Hypoxia and Prostate Cancer Aggressiveness: A Tale With Many Endings. Clin. Genitourin. Cancer 2015, 13, 295–301. [Google Scholar] [CrossRef]
- Hompland, T.; Hole, K.H.; Ragnum, H.B.; Aarnes, E.K.; Vlatkovic, L.; Lie, A.K.; Patzke, S.; Brennhovd, B.; Seierstad, T.; Lyng, H. Combined MR Imaging of Oxygen Consumption and Supply Reveals Tumor Hypoxia and Aggressiveness in Prostate Cancer Patients. Cancer Res. 2018, 78, 4774–4785. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.R.; Di Serio, C.; Danza, G.; Rocca, B.J.; Ginori, A.; Prudovsky, I.; Marchionni, N.; Del Vecchio, M.T.; Tarantini, F. Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer. Diagn. Pathol. 2016, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, M.; Warde, P.; Ménard, C.; Chung, P.; Toi, A.; Ishkanian, A.; McLean, M.; Pintilie, M.; Sykes, J.; Gospodarowicz, M.; et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res. 2012, 18, 2108–2114. [Google Scholar] [CrossRef] [Green Version]
- Nahum, A.E.; Movsas, B.; Horwitz, E.M.; Stobbe, C.C.; Chapman, J.D. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: Implications for the alpha/beta ratio. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 391–401. [Google Scholar] [CrossRef]
- Madsen, B.L.; Hsi, R.A.; Pham, H.T.; Fowler, J.F.; Esagui, L.; Corman, J. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: First clinical trial results. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1099–1105. [Google Scholar] [CrossRef]
- Michalski, J.M.; Yan, Y.; Watkins-Bruner, D.; Bosch, W.R.; Winter, K.; Galvin, J.M.; Bahary, J.-P.; Morton, G.C.; Parliament, M.B.; Sandler, H.M. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Quon, H.C.; Ong, A.; Cheung, P.; Chu, W.; Chung, H.T.; Vesprini, D.; Chowdhury, A.; Panjwani, D.; Pang, G.; Korol, R.; et al. Once-weekly versus every-other-day stereotactic body radiotherapy in patients with prostate cancer (PATRIOT): A phase 2 randomized trial. Radiother Oncol 2018, 127, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, D.P.; Griffin, C.; Syndikus, I.; Khoo, V.; Birtle, A.J.; Choudhury, A.; Ferguson, C.; Graham, J.; O’Sullivan, J.; Panades, M.; et al. Eight-year outcomes of a phase III randomized trial of conventional versus hypofractionated high-dose intensity modulated radiotherapy for prostate cancer (CRUK/06/016): Update from the CHHiP Trial. J. Clin. Oncol. 2020, 38, 325. [Google Scholar] [CrossRef]
- Tree, A.; Griffin, C.; Hall, E.; Dearnaley, D.P.; CHHiP Investigators. Efficacy and toxicity according to hormone therapy used in the CHHiP trial. J. Clin. Oncol. 2020, 38, 316. [Google Scholar] [CrossRef]
- Kishan, A.U.; Chu, F.I.; King, C.R.; Seiferheld, W.; Spratt, D.E.; Tran, P.; Wang, X.; Pugh, S.E.; Sandler, K.A.; Bolla, M.; et al. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur. Urol. 2020, 77, 201–208. [Google Scholar] [CrossRef]
- Hayman, J.; Hole, K.H.; Seierstad, T.; Perin, J.; DeWeese, T.L.; Tran, P.T.; Lilleby, W. Local failure is a dominant mode of recurrence in locally advanced and clinical node positive prostate cancer patients treated with combined pelvic IMRT and androgen deprivation therapy. Urol. Oncol. 2019, 37, 289.e19–289.e26. [Google Scholar] [CrossRef]
- Pasalic, D.; Kuban, D.A.; Allen, P.K.; Tang, C.; Mesko, S.M.; Grant, S.R.; Augustyn, A.A.; Frank, S.J.; Choi, S.; Hoffman, K.E.; et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 790–797. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 14, e180039. [Google Scholar] [CrossRef]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 67–74. [Google Scholar] [CrossRef]
- Levin-Epstein, R.G.; Jiang, N.Y.; Wang, X.; Upadhyaya, S.K.; Collins, S.P.; Suy, S.; Aghdam, N.; Mantz, C.; Katz, A.J.; Miszczyk, L.; et al. Dose-Response with Stereotactic Body Radiotherapy for Prostate Cancer: A Multi-Institutional Analysis of Prostate-Specific Antigen Kinetics and Biochemical Control. Radiother. Oncol. 2020, 154, 207–213. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Kollmeier, M.; McBride, S.; Varghese, M.; Mychalczak, B.; Gewanter, R.; Garg, M.K.; Happersett, L.; Goldman, D.A.; Pei, I.; et al. Five-Year Outcomes of a Phase 1 Dose-Escalation Study Using Stereotactic Body Radiosurgery for Patients With Low-Risk and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 42–49. [Google Scholar] [CrossRef]
- Alayed, Y.; Cheung, P.; Pang, G.; Mamedov, A.; D’Alimonte, L.; Deabreu, A.; Commisso, K.; Commisso, A.; Zhang, L.; Quon, H.C.; et al. Dose escalation for prostate stereotactic ablative radiotherapy (SABR): Late outcomes from two prospective clinical trials. Radiother. Oncol. 2018, 127, 213–218. [Google Scholar] [CrossRef]
- Royce, T.J.; Mavroidis, P.; Wang, K.; Falchook, A.D.; Sheets, N.C.; Fuller, D.B.; Collins, S.P.; El Naqa, I.; Song, D.Y.; Ding, G.X.; et al. Tumor Control Probability Modeling and Systematic Review of the Literature of Stereotactic Body Radiation Therapy for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020. [Google Scholar] [CrossRef]
- Hannan, R.; Tumati, V.; Xie, X.J.; Cho, L.C.; Kavanagh, B.D.; Brindle, J.; Raben, D.; Nanda, A.; Cooley, S.; Kim, D.W.N.; et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer—Results from a multi-institutional clinical trial. Eur. J. Cancer 2016, 59, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Potters, L.; Rana, Z.; Lee, L.; Cox, B.W. Outcomes of a Dose-Escalated Stereotactic Body Radiation Phase 1 Trial for Patients With Low- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 334–342. [Google Scholar] [CrossRef]
- Musunuru, H.B.; Quon, H.; Davidson, M.; Cheung, P.; Zhang, L.; D’Alimonte, L.; Deabreu, A.; Mamedov, A.; Loblaw, A. Dose-escalation of five-fraction SABR in prostate cancer: Toxicity comparison of two prospective trials. Radiother. Oncol. 2016, 118, 112–117. [Google Scholar] [CrossRef]
- King, C.R.; Brooks, J.D.; Gill, H.; Pawlicki, T.; Cotrutz, C.; Presti, J.C., Jr. Stereotactic body radiotherapy for localized prostate cancer: Interim results of a prospective phase II clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1043–1048. [Google Scholar] [CrossRef]
- Alayed, Y.; Quon, H.; Ong, A.; Cheung, P.; Chu, W.; Chung, H.; Vesprini, D.; Chowdhury, A.; Panjwani, D.; Pang, G.; et al. Accelerating prostate stereotactic ablative body radiotherapy: Efficacy and toxicity of a randomized phase II study of 11 versus 29 days overall treatment time (PATRIOT). Radiother. Oncol. 2020, 149, 8–13. [Google Scholar] [CrossRef]
- Zilli, T.; Franzese, C.; Bottero, M.; Giaj-Levra, N.; Förster, R.; Zwahlen, D.; Koutsouvelis, N.; Bertaut, A.; Blanc, J.; D’Agostino, G.R.; et al. Single fraction urethra-sparing prostate cancer SBRT: Phase I results of the ONE SHOT trial. Radiother. Oncol. 2019, 139, 83–86. [Google Scholar] [CrossRef]
- Alayed, Y.; Cheung, P.; Chu, W.; Chung, H.; Davidson, M.; Ravi, A.; Helou, J.; Zhang, L.; Mamedov, A.; Commisso, A.; et al. Two StereoTactic ablative radiotherapy treatments for localized prostate cancer (2STAR): Results from a prospective clinical trial. Radiother. Oncol. 2019, 135, 86–90. [Google Scholar] [CrossRef]
- Crook, J.; Marbán, M.; Batchelar, D. HDR Prostate Brachytherapy. Semin. Radiat. Oncol. 2020, 30, 49–60. [Google Scholar] [CrossRef]
- Hathout, L.; Mahmoud, O.; Wang, Y.; Vergalasova, I.; Barkati, M.; Després, P.; Martin, A.G.; Foster, W.; Lacroix, F.; Delouya, G.; et al. A Phase 2 Randomized Pilot Study Comparing High-Dose-Rate Brachytherapy and Low-Dose-Rate Brachytherapy as Monotherapy in Localized Prostate Cancer. Adv. Radiat. Oncol. 2019, 4, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, A.A.; Demanes, J.; Vargas, C.; Schour, L.; Ghilezan, M.; Gustafson, G.S. High-dose-rate prostate brachytherapy: An excellent accelerated-hypofractionated treatment for favorable prostate cancer. Am. J. Clin. Oncol. 2010, 33, 481–488. [Google Scholar] [CrossRef]
- Yamazaki, H.; Masui, K.; Suzuki, G.; Nakamura, S.; Yamada, K.; Okihara, K.; Shiraishi, T.; Yoshida, K.; Kotsuma, T.; Tanaka, E.; et al. High-dose-rate brachytherapy monotherapy versus low-dose-rate brachytherapy with or without external beam radiotherapy for clinically localized prostate cancer. Radiother. Oncol. 2019, 132, 162–170. [Google Scholar] [CrossRef]
- Prestidge, B.R.; Winter, K.; Sanda, M.G.; Amin, M.; Bice, W.S., Jr.; Michalski, J.; Ibbott, G.S.; Crook, J.M.; Catton, C.N.; Gay, H.A.; et al. Initial Report of NRG Oncology/RTOG 0232: A Phase 3 Study Comparing Combined External Beam Radiation and Transperineal Interstitial Permanent Brachytherapy With Brachytherapy Alone for Selected Patients With Intermediate-Risk Prostatic Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, S4. [Google Scholar] [CrossRef] [Green Version]
- Bruner, D.W.; Moughan, J.; Prestidge, B.R.; Sanda, M.G.; Bice, W.; Michalski, J.M.; Ibbott, G.S.; Amin, M.; Catton, C.N.; Donavanik, V.; et al. Patient Reported Outcomes of NRG Oncology/RTOG 0232: A Phase III Study Comparing Combined External Beam Radiation and Transperineal Interstitial Permanent Brachytherapy with Brachytherapy Alone in Intermediate Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, S2–S3. [Google Scholar] [CrossRef]
- Jawad, M.S.; Dilworth, J.T.; Gustafson, G.S.; Ye, H.; Wallace, M.; Martinez, A.; Chen, P.Y.; Krauss, D.J. Outcomes Associated With 3 Treatment Schedules of High-Dose-Rate Brachytherapy Monotherapy for Favorable-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 657–666. [Google Scholar] [CrossRef]
- Hoskin, P.; Rojas, A.; Ostler, P.; Hughes, R.; Alonzi, R.; Lowe, G. Single-dose high-dose-rate brachytherapy compared to two and three fractions for locally advanced prostate cancer. Radiother. Oncol. 2017, 124, 56–60. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Gustafson, G.S.; Ye, H.; Martinez, A.A.; Mitchell, B.; Sebastian, E.; Limbacher, A.; Krauss, D.J. Five-Year Outcomes of a Single-Institution Prospective Trial of 19-Gy Single-Fraction High-Dose-Rate Brachytherapy for Low- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 1038–1044. [Google Scholar] [CrossRef]
- Xu, M.J.; Chen, K.S.; Chang, A.J.; Lazar, A.; Shinohara, K.; Cunha, J.A.M.; Hsu, I.C. Single-fraction brachytherapy as monotherapy for early-stage prostate cancer: The UCSF experience. Brachytherapy 2019, 18, 470–476. [Google Scholar] [CrossRef]
- Tharmalingam, H.; Tsang, Y.; Ostler, P.; Wylie, J.; Bahl, A.; Lydon, A.; Ahmed, I.; Elwell, C.; Nikapota, A.R.; Hoskin, P.J. Single dose high-dose rate (HDR) brachytherapy (BT) as monotherapy for localised prostate cancer: Early results of a UK national cohort study. Radiother. Oncol. 2020, 143, 95–100. [Google Scholar] [CrossRef]
- Strouthos, I.; Tselis, N.; Chatzikonstantinou, G.; Butt, S.; Baltas, D.; Bon, D.; Milickovic, N.; Zamboglou, N. High dose rate brachytherapy as monotherapy for localised prostate cancer. Radiother. Oncol. 2018, 126, 270–277. [Google Scholar] [CrossRef]
- Ghilezan, M.; Martinez, A.; Gustason, G.; Krauss, D.; Antonucci, J.V.; Chen, P.; Fontanesi, J.; Wallace, M.; Ye, H.; Casey, A.; et al. High-dose-rate brachytherapy as monotherapy delivered in two fractions within one day for favorable/intermediate-risk prostate cancer: Preliminary toxicity data. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Nagore, G.; Lopez Guerra, J.L.; Krumina, E.; Lagos, M.; Ovalles, B.; Miró, A.; Beltran, L.; Gómez, E.; Praena-Fernandez, J.M.; Del Campo, E.R.; et al. High dose rate brachytherapy for prostate cancer: A prospective toxicity evaluation of a one day schedule including two 13.5 Gy fractions. Radiother. Oncol. 2018, 127, 219–224. [Google Scholar] [CrossRef]
- Ragab, O.; Banerjee, R.; Park, S.J.; Patel, S.; Zhang, M.; Wang, J.; Velez, M.; Demanes, D.J.; Kamrava, M. Comparison of patient-reported acute urinary and sexual toxicity scores in a 6- versus 2-fraction course of high-dose-rate prostate brachytherapy monotherapy. J. Med. Imaging Radiat. Oncol. 2018, 62, 109–115. [Google Scholar] [CrossRef]
- Morton, G.; McGuffin, M.; Chung, H.T.; Tseng, C.L.; Helou, J.; Ravi, A.; Cheung, P.; Szumacher, E.; Liu, S.; Chu, W.; et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Efficacy results from a randomized phase II clinical trial of one fraction of 19 Gy or two fractions of 13.5 Gy. Radiother. Oncol. 2020, 146, 90–96. [Google Scholar] [CrossRef]
- Prada, P.J.; Ferri, M.; Cardenal, J.; Blanco, A.G.; Anchuelo, J.; Díaz de Cerio, I.; Vázquez, A.; Pacheco, M.; Raba, I.; Ruiz, S. High-dose-rate interstitial brachytherapy as monotherapy in one fraction of 20.5 Gy for the treatment of localized prostate cancer: Toxicity and 6-year biochemical results. Brachytherapy 2018, 17, 845–851. [Google Scholar] [CrossRef]
- Alayed, Y.; Loblaw, A.; McGuffin, M.; Chung, H.T.; Tseng, C.L.; D’Alimonte, L.; Cheung, P.; Liu, S.; Chu, W.; Szumacher, E.; et al. Single-fraction HDR brachytherapy as monotherapy in low and intermediate risk prostate cancer: Outcomes from two clinical trials with and without an MRI-guided boost. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 154, 29–35. [Google Scholar] [CrossRef]
- Stone, N.N. Survival after prostate brachytherapy in patients aged 60 years and younger. BJU Int. 2011, 107, 1911. [Google Scholar] [CrossRef]
- Morris, W.J.; Keyes, M.; Spadinger, I.; Kwan, W.; Liu, M.; McKenzie, M.; Pai, H.; Pickles, T.; Tyldesley, S. Population-based 10-year oncologic outcomes after low-dose-rate brachytherapy for low-risk and intermediate-risk prostate cancer. Cancer 2013, 119, 1537–1546. [Google Scholar] [CrossRef]
- Fuller, D.B.; Falchook, A.D.; Crabtree, T.; Kane, B.L.; Medbery, C.A.; Underhill, K.; Gray, J.R.; Peddada, A.; Chen, R.C. Phase 2 Multicenter Trial of Heterogeneous-dosing Stereotactic Body Radiotherapy for Low- and Intermediate-risk Prostate Cancer: 5-year Outcomes. Eur. Urol. Oncol. 2018, 1, 540–547. [Google Scholar] [CrossRef]
- Hegde, J.V.; Collins, S.P.; Fuller, D.B.; King, C.R.; Demanes, D.J.; Wang, P.C.; Kupelian, P.A.; Steinberg, M.L.; Kamrava, M. A Pooled Analysis of Biochemical Failure in Intermediate-risk Prostate Cancer Following Definitive Stereotactic Body Radiotherapy (SBRT) or High-Dose-Rate Brachytherapy (HDR-B) Monotherapy. Am. J. Clin. Oncol. 2018, 41, 502–507. [Google Scholar] [CrossRef]
- Chatzikonstantinou, G.; Keller, C.; Scherf, C.; Bathen, B.; Köhn, J.; Tselis, N. Real-world dosimetric comparison between CyberKnife SBRT and HDR brachytherapy for the treatment of prostate cancer. Brachytherapy 2020. [Google Scholar] [CrossRef]
- Spratt, D.E.; Scala, L.M.; Folkert, M.; Voros, L.; Cohen, G.N.; Happersett, L.; Katsoulakis, E.; Zelefsky, M.J.; Kollmeier, M.A.; Yamada, Y. A comparative dosimetric analysis of virtual stereotactic body radiotherapy to high-dose-rate monotherapy for intermediate-risk prostate cancer. Brachytherapy 2013, 12, 428–433. [Google Scholar] [CrossRef]
- Fukuda, S.; Seo, Y.; Shiomi, H.; Yamada, Y.; Ogata, T.; Morimoto, M.; Konishi, K.; Yoshioka, Y.; Ogawa, K. Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife. J. Radiat. Res. 2014, 55, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- Levin-Epstein, R.; Cook, R.R.; Wong, J.K.; Stock, R.G.; Jeffrey Demanes, D.; Collins, S.P.; Aghdam, N.; Suy, S.; Mantz, C.; Katz, A.J.; et al. Prostate-specific antigen kinetics and biochemical control following stereotactic body radiation therapy, high dose rate brachytherapy, and low dose rate brachytherapy: A multi-institutional analysis of 3502 patients. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 151, 26–32. [Google Scholar] [CrossRef]
- Lo, A.C.; Morris, W.J.; Lapointe, V.; Hamm, J.; Keyes, M.; Pickles, T.; McKenzie, M.; Spadinger, I. Prostate-specific antigen at 4 to 5 years after low-dose-rate prostate brachytherapy is a strong predictor of disease-free survival. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 87–93. [Google Scholar] [CrossRef]
- Shaverdian, N.; Verruttipong, D.; Wang, P.C.; Kishan, A.U.; Demanes, D.J.; McCloskey, S.; Kupelian, P.; Steinberg, M.L.; King, C.R. Exploring Value From the Patient’s Perspective Between Modern Radiation Therapy Modalities for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 516–525. [Google Scholar] [CrossRef]
- Hamstra, D.A.; Mariados, N.; Sylvester, J.; Shah, D.; Karsh, L.; Hudes, R.; Beyer, D.; Kurtzman, S.; Bogart, J.; Hsi, R.A.; et al. Continued Benefit to Rectal Separation for Prostate Radiation Therapy: Final Results of a Phase III Trial. Int. J. Radiat. Oncol. 2017, 97, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Pathmanathan, A.U.; van As, N.J.; Kerkmeijer, L.G.W.; Christodouleas, J.; Lawton, C.A.F.; Vesprini, D.; van der Heide, U.A.; Frank, S.J.; Nill, S.; Oelfke, U.; et al. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A “Game Changer” for Prostate Treatment? Int. J. Radiat. Oncol. 2018, 100, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Paranjape, T.; Ullrich, R.; Nallur, S.; Gillespie, E.; Keane, K.; Esquela-Kerscher, A.; Weidhaas, J.B.; Slack, F.J. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 2009, 28, 2419–2424. [Google Scholar] [CrossRef] [Green Version]
- Metheetrairut, C.; Adams, B.D.; Nallur, S.; Weidhaas, J.B.; Slack, F.J. cel-mir-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation. Oncogene 2017, 36, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Kishan, A.U.; Ruan, D.; Dang, A.T.; Chu, F.I.; Steinberg, M.L.; Weidhaas, J.B. MicroRNA-based Biomarkers predicting Long-Term Toxicity to Prostate SBRT. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, S39–S40. [Google Scholar] [CrossRef] [Green Version]
- Kishan, A.U.; Romero, T.; Alshalalfa, M.; Liu, Y.; Tran, P.T.; Nickols, N.G.; Ye, H.; Sajed, D.; Rettig, M.B.; Reiter, R.E.; et al. Transcriptomic Heterogeneity of Gleason Grade Group 5 Prostate Cancer. Eur Urol. 2020, 78, 327–332. [Google Scholar] [CrossRef]
- Berlin, A.; Murgic, J.; Hosni, A.; Pintilie, M.; Salcedo, A.; Fraser, M.; Kamel-Reid, S.; Zhang, J.; Wang, Q.; Ch’ng, C.; et al. Genomic Classifier for Guiding Treatment of Intermediate-Risk Prostate Cancers to Dose-Escalated Image Guided Radiation Therapy Without Hormone Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Spratt, D.E.; Zhang, J.; Santiago-Jiménez, M.; Dess, R.T.; Davis, J.W.; Den, R.B.; Dicker, A.P.; Kane, C.J.; Pollack, A.; Stoyanova, R.; et al. Development and Validation of a Novel Integrated Clinical-Genomic Risk Group Classification for Localized Prostate Cancer. J. Clin. Oncol. 2018, 36, 581–590. [Google Scholar] [CrossRef]
Author | Year | N | Risk | FU-Med | Dose/fx | Outcome (bRFS) | Toxicity | ADT |
---|---|---|---|---|---|---|---|---|
Widmark † (HYPO-RT-PC trial) | 2019 | 598 | 89% I 11% H | 5 years | 42.7 Gy/7 fx (3 days per week) | 5-year bRFS: 84% | Acute RTOG grade ≥ 2 GU toxicity: 28%, acute RTOG grade ≥ 2 GI toxicity: 24%. 5-year grade ≥ 2 GU toxicity: 18%, grade ≥ 2 GI toxicity: 10%, grade ≥ 3 GU toxicity: 4.2%, grade ≥ 3 GI toxicity: 1.7%. | No ADT allowed |
Brand † (PACE-B trial) | 2019 | 433 | 8% L 92% I | 12 weeks | 36.25 Gy/5 fx (7.25 Gy/fx delivered consecutively (20.7%) or over the span of ~2 weeks (79.3%)) | n/a | Acute RTOG grade ≥ 2 GU toxicity exceeding baseline: 20.2%. Acute RTOG grade ≥ 2 GI toxicity: 9.3%. | No ADT allowed |
Kishan | 2019 | 2142 | 55.3% L 32.3% I (F) 12.4% I (UF) | 6.9 years | 33.5–40.0 Gy in 4 to 5 fx (88% 5 fx). | 7-year bRFS: 95.5% L; 91.4% F-I; 85.1% UF-I, 89.8% for all I. | Acute grade ≥ 2 GU toxicity: 9.6%, grade ≥ 2 GI toxicity: 3.4%, grade ≥ 3 GU toxicity: 0.6%, grade ≥ 3 GI toxicity: 0.09%. 7-year cumulative incidence of late grade ≥ 3 GU toxicity: 2.4%, grade ≥ 3 GI toxicity: 0.4%. | 5.4% received concurrent ADT; 3.6% for L, 9.4% for I (U) |
Levin-Epstein | 2020 | 1908 | 50.0% L 30.9% I (F) 19.1% I (UF) | 6.0 years | 35 Gy/5 fx 36.25 Gy/5 fx 40 Gy/5 fx 38 Gy/4 fx | 93.8% 93.3% 96.1% 91.1% | n/a | Upfront ADT excluded |
Zelefsky | 2019 | 136 | 33.1% L 44.1% I (F) 22.8% I (UF) | 5.9 years 5.4 years 4.1 years 3.5 years | 32.5 Gy/5 fx 35 Gy/5 fx 37.5 Gy/5 fx 40 Gy/5 fx | 5-year bRFS: 85%, 94%, 100%, 100%; 2-year positive biopsy post-RT: 47.6%, 19.2%, 16.7%, 7.7% | Acute grade 2 GI toxicities: 0%, 2.9%, 2.8%, and 11.4%; no grade 3+. Acute grade 2 GU toxicities: 16.7%, 22.9%, 8.3%, and 17.1%; no grade 3+. Late grade 2 GU toxicities: 23.3%, 25.7%, 27.8%, and 31.4%; 1 late grade 3 urinary toxicity (urethral stricture) developed in the 40-Gy dose arm; no grade 4. | Neoadjuvant ADT excluded |
Author | Year | N | Risk | FU-Med | Dose/fx | IMP | Outcome (bRFS) | Toxicity |
---|---|---|---|---|---|---|---|---|
Zamboglou | 2013 | 718 | L + I + H | 4.4 | 34.5–38 Gy/3–4 fx | 1–3 | 95% (L), 93% (I), 93% (H) @ 5 years | Acute: grade 3 GU: 5.4%; grade 3 GI: 0.2% Late: grade 3 GU: 3.5%, grade 4 GU: 0.3%; grade 3 GI: 1.6%, grade 4 GI: 0 |
Hauswald | 2016 | 448 | L + I | 6.5 | 42–43.5 Gy/6 fx | 2 | 99% (L), 95% (I) @ 10 years | Late: grade 3 GU: 4.7%, grade 4 GU: 0.2%; grade 3+ GI: 0 |
Jawad | 2016 | 319 | L + I | 5.5 | 38 Gy/4 fx | 1 | 97% (L + I) @ 5 years | Acute: grade 3 GU <1%, grade 4+ GU: 0; grade 3+ GI: 0 Late: grade 3 GU <1%, grade 4+ GU: 0; grade 3+ GI: 0 |
79 | L + I | 3.5 | 24 Gy/2 fx | 1–2 | 87% (L + I) @ 5 years | |||
96 | L + I | 2.5 | 27 Gy/2 fx | 1–2 | 90% (L + I) @ 5 years | |||
Yoshioka | 2017 | 524 | L + I + H | 5.9 | 27 Gy/2 fx (13%), 45.5 Gy/7 fx (32%), 49 Gy/7 fx (28%), 54 Gy/9 fx (25%) | 1 | 95% (L), 94% (I), 89% (H) @ 5 years | Acute: grade 3 GU: 0.2%; grade 3 GI: 0 Late: grade 3 GU: 1%, grade 3 GI: 0.2%; grade 4+ GU/GI: 0 |
Hoskin | 2017 | 106 | I + H | 4.1 | 31.5 Gy/3 fx | 1 | 94% (I + H) @ 4 years | Late: grade 3 GU: 2.5%; grade 3 GI: 0 |
138 | I + H | 5.2 | 26 Gy/2 fx | 1 | 93% (I + H) @ 4 years | Late: grade 3 GU: 1.0%; grade 3 GI: 0 | ||
49 | I + H | 9 | 19–20 Gy/1 fx | 1 | 91% (I + H) @ 4 years | Late: grade 3 GU: 2.2%; grade 3 GI: 0 | ||
Strouthos | 2018 | 450 | L + I + H | 4.7 | 34.5 Gy/3 fx | 3 | 96% (L), 96% (I), 92% (H) @ 5 years | Late: grade 2 GU: 14.2%, grade 3 GU: 0.8%; grade 2 GI: 0.4%, grade 3+ GI: 0 |
Siddiqui | 2019 | 68 | L + I | 3.9 | 19 Gy/1 fx | 1 | 79% (L), 75.2% (I) @ 5 years | Late: grade 2 GU: 14.7%, grade 3+ GU: 0; grade 2+ GI: 5.9%, grade 3 GI: 1.5%; grade 2+ sexual: 19.1% |
Xu | 2019 | 124 | L + I | 2.2 | 19 Gy/1 fx | 1 | 90.3% (L + I) @ last f/u | Acute: grade 3+ GU: 0; grade 3+ GI: 0. Late: grade 2 GU: 60%, grade 3+ GU: 0; grade 2 sexual: 67%, grade 3 sexual: 7% |
Tharmalingam | 2020 | 441 | L + I + H | 2.2 | 19 Gy/1 fx | 1 | 100% (L), 86% (I), 75% (H) @ 3 years | Acute: grade 2 GU: 12%; grade 2 GI: 3%; grade 3+ GI/GU: 0 Late: grade 3 GU: 0.4%; grade 3 GI: 0.4%; grade 4+ GU/GI: 0 |
Trial Registration No. | Acronym | Type | Patient Selection | Hypothesis/Objective | Interventions | Primary Outcome | Secondary Outcomes (Selected) | Recruiting Status |
---|---|---|---|---|---|---|---|---|
NCT03367702 | NRG GU-005 | Randomized phase III trial | Stage IIA-B PCa | SBRT is superior to hypofractionated IMRT in terms of GU/GI toxicities | Arm 1: hypofractionated IMRT (70 Gy/28 fx); Arm 2: SBRT (36.25 Gy/5 fx) | Incidence of patients-reported GU/GI toxicity; Disease Free Survival | BCF, distant metastasis, health-related QOL | Recruiting |
NCT01584258 | PACE | Randomized phase III trial | Localized low- and intermediate- risk (PACE-A, B), intermediate- and high-risk (PACE-C) | Compare oncological control and toxicities of prostatectomy vs. SBRT (PACE-A), SBRT to ordinary RT (PACE-B, C) | PACE-A: Surgical candidates: Arm 1: Laparoscopic Prostatectomy; Arm 2: SBRT (36.25 Gy/5 fx). PACE-B †: Arm 1: CF-RT (78 Gy/59 fx) or MHF-RT (62 Gy/20 fx) Arm 2: SBRT (36.25 Gy/5 fx) PACE-C ‡: Arm 1: MHF-RT (60 Gy/20 fx) Arm 2: SBRT (36.25 Gy/5 fx) | Biochemical progression-free survival (For RT: Phoenix definition; for surgery: PSA > 0.2 ng/mL) | CTCAE and RTOG acute and late toxicity | Recruiting |
NCT04384770 | MIRAGE | Randomized phase III | Clinical localized adenocarcinoma of the prostate | MRI-guided SBRT offers better GU/GI toxicity profile over CT-guided SBRT | Arm 1: CT-guided SBRT (40 Gy/5 fx); Arm 2: MRI-guided SBRT (40 Gy/5 fx) | CTCAE acute grade ≥ 2 GU toxicity | CTACAE acute grade ≥ 2 GI toxicity. late GU/GI toxicity, QOL, BCRFS | Recruiting |
NCT03424694 | BRP2 | Randomized phase II | Low- and intermediate-risk | Assess the safety and oncologic outcome of 1 vs. 2-fraction HDRBT on a single implant | Arm 1: 29 Gy/2 fx HDRBT, single implant Arm 2: 19.5 Gy/1 fx HDRBT | Acute RTOG GU and GI toxicity | OS, local PFS, distant PFS, biochemical failure, other toxicities | Active, not recruiting |
NCT03426748 | H17-02904 | Randomized phase III | favorable and low-tier intermediate risk | Compare LDRBT vs. HDRBT | Arm 1: LDRBT Arm 2: HDRBT in 2 implants, 2 weeks apart (pts will undergo biopsies between the 2 fractions to assess tumor changes induced from the first fraction) | QOL in urinary domain (EPIC) | QOL in bowel and sexual domains, IPSS, acute and late toxicities, biochemical outcome | Recruiting |
NCT02692105 | n/a | Randomized phase III | Extensive favorable-risk and Intermediate-risk | Compare LDRBT vs. HDRBT | Arm 1: LDRBT Arm 2: HDRBT in 2 implants, 2 weeks apart (pts will undergo biopsies between the 2 fractions to assess tumor changes induced from the first fraction) | QOL in urinary domain (EPIC) | QOL in bowel and sexual domains, IPSS, acute and late toxicities, biochemical outcome | Recruiting |
NCT02960087 | n/a | Randomized phase II | Low- and intermediate-risk | Compare LDRBT vs. HDRBT | Arm 1: LDRBT with I-125 to a total dose of 144 Gy Arm 2: HDRBT: 27 Gy/2 fx | PSA at 48 months (<0.4 ng/mL) | DFS, acute and late toxicities, QOL, economic analysis | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.M.; Lilleby, O.; Lilleby, W.A.; Kishan, A.U. Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy. Cancers 2020, 12, 3606. https://doi.org/10.3390/cancers12123606
Ma TM, Lilleby O, Lilleby WA, Kishan AU. Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy. Cancers. 2020; 12(12):3606. https://doi.org/10.3390/cancers12123606
Chicago/Turabian StyleMa, Ting Martin, Oscar Lilleby, Wolfgang A. Lilleby, and Amar U. Kishan. 2020. "Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy" Cancers 12, no. 12: 3606. https://doi.org/10.3390/cancers12123606
APA StyleMa, T. M., Lilleby, O., Lilleby, W. A., & Kishan, A. U. (2020). Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy. Cancers, 12(12), 3606. https://doi.org/10.3390/cancers12123606