Immune Escape Mechanisms in Non Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Lung Cancer Pre-Invasive Lesions: Morphology, Genomic Features, Immune Evolution, and Immune Escape Mechanisms
2.1. LUAD Pre-Invasive Lesions: Morphological and Genomic Features
2.2. Immune Activation in LUAD Pre-Invasive Lesions
2.3. Evidence for Immune Escape in LUAD Pre-Invasive Lesions
2.4. LUSC Pre-Invasive Lesions: Morphological and Genomic Features
2.5. Concurrent Development of Immunity and Immune Escape in LUSC Pre-Invasive Lesions
2.6. Immune Escape in CIS That Progresses to Invasive LUSC
2.7. LUSC Pre-Invasive Lesions Can be Classified into Distinct Immune-Related Subtypes
3. Immune Escape Mechanisms in Early Stage NSCLC
3.1. Immune Landscape in Early LUAD
3.2. Multiple Tumor Subsets in Early LUAD by Immune-Related Gene Classification
3.3. HLA Loss of Heterozygosity in Early NSCLC
3.4. The Relationship Between Immune Structure, HLA LOH, and Neoantigen Expression in NSCLC
3.5. A Relationship of Dysfunctional T Cells at Tumor Site with Burden of Clonal Neoantigens
4. Complexity and Heterogeneity of the Immune Landscape of LUAD and LUSC Subtypes
4.1. Main LUAD and LUSC Expression Subtypes are Associated with Distinct Immune Landscapes
4.2. Identification of “Hot” and “Cold” Clusters of Tumors
4.3. Molecular Mechanisms Leading to Neutrophil Recruitment in LUSC
5. Immune Escape Mechanisms Involved in Resistance of NSCLC to Immunotherapy Targeting Immune Checkpoints
5.1. Neoantigen Silencing or Loss Associated with Immunotherapy Resistance
5.2. Immune “Cold” Landscape and Immunotherapy Resistance in LKB1/STK11-Deficient LUAD
5.3. Immune-Cold Structure and Immunotherapy Resistance in EGFRmut LUAD
5.4. Chromosomal-Level Alterations Shape an Immunosuppressive Microenvironment Predisposing to Immunotherapy Resistance
6. Prospects for Overcoming Immune Escape Mechanisms in NSCLC Therapy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017, 171, 1259–1271. [Google Scholar] [CrossRef]
- Lavin, Y.; Kobayashi, S.; Leader, A.; Amir, E.D.; Elefant, N.; Bigenwald, C.; Remark, R.; Sweeney, R.; Becker, C.D.; Levine, J.H.; et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017, 169, 750–765. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Zhang, J.; Liu, S.; Su, J.; Zhang, C.; Xie, Z.; Zhou, Q.; Tu, H.; Xu, C.; Yan, L. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017, 6, e1356145. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, S.; Ivanova, E.; Guo, S.; Yoshida, R.; Campisi, M.; Sundararaman, S.K.; Tange, S.; Mitsuishi, Y.; Thai, T.C.; Masuda, S.; et al. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 2019, 9, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, Y.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization classification of lung tumors. Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, E.; Morbini, P.; Cancellieri, A.; Damiani, S.; Cavazza, A.; Comin, C.E. Adenocarcinoma classification: Patterns and prognosis. Pathologica 2018, 110, 5–11. [Google Scholar]
- Inamura, K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression. Int. J. Mol. Sci. 2018, 19, 1259. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Fujimoto, J.; Ying, L.; Fukuoka, J.; Ashizawa, K.; Sun, W.; Reuben, A.; Chow, C.; McGranahan, N.; Chen, R.; et al. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nat. Commun. 2019, 10, 2978. [Google Scholar] [CrossRef] [Green Version]
- Krysan, K.; Tran, L.M.; Grimes, B.S.; Fishbein, G.A.; Seki, A.; Gardner, B.K.; Walser, T.C.; Salehi-Rad, R.; Yanagawa, J.; Lee, J.M.; et al. The immune contexture associates with the genomic landscape in lung adenomatous premalignancy. Cancer Res. 2019, 79, 5022–5033. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Xu, F.; Wang, Y.; Xie, Z.; Su, J.; Dong, S.; Nie, Q.; Shao, Y.; Zhou, Q.; et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J. Thorac. Oncol. 2019, 14, 1912–1923. [Google Scholar] [CrossRef] [PubMed]
- Dejima, H.; Hu, X.; Chen, R.; Zhang, J.; Fujimoto, J.; Parra, E.R.; Haymaker, C.; Hubert, S.; Duose, D.; Soto, S.; et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. MedRxiv 2020. [Google Scholar] [CrossRef]
- Chen, H.; Carrot-Zhang, J.; Zhao, Y.; Hu, H.; Freeman, S.S.; Yu, S.; Ha, G.; Taylor, A.M.; Berger, A.C.; Westlake, L.; et al. Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat. Commun. 2019, 10, 5472. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Q.; Xiao, W.; Zhao, Y.; Pi, J.; Xu, H.; Zhao, H.; Xu, J.; Evans, C.E.; Jin, H. Advances in anti-tumor treatments targeting the CD47/SIRPα Axis. Front. Immunol. 2020, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular pathways: Targeting B7-H3 774 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 2016, 22, 3425–3431. [Google Scholar] [CrossRef] [Green Version]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Denisov, E.V.; Schegoleva, A.A.; Gervas, P.A.; Ponomaryova, A.A.; Tashireva, L.A.; Boyarko, V.V.; Bukreeva, E.B.; Pankova, O.V.; Perelmute, V.M. Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer 2019, 135, 21–28. [Google Scholar] [CrossRef]
- Dacic, S. Pulmonary preneoplasia. Arch. Pathol. Lab. Med. 2008, 132, 1073–1078. [Google Scholar]
- Teixeira, V.H.; Pipinikas, C.P.; Pennycuick, A.; Lee-Six, H.; Chandrasekharan, D.; Beane, J.; Morris, T.J.; Karpathakis, A.; Feber, A.; Breeze, C.E.; et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat. Med. 2019, 25, 517–525. [Google Scholar] [CrossRef]
- Mascaux, C.; Angelova, M.; Vasaturo, A.; Beane, J.; Hijazi, K.; Anthoine, G.; Buttard, B.; Rothe, F.; Willard-Gall, K.; Haller, A.; et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 2019, 571, 570–575. [Google Scholar] [CrossRef]
- Pennycuick, A.; Teixeira, V.H.; AbdulJabbar, K.; Ahmed Raza, S.E.; Lund, T.; Akarca, A.U.; Rosenthal, R.; Kalinke, L.; Chandrasekharan, D.P.; Pipinikas, C.P.; et al. Immune surveillance in clinical regression of pre-invasive squamous cell lung cancer. Cancer Discov. 2020, 10, 1489–1499. [Google Scholar] [CrossRef]
- Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Al Bakir, M.; Moore, D.A.; Hiley, C.T.; Lund, T.; Tanić, M.; Reading, J.L.; Joshi, K.; et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567, 479–485. [Google Scholar] [CrossRef]
- Kim, H.K.; Joung, J.; Choi, Y.; Lee, S.; Park, B.J.; Choi, Y.S.; Ryu, D.; Nam, J.; Lee, M.; Park, W.; et al. Earlier-phased cancer immunity cycle strongly influences cancer immunity in operable never-smoker lung adenocarcinoma. iScience 2020, 23, 101386. [Google Scholar] [CrossRef]
- McGranahan, N.; Furness, A.J.S.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Anagnostou, V.; Smith, K.N.; Forde, P.M.; Niknafs, N.; Bhattacharya, R.; White, J.; Zhang, T.; Adleff, V.; Phallen, J.; Wali, C.; et al. Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancer. Cancer Discov. 2017, 7, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Beane, J.E.; Mazzilli, S.A.; Campbell, J.D.; Duclos, G.; Krysan, K.; Moy, C.; Perdomo, C.; Schaffer, M.; Liu, G.; Zhang, H.; et al. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat. Commun. 2019, 10, 1856. [Google Scholar] [CrossRef] [Green Version]
- Gillette, M.A.; Satpathy, S.; Cao, S.; Dhanasekaran, S.M.; Vasaikar, S.V.; Krug, K.; Petralia, F.; Li, Y.; Liang, W.; Reva, B.; et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 2020, 182, 200–225. [Google Scholar] [CrossRef]
- Anichini, A.; Tassi, E.; Grazia, G.; Mortarini, R. The non-small cell lung cancer immune landscape: Emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy. Cancer Immunol. Immunother. 2018, 67, 1011–1022. [Google Scholar] [CrossRef]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Cha, H.; Kim, J.; Park, W.; Choi, Y.; Sun, J.; Ahn, J.; Ahn, M.; Park, K.; Lee, S. Genomic scoring to determine clinical benefit of immunotherapy by targeted sequencing. Eur. J. Cancer 2019, 120, 65–74. [Google Scholar] [CrossRef]
- Skoulidis, F.; Byers, L.A.; Diao, L.; Papadimitrakopoulou, V.A.; Tong, P.; Izzo, J.; Behrens, C.; Kadara, H.; Parra, E.R.; Canales, J.R.; et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015, 5, 860–877. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Aref, A.R.; Skoulidis, F.; Herter-Sprie, G.S.; Buczkowski, K.A.; Liu, Y.; Awad, M.M.; Denning, W.L.; et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 2016, 76, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC. J. Thorac. Oncol. 2015, 10, 910–923. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Chen, N.; Fang, W.; Zhan, J.; Liu, Q.; Kang, S.; He, X.; Liu, L.; Zhou, T.; Huang, Y.; et al. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology 2016, 5, e1094598. [Google Scholar] [CrossRef]
- Ghorani, E.; Reading, J.L.; Henry, J.Y.; de Massy, M.R.; Rosenthal, R.; Turati, V.; Joshi, K.; Furness, A.J.S.; Aissa, A.B.; Saini, S.K.; et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Cancer 2020, 1, 546–561. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
- Faruki, H.; Mayhew, G.M.; Serody, J.S.; Hayes, D.N.; Perou, C.M.; Lay-Goldman, M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J. Thorac. Oncol. 2017, 12, 943–953. [Google Scholar] [CrossRef] [Green Version]
- Lizotte, P.H.; Ivanova, E.V.; Awad, M.M.; Jones, R.E.; Keogh, L.; Liu, H.; Dries, S.; Almonte, C.; Herter-Sprie, G.S.; Santos, A.; et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight 2016, 1, e89014. [Google Scholar] [CrossRef]
- Kargl, J.; Busch, S.E.; Yang, G.H.Y.; Kim, K.; Hanke, M.L.; Metz, H.E.; Hubbard, J.J.; Lee, S.M.; Madtes, D.K.; Mcintosh, M.W.; et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 2017, 8, 14381. [Google Scholar] [CrossRef] [Green Version]
- Mollaoglu, G.; Jones, A.; Wait, S.J.; Mukhopadhyay, A.; Jeong, S.; Arya, R.; Camolotto, S.A.; Mosbruger, T.L.; Stubben, C.J.; Conley, C.J.; et al. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity 2018, 49, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, C.M.; Sen, T.; Gay, C.M.; Ramkumar, K.; Diao, L.; Cardnell, R.J.; Rodriguez, B.L.; Stewart, C.A.; Papadimitrakopoulou, V.A.; Gibson, L.; et al. STING pathway expression identifies NSCLC with an immune-responsive phenotype. J. Thorac. Oncol. 2020, 15, 777–791. [Google Scholar] [CrossRef]
- Skoulidis, F.S.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 mutations and PD-1 Inhibitor Resistance in KRAS –mutant lung adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.C.; Lopes, G.; Kowalski, D.M.; Kasahara, K.; Wu, Y.; Castro, G.; Turna, H.Z.; Cristescu, R.; Aurora-Garg, D.; Loboda, A.; et al. Relationship between STK11 and KEAP1 mutational status and efficacy in KEYNOTE-042: Pembrolizumab monotherapy versus platinum-based chemotherapy as first-line therapy for PD-L1-positive advanced NSCLC. In Proceedings of the Annual Meeting of the American Association for Cancer Research 2020, Philadelphia, PA, USA, 22–24 June 2020; AACR: Philadelphia, PA, USA, 2020. [Google Scholar]
- Papillon-Cavanagh, S.; Doshi, P.; Dobrin, R.; Szustakowski, J.; Walsh, A.M. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open 2020, 5, e000706. [Google Scholar] [CrossRef] [Green Version]
- Nadal, E.; Heeke, S.; Benzaquen, J.; Vilariño, N.; Navarro, A.; Azuara, D.; Varela, M.; Otto, J.; Baixeras, N.; Shahbazian, D.; et al. Two patients with advanced-stage lung adenocarcinoma with radiologic complete response to nivolumab treatment harboring an STK11/LKB1 mutation. JCO Precis. Oncol. 2020, 4, 1239–1244. [Google Scholar] [CrossRef]
- Torrejon, D.Y.; Abril-Rodriguez, G.; Champhekar, A.S.; Tsoi, J.; Campbell, K.M.; Kalbasi, A.; Parisi, G.; Zaretsky, J.M.; Garcia-Diaz, A.; Puig-Saus, C.; et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 2020, 10, 1140–1157. [Google Scholar] [CrossRef]
- Diab, A.; Tannir, N.M.; Bentebibel, S.; Hwu, P.; Papadimitrakopoulou, V.; Haymaker, C.; Kluger, H.M.; Gettinger, S.N.; Sznol, M.; Tykodi, S.T.; et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: Phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020, 10, 1158–1173. [Google Scholar] [CrossRef]
- Burr, M.L.; Sparbier, C.E.; Chan, K.L.; Chan, Y.C.; Kersbergen, A.; Lam, E.Y.N.; Azidis-Yates, E.; Vassiliadis, D.; Bell, C.C.; Gilan, O.; et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 2019, 36, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Topper, M.J.; Vaz, M.; Chiappinelli, K.B.; DeStefano Shields, C.E.; Niknafs, N.; Yen, R.C.; Wenzel, A.; Hicks, J.; Ballew, M.; Stone, M.; et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 2017, 171, 1284–1300. [Google Scholar] [CrossRef] [Green Version]
- Perrier, A.; Didelot, A.; Laurent-Puig, P.; Blons, H.; Garinet, S. Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules 2020, 10, 1061. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
Mechanism | LUAD or Pre-Invasive Lesions | LUSC or Pre-Invasive Lesions | Refs. |
---|---|---|---|
1. Impaired Antigen Presentation | |||
-HLA-LOH. | -Progressive increase from AIS/MIA to LUAD. | -Detected in 34% of CIS and 28% of LUSC. | [12,21] |
-HLA-LOH. | -Detected in 29% of LUAD, frequently subclonal HLA LOH. | -Detected in 61% of LUSC, frequently subclonal HLA LOH. | [2] |
-HLA-LOH. | -Detected in 56% of LUAD. | -Detected in 78% of LUSC. | [22] |
-Expression of MHC I/II, B2M, and antigen processing machinery. -NK cell activation and type I IFN production. | -Reduced/defective in subgroup 1 of three early LUAD subsets. | [23] | |
-Expression of peptide-trimming machinery genes and MHC class II. | -Reduced in subgroup 2 of three early LUAD subsets. | [23] | |
-Hypermethylation at chromosome 6 HLA region. | -Detected in progressive CIS lesions. | [21] | |
-Mutations and copy number changes of genes involved in antigen presentation. | -More frequent in progressive CIS lesions. | [21] | |
2. Neoantigen Loss/Silencing and Neoantigen Subclonal Structure | |||
-Neoantigen promoter hypermethylation. | -Increased in later stage pre-invasive lesions. -Detected in invasive stage. | -Detected in invasive stage. | [11,22] |
-High neoantigen subclonal fraction. | -Associated with ICB resistance. | [24] | |
-Neoantigen loss by immunoediting or through deletion of chromosomal regions and LOH. | -Associated with acquired ICB resistance. | -Associated with acquired ICB resistance. | [25] |
3. Function of Immune-related Genes and Pathways | |||
-Genes belonging to the IFN γ and TGF-γ signaling pathways. | -Downregulated in subgroup 2 of three early LUAD subsets. | [23] | |
-CD47, B7-H3, CTLA-4 genes. | -Increased expression from AAH to LUAD. | [14] | |
-Genes involved in negative regulation of immunity. | -Upregulated in high-grade pre-invasive lesions. | [20] | |
-Downregulation of CD137L. | -Detected in progressive CIS lesions. | [21] | |
-Expression of genes involved in inflammation, lymphocyte regulation, antigen processing/presentation. | -Decreased in “normal-like” precursor lesions. | [26] | |
-Genes involved in interferon signaling and antigen presentation. | -Downregulated in the “proliferative” pre-invasive lesions that progress to LUSC. | [26] | |
4. Immune Structure of the Tumor Microenvironment | |||
-Immune infiltration. | -Lowest in subgroup 1 of three early LUAD subsets. | [23] | |
-Tregs and immunosuppressive cytokines. | -Higher levels in subset of cold tumors. | [27] | |
-Tregs, tumor-associated neutrophils. | -Present at higher frequency in LUSC compared to LUAD. | [28] | |
-TH1 and TH17 and macrophages. | -Present at higher frequency in LUAD compared to LUSC. | [28] | |
-CD4/CD8 ratio. | -Progressive increase from NL to LUAD. | [12] | |
-TH1 cytokines. | -Reduced in AIS and MIA vs. AAH. | [12] | |
-TH2 cytokines. | -Higher in AIS and MIA. | [12] | |
-CD16+ NK cells, CD8+ CTLs, CD141+ DCs, CD16+ monocytes. | -Reduced in LUAD compared to NL. | [3] | |
-Tregs, CTLs, PD-1+ CTLs. PPARγhiCD64hiCD14hiIL-6hi macrophages. | -Increased in LUAD compared to NL. | [3,27] | |
-Myeloid cells, neutrophils, macrophages. | -Increase in high-grade dysplasia. | [20] | |
-Spatial segregation of CD3+ cells and epithelial cells. | -Detected in high-grade lesions. | [20] | |
-Lymphocytes, CD8+ cells, and IL2, TNF, IL12A, IL23A genes. | -Lower levels in progressive CIS compared to regressive CIS. | [21] | |
-Immune-cold microenvironment. | -Almost all pre-invasive lesions progress to cancer. | [21] | |
5. Genetic Changes Impacting on Immune Escape/Immune Suppression | |||
-Chromosome-level and arm-level aneuploidy associated with immunosuppressive microenvironment. | -Associated with ICB resistance. | -Associated with ICB resistance. | [29,30] |
-KRASmut/LKB1mut LUAD subset. | -Reduced T cell infiltration and PD-L1 expression. -Defective STING expression and impaired type I IFN pathway. -Downregulation of DC, NK, and macrophage signatures. -Associated with ICB resistance. | [5,31,32] | |
-EGFR mutations and EML4-ALK fusion LUAD subsets. | -Immune-cold microenvironment. -Lack of T cell infiltration, constitutive PD-L1 expression. -Associated with ICB resistance. | [4,33,34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anichini, A.; Perotti, V.E.; Sgambelluri, F.; Mortarini, R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers 2020, 12, 3605. https://doi.org/10.3390/cancers12123605
Anichini A, Perotti VE, Sgambelluri F, Mortarini R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers. 2020; 12(12):3605. https://doi.org/10.3390/cancers12123605
Chicago/Turabian StyleAnichini, Andrea, Valentina E. Perotti, Francesco Sgambelluri, and Roberta Mortarini. 2020. "Immune Escape Mechanisms in Non Small Cell Lung Cancer" Cancers 12, no. 12: 3605. https://doi.org/10.3390/cancers12123605
APA StyleAnichini, A., Perotti, V. E., Sgambelluri, F., & Mortarini, R. (2020). Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers, 12(12), 3605. https://doi.org/10.3390/cancers12123605