STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Frequency and Type of STAT3 and STAT5B SH2 Somatic Mutations in T/NK-LGLs
2.2. Immunophenotype, Clonal Profile, and TCR-Vβ and TCR-VγVδ Repertoire of STAT3-Mutated vs. -Unmutated T/NK-LGLL Patients
2.3. Distribution of Normal Residual PB Leukocyte Subsets and STAT3-Mutational Status in T/NK-LGLL
2.4. Clinical Features of T/NK-cell LGLL with STAT3 and STAT5B Mutations vs. WT Cases
3. Discussion
4. Materials and Methods
4.1. Patients and Samples
4.2. Immunophenotypic Studies
4.3. Assessment of T- and NK-Cell Clonality on FACS-Sorted Cell Populations
4.4. Analysis of STAT3 and STAT5B Gene Mutations
4.5. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loughran, T.P.; Kadin, M.E.; Starkebaum, G.; Abkowitz, J.L.; Clark, E.A.; Disteche, C.; Lum, L.G.; Slichter, S.J. Leukemia of large granular lymphocytes: Association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann. Intern. Med. 1985, 102, 169–175. [Google Scholar] [CrossRef]
- Semenzato, G.; Zambello, R.; Starkebaum, G.; Oshimi, K.; Loughran, T.P. The lymphoproliferative disease of granular lymphocytes: Updated criteria for diagnosis. Blood 1997, 89, 256–260. [Google Scholar] [CrossRef]
- Loughran, T.P. Clonal diseases of large granular lymphocytes. Blood 1993, 82, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. (Eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Zambello, R.; Teramo, A.; Gattazzo, C.; Semenzato, G. Are T-LGL Leukemia and NK-Chronic Lymphoproliferative Disorder really two distinct diseases? Transl. Med.® UniSa 2014, 8, 4–11. [Google Scholar]
- Clemente, M.J.; Wlodarski, M.W.; Makishima, H.; Viny, A.D.; Bretschneider, I.; Shaik, M.; Bejanyan, N.; Lichtin, A.E.; His, E.D.; Paquette, R.L.; et al. Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood 2011, 118, 4384–4393. [Google Scholar] [CrossRef] [Green Version]
- Poullot, E.; Zambello, R.; Leblanc, F.; Bareau, B.; De March, E.; Roussel, M.; Boulland, M.L.; Houot, R.; Renault, A.; Fest, T.; et al. Chronic natural killer lymphoproliferative disorders: Characteristics of an international cohort of 70 patients. Ann. Oncol. 2014, 25, 2030–2035. [Google Scholar] [CrossRef]
- Lima, M.; Almeida, J.; Dos Anjos Teixeira, M.; Del Carmen Alguero, M.; Santos, A.H.; Balanzategui, A.; Queirós, M.L.; Bárcena, P.; Izarra, A.; Fonseca, S.; et al. TCRαβ+/CD4+ large granular lymphocytosis: A new clonal T-cell lymphoproliferative disorder. Am. J. Pathol. 2003, 163, 763–771. [Google Scholar] [CrossRef]
- Oshimi, K. Clinical Features, Pathogenesis, and Treatment of Large Granular Lymphocyte Leukemias. Intern. Med. 2017, 56, 1759–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamy, T.; Moignet, A.; Loughran, T.P. LGL leukemia: From pathogenesis to treatment. Blood 2017, 129, 1082–1094. [Google Scholar] [CrossRef]
- Rajala, H.L.M.; Eldfors, S.; Kuusanmäki, H.; Van Adrichem, A.J.; Olson, T.; Lagström, S.; Andersson, E.I.; Jerez, A.; Clemente, M.J.; Yan, Y.; et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 2013, 121, 4541–4550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dongen, J.J.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matutes, E. Large granular lymphocytic leukemia. Current diagnostic and therapeutic approaches and novel treatment options. Expert Rev. Hematol. 2017, 10, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Bárcena, P.; Jara-Acevedo, M.; Tabernero, M.D.; López, A.; Sánchez, M.L.; García-Montero, A.C.; Muñoz-García, N.; Vidriales, M.B.; Paiva, A.; Lecrevisse, Q.; et al. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: A surrogate marker for NK-cell clonality. Oncotarget 2015, 6, 42938–42951. [Google Scholar] [CrossRef] [PubMed]
- Ohgami, R.S.; Ohgami, J.K.; Pereira, I.T.; Gitana, G.; Zehnder, J.L.; Arber, D.A. Refining the diagnosis of T-cell large granular lymphocytic leukemia by combining distinct patterns of antigen expression with T-cell clonality studies. Leukemia 2011, 25, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Koskela, H.L.M.; Eldfors, S.; Ellonen, P.; Van Adrichem, A.J.; Kuusanmäki, H.; Andersson, E.I.; Lagström, S.; Clemente, M.J.; Olson, T.; Jalkanen, S.E.; et al. Somatic STAT3 mutations in Large Granular Lymphocytic Leukemia. N. Engl. J. Med. 2012, 366, 1905–1913. [Google Scholar] [CrossRef] [Green Version]
- Rajala, H.L.M.; Eldfors, S.; Kuusanmaki, H.; Andersson, E.I.; van Adrichem, A.J.; Lagstrom, S.; Olson, T.; Jerez, A.; Clemente, M.J.; Zhang, D.; et al. Discovery of STAT5b Mutations and Small Subclones of STAT3 Mutations in Large Granular Lymphocytic (LGL) Leukemia. Blood 2012, 120, 871. [Google Scholar] [CrossRef]
- Jerez, A.; Clemente, M.J.; Makishima, H.; Koskela, H.; Leblanc, F.; Ng, K.P.; Olson, T.; Przychodzen, B.; Afable, M.; Gomez-Segui, I.; et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T cell large granular lymphocyte leukemia. Blood 2012, 120, 3048–3058. [Google Scholar] [CrossRef]
- Shi, M.; He, R.; Feldman, A.L.; Viswanatha, D.S.; Jevremovic, D.; Chen, D.; Morice, W.G. STAT3 mutation and its clinical and histopathologic correlation in T-cell large granular lymphocytic leukemia. Hum. Pathol. 2018, 73, 74–81. [Google Scholar] [CrossRef]
- Teramo, A.; Barilà, G.; Calabretto, G.; Ercolin, C.; Lamy, T.; Moignet, A.; Roussel, M.; Pastoret, C.; Leoncin, M.; Gattazzo, C.; et al. STAT3 mutation impacts biological and clinical features of T-LGL leukemia. Oncotarget 2017, 8, 61876–61889. [Google Scholar] [CrossRef] [Green Version]
- Tanahashi, T.; Sekiguchi, N.; Matsuda, K.; Takezawa, Y.; Ito, T.; Kobayashi, H.; Ichikawa, N.; Nishina, S.; Senoo, N.; Sakai, H.; et al. Cell size variations of large granular lymphocyte leukemia: Implication of a small cell subtype of granular lymphocyte leukemia with STAT3 mutations. Leuk. Res. 2016, 45, 8–13. [Google Scholar] [CrossRef]
- Rajala, H.L.M.; Olson, T.; Clemente, M.J.; Lagström, S.; Ellonen, P.; Lundan, T.; Hamm, D.E.; Arshi Uz Zaman, S.; Lopez Marti, J.M.; Andersson, E.I.; et al. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. Haematologica 2015, 100, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasan, A.; Kern, W.; Grossmann, V.; Haferlach, C.; Haferlach, T.; Schnittger, S. STAT3 mutations are highly specific for large granular lymphocytic leukemia. Leukemia 2013, 27, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Ishida, F.; Matsuda, K.; Sekiguchi, N.; Makishima, H.; Taira, C.; Momose, K.; Nishina, S.; Senoo, N.; Sakai, H.; Ito, T.; et al. STAT3 gene mutations and their association with pure red cell aplasia in large granular lymphocyte leukemia. Cancer Sci. 2014, 105, 342–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppe, A.; Andersson, E.I.; Binatti, A.; Gasparini, V.R.; Bortoluzzi, S.; Clemente, M.; Herling, M.; Maciejewski, J.; Mustjoki, S.; Bortoluzzi, S. Genomic landscape characterization of large granular lymphocyte leukemia with a systems genetics approach. Leukemia 2017, 31, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Fan, L.; Wang, R.; Gale, R.P.; Liang, H.; Wang, L.; Wu, Y.; Qiao, C.; Chen, Y.; Xu, W.; et al. Methotrexate therapy of T-cell large granular lymphocytic leukemia impact of STAT3 mutation. Oncotarget 2016, 7, 61419–61425. [Google Scholar] [CrossRef] [Green Version]
- Kurt, H.; Jorgensen, J.L.; Amin, H.M.; Patel, K.P.; Wang, S.A.; Lin, P.; Kanagal-Shamanna, R.; Loghavi, S.; Thakral, B.; Khogeer, H.A.; et al. Chronic lymphoproliferative disorder of NK-cells: A single-institution review with emphasis on relative utility of multimodality diagnostic tools. Eur. J. Haematol. 2018, 100, 444–454. [Google Scholar] [CrossRef]
- Andersson, E.I.; Tanahashi, T.; Sekiguchi, N.; Gasparini, V.R.; Bortoluzzi, S.; Kawakami, T.; Matsuda, K.; Mitsui, T.; Eldfors, S.; Bortoluzzi, S.; et al. High incidence of activating STAT5B mutations in CD4-positive T-cell large granular lymphocyte leukemia. Blood 2016, 128, 2465–2468. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, T.; Larsen, M.; Rewes, A.; Frederiksen, H.; Thomassen, M.; Møller, M.B. Clinical relevance of sensitive and quantitative STAT3 mutation analysis using next-generation sequencing in T-cell large granular lymphocytic leukemia. J. Mol. Diagn. 2014, 16, 382–392. [Google Scholar] [CrossRef]
- Barilà, G.; Teramo, A.; Calabretto, G.; Vicenzetto, C.; Gasparini, V.R.; Pavan, L.; Leoncin, M.; Vedovato, S.; Frigo, A.C.; Facco, M.; et al. Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: A single-center experience of 205 patients. Leukemia 2020, 34, 1116–1124. [Google Scholar] [CrossRef]
- Sanikommu, S.R.; Clemente, M.J.; Chomczynski, P.; Afable, M.G., II; Jerez, A.; Thota, S.; Patel, B.; Hirsch, C.; Aziz Nazha, J.D.; Lichtin, A.; et al. Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leuk. Lymphoma 2018, 59, 416–422. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, Q.; Hu, J.; Liu, X.; Guan, D.; Zhang, F. Clinical features and treatment outcomes in patients with T-cell large granular lymphocytic leukemia: A single-institution experience. Leuk. Res. 2020, 90, 106299. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.C.; Moosic, K.B.; Jones, M.K.; Larkin, P.M.K.; Olson, T.L.; Toro, M.F.; Fox, T.E.; Feith, D.J.; Loughran, T.P. Large granular lymphocyte leukemia serum and corresponding hematological parameters reveal unique cytokine and sphingolipid biomarkers and associations with STAT3 mutations. Cancer Med. 2020, 9, 6533–6549. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wei, S.; Yang, L. Dysfunction of immune system in the development of large granular lymphocyte leukemia. Hematology 2019, 24, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Shah, M.V.; Loughran, T.P. The root of many evils: Indolent large granular lymphocyte leukaemia and associated disorders. Hematol. Oncol. 2010, 28, 105–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockorny, B.; Dasanu, C.A. Autoimmune manifestations in large granular lymphocyte leukemia. Clin. Lymphoma Myeloma Leuk. 2012, 12, 400–405. [Google Scholar] [CrossRef]
- Liu, J.H.; Wei, S.; Lamy, T.; Epling-Burnette, P.K.; Starkebaum, G.; Djeu, J.Y.; Loughran, T.P. Chronic neutropenia mediated by Fas ligand. Blood 2000, 95, 3219–3222. [Google Scholar] [CrossRef]
- Assarsson, E.; Kambayashi, T.; Schatzle, J.D.; Cramer, S.O.; von Bonin, A.; Jensen, P.E.; Ljunggren, H.-G.; Chambers, B.J. NK Cells Stimulate Proliferation of T and NK Cells through 2B4/CD48 Interactions. J. Immunol. 2004, 173, 174–180. [Google Scholar] [CrossRef]
- Pahima, H.; Puzzovio, P.G.; Levi-Schaffer, F. 2B4 and CD48: A powerful couple of the immune system. Clin. Immunol. 2019, 204, 64–68. [Google Scholar] [CrossRef]
- McArdel, S.L.; Terhorstb, C.; Sharpe, A.H. Roles of CD48 in regulating immunity and tolerance. Clin. Immunol. 2016, 164, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Bernson, E.; Christenson, K.; Pesce, S.; Pasanen, M.; Marcenaro, E.; Sivori, S.; Thorén, F.B. Downregulation of HLA Class I Renders Inflammatory Neutrophils More Susceptible to NK Cell-Induced Apoptosis. Front. Immunol. 2019, 10, 2444. [Google Scholar] [CrossRef] [Green Version]
- Angénieux, C.; Dupuis, A.; Gachet, C.; de la Salle, H.; Maître, B. Cell surface expression of HLA I molecules as a marker of young platelets. J. Thromb. Haemost. 2019, 17, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Picard, C.; Gaspar, H.B.; Al-herz, W.; Bousfiha, A.; Sullivan, K.E. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J. Clin. Immunol. 2018, 38, 96–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consonni, F.; Dotta, L.; Todaro, F.; Vairo, D.; Badolato, R. Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr. Opin. Pediatr. 2017, 29, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Lorenzini, T.; Dotta, L.; Giacomelli, M.; Vairo, D.; Badolato, R. STAT mutations as program switchers: Turning primary immunodeficiencies into autoimmune diseases. J. Leukoc. Biol. 2017, 101, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.R. STAT3 mutations and persistence of autoimmunity. Blood 2013, 122, 2295–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Araujo, E.D.; Orlova, A.; Neubauer, H.A.; Bajusz, D.; Seo, H.; Dhe-paganon, S.; Keser, G.M.; Moriggl, R.; Gunning, P.T. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers 2019, 11, 1757. [Google Scholar] [CrossRef] [Green Version]
- Andersson, E.; Kuusanmäki, H.; Bortoluzzi, S.; Lagström, S.; Parsons, A.; Rajala, H.; van Adrichem, A.; Eldfors, S.; Olson, T.; Clemente, M.J.; et al. Activating somatic mutations outside the SH2-domain of STAT3 in LGL-Leukemia. Leukemia 2016, 30, 1204–1208. [Google Scholar] [CrossRef] [Green Version]
- Shahmarvand, N.; Nagy, A.; Shahryari, J.; Ohgami, R.S. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci. 2018, 109, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, Y.; Almeida, J.; Gonzalez, M.; Lima, M.; Bárcena, P.; Szczepañski, T.; van Gastel-Mol, E.; Wind, H.; Balanzategui, A.; van Dongen, J.; et al. TCRgd+ large granular lymphocyte leukemias reflect the spectrum of normal antigen-selected TCRgd+ T-cells. Leukemia 2006, 20, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Singleton, T.P.; Yin, B.; Teferra, A.; Mao, J.Z. Spectrum of Clonal Large Granular Lymphocytes (LGLs) of αβ T Cells T-Cell Clones of Undetermined Significance, T-Cell LGL Leukemias, and T-Cell Immunoclones. Am. J. Clin. Pathol. 2015, 144, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.; Almeida, J.; Santos, A.H.; Teixeira, A.; Alguero, C.; Luı, M.; Gonzalez, M.; Miguel, F.S.; Orfa, A. Immunophenotypic Analysis of the TCR-Vβ Repertoire in 98 Persistent Expansions of CD3+/TCR-αβ+ Large Granular Lymphocytes Utility in Assessing Clonality and Insights into the Pathogenesis of the Disease. Am. J. Pathol. 2001, 159, 1861–1868. [Google Scholar] [CrossRef]
- Teramo, A.; Barilà, G.; Calabretto, G.; Vicenzetto, C.; Gasparini, V.R.; Semenzato, G.; Zambello, R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front. Oncol. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, E.I.; Rajala, H.L.M.; Eldfors, S.; Ellonen, P.; Olson, T.; Jerez, A.; Clemente, M.J.; Kallioniemi, O.; Porkka, K.; Heckman, C.; et al. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation. Blood Cancer J. 2013, 3, e168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EuroFlow. Available online: https://www.euroflow.org/ (accessed on 24 November 2020).
- Hultin, L.E.; Chow, M.; Jamieson, B.D.; O’Gorman, M.R.G.; Menendez, F.A.; Borowski, L.; Denny, T.N.; Margolick, J.B. Comparison of interlaboratory variation in absolute T-cell counts by single-platform and optimized dual-platform methods. Cytom. B Clin. Cytom. 2010, 78, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Langerak, A.W.; Den Beemd, V.; Wolvers-tettero, I.L.M.; Boor, P.P.C.; Van Lochem, E.G.; Hooijkaas, H.; Van Dongen, J.J.M. Molecular and flow cytometric analysis of the VB repertoire for clonality assessment in mature TCRab T-cell proliferations. Blood 2001, 98, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, J.J.M.; Langerak, A.W.; Brüggemann, M.; Evans, P.A.S.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef] [Green Version]
- Kopp, P.; Jaggi, R.; Tobler, A.; Borisch, B.; Oestreicher, M.; Sabacan, L.; Jameson, J.L.; Fey, M.F. Clonal X-inactivation analysis of human tumours using the human androgen receptor gene (HUMARA) polymorphism: A non-radioactive and semiquantitative strategy applicable to fresh and archival tissue. Mol. Cell. Probes 1997, 11, 217–228. [Google Scholar] [CrossRef]
- Langerak, A.W.; Groenen, P.J.T.A.; Brüggemann, M.; Beldjord, K.; Bellan, C.; Bonello, L.; Boone, E.; Carter, G.I.; Catherwood, M.; Davi, F.; et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012, 26, 2159–2171. [Google Scholar] [CrossRef]
- Pedreira, C.E.; Costa, E.S.; Barrena, S.; Lecrevisse, Q.; Almeida, J.; Van Dongen, J.J.M.; Orfao, A. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytom. A 2008, 73, 834–846. [Google Scholar] [CrossRef]
- Costa, E.S.; Pedreira, C.E.; Barrena, S.; Lecrevisse, Q.; Flores, J.; Quijano, S.; Almeida, J.; García-MacIas, M.C.; Bottcher, S.; Van Dongen, J.J.M.; et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: A step forward in the standardization of clinical immunophenotyping. Leukemia 2010, 24, 1927–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- gplots: Various R Programming Tools for Plotting Data. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 24 November 2020).
Panel A: Distribution of STAT3 and STAT5B Gene Mutations in the LGLL Patients and Clonal T/NK-Cell Populations | ||||||||||||||
LGL Cell Lineage | Mutated Gene | |||||||||||||
STAT3Gene Mutations | STAT5BGene Mutations | Total | ||||||||||||
Exon 20 | Exon 21 | Exon 16 | ||||||||||||
T-LGLL Cases 22/66 (33%) Cell pop. 25/78 (32%) | TCD8+ | N. Cases | 1/32 (3%) | 11/33 (33%) | 0/33 (0%) | 12/33 (36%) | ||||||||
N. cell pop. | 3/43 (7%) | 12/44 (27%) | 0/44 (0%) | 15/44 (34%) | ||||||||||
TCD4+ | N. Cases | 0/14 (0%) | 0/14 (0%) | 1/14 (7%) | 1/14 (7%) | |||||||||
N. cell pop. | 0/15 (0%) | 0/15 (0%) | 1/15 (7%) | 1/15 (7%) | ||||||||||
Tαβ+DP | N. Cases (=N. cell pop.) | 0/1 (0%) | 1/1 (100%) | NA | 1/1 (100%) | |||||||||
Tαβ+DN | N. Cases (=N. cell pop.) | 0/2 (0%) | 1/2 (50%) | 0/2 (0%) | 1/2 (50%) | |||||||||
Tγδ+ | N. Cases (=N. cell pop.) | 2/15 (13%) | 5/16 (31%) | 0/15 (0%) | 7/16 (44%) | |||||||||
CLPD-NK 6/16 (38%) | CD56−/+lo | N. Cases (=N. cell pop.) | 0/6 (0%) | 4/7 (57%) | 0/6 (0%) | 4/7 (57%) | ||||||||
CD56+ | N. Cases (=N. cell pop.) | 1/7 (14%) | 1/7 (14%) | 0/7 (0%) | 2/7 (29%) | |||||||||
CD56++ | N. Cases (=N. cell pop.) | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | |||||||||
Total | N. Cases | 4/79 (5%) | 23/82 (28%) | 1/79 (1%) | 28/82 (34%) | |||||||||
N. cell pop. | 6/91 (7%) | 24/94 (26%) | 1/91 (1%) | 31/94 (33%) | ||||||||||
Panel B: Specific STAT3/5B Gene Mutations Identified in Purified Clonal T/NK-cell LGL Populations (n = 31) from 28 T/NK-LGLL Patients | ||||||||||||||
Disease Clonal Cell Population Category | Mutated Gene | |||||||||||||
STAT3Mutations | STAT5BMut | |||||||||||||
Exon 20 | Exon 21 | Exon 16 | ||||||||||||
S614R (n = 2) | G618R (n = 4) | Y640F (n = 15) | N647I (n = 1) | G656ins (n = 1) | Y657dup (n = 2) | K658F * (n = 1) | D661V (n = 2) | D661Y (n = 2) | Y665F (n = 1) | |||||
T-LGLL | TCD8+ | 3 (20%) | 9 (60%) | 1 (7%) | 1 (7%) | 1 (7%) | ||||||||
TCD4+ | 1 (100%) | |||||||||||||
Tαβ+DP | 1 (100%) | |||||||||||||
Tαβ+DN | 1 (100%) | |||||||||||||
Tγδ+ | 2 (29%) | 3 (43%) | 1 (14%) | 1 (14%) | ||||||||||
CLPD-NK | CD56−/+lo | 1 (25%) | 1 (25%) | 2 (50%) | ||||||||||
CD56+ | 1 (50%) | 1 (50%) |
Cell Populations | Age-Matched HD (n = 628) | T/NK-LGLL | p-Value | |
---|---|---|---|---|
Wild-Type STAT3 and STAT5B (n = 32) | STAT3 or STAT5B Mutated (n = 18) | |||
Granulocytes (/µL) | 3977 (1678–8717) | 2503 (298–10,264) | 1308 (46–6676) | ≤0.008 abc |
Neutrophils | 3709 (1563–8542) | 2301 (263–10,072) | 1217 (39–4974) | ≤0.01 abc |
Eosinophils | 161 (0–876) | 143 (8.4–1402) | 30 (1.5–1250) | ≤0.03 abc |
Basophils | 41 (2.2–222) | 51 (7.7–161) | 33 (4.3–452) | 0.02 a; 0.1 c |
Monocytes (/µL) | 320 (66–1247) | 435 (23–1522) | 443 (150–1783) | 0.0001 a; 0.06 b |
cMO | 419 (215–1063) | 400 (13–1426) | 366 (128–1778) | NS |
ncMO | 67 (20–166) | 43 (0–225) | 40 (0.49–149) | ≤0.05 ab |
Dendritic cells (/µL) | 24 (4.1–124) | 17 (0–54) | 8.2 (0.7–105) | ≤0.05 abc |
Lymphocytes (/µL) | 1653 (0–5947) | 2084 (943–7547) | 1342 (553–4446) | 0.02 ac; 0.08 b |
T lymphocytes (/µL) | 1188 (371–5298) | 1672 (655–6469) | 1109 (291–4039) | ≤0.05 ac |
TCD8+ | 386 (13–2199) | 463 (0–3133) | 308 (38–2120) | NS |
TCD4+ | 695 (106–3224) | 970 (88–3994) | 686 (227–2221) | ≤0.05 ac |
Tαβ+DP | 8.6 (0–180) | 28 (2.2–341) | 24 (3.3–200) | ≤0.05 ab |
Tαβ+DN | 15 (2–117) | 16 (2.2–94) | 13 (5.3–104) | NS |
Tγδ+ | 47 (1–765) | 26 (0–598) | 17 (0–265) | 0.002 b; 0.06 c |
NK cells (/µL) | 279 (0–1215) | 150 (2–1383) | 48 (0–408) | ≤0.006 abc |
CD56−/+lo | 5.2 (1.1–19) | 2.6 (0–328) | 2.6 (0–44) | NS |
CD56+ | 350 (116–773) | 144 (0–1372) | 30 (0–403) | ≤0.002 abc |
CD56++ | 4.5 (1.4–25) | 7.8 (1.3–93) | 5.5 (0–46) | 0.08a |
B lymphocytes (/µL) | 141 (8.1–867) | 177 (9.9–970) | 147 (15–409) | NS |
Plasma cells (/µL) | 1.3 (0.104–14) | 1.2 (0.091–28) | 1.1 (0–14) | NS |
Clinical and Biological Features | T/NK-LGLL | ||
---|---|---|---|
STAT3 and STAT5B Wild-Type (n = 54) | STAT3 or STAT5B Mutated (n = 28) | p-Value | |
Sex (male/female) * | 23/31 (43%/57%) | 13/15 (46%/54%) | NS |
Age (years) | 60 ± 18 (4–92) | 65 ± 15 (40–90) | NS |
Physical examination | |||
Organomegalies *1 | 5/34 (15%) | 9/27 (33%) | NS (0.09) |
Skin lesions * | 4/33 (12%) 2 | 0/24 (0%) | NS |
Peripheral blood cell counts | |||
Hemoglobin (g/dL) | 13 ± 2.1 (8.3–18) | 13 ± 2.4 (6.3–17) | NS (0.08) |
Platelets (×109/L) | 243 ± 72 (98–383) | 203 ± 88 (25–421) | 0.05 |
Leukocytes (×109/L) | 10 ± 8 (2.7–55) | 6.7 ± 6.7 (0.9–36) | NS (0.07) |
Clonal LGL cells (×109/L) | 4.1 ± 8.9 (0.07–50) | 4.1 ± 6.7 (0.5–30) | NS |
Low-count clonal LGL lymphocytosis (<0.5 × 109/L) * | 14/47 (30%) | 6/28 (21%) | NS |
Very low-count clonal LGL lymphocytosis (<0.1 × 109/L) * | 5/47 (11%) | 2/28 (7%) | NS |
Cytopenias | |||
Anemia (≤10 g/dL) * | 5/46 (11%) | 5/27 (19%) | NS |
Thrombocytopenia (≤100 × 109/L) * | 1/45 (2%) | 3/27 (11%) | NS |
Neutropenia (≤1 × 109/L) * | 6/47 (13%) | 9/28 (32%) | 0.04 |
Severe Neutropenia (≤0.5 × 109/L) * | 0/47 (0%) | 4/28 (14%) | 0.02 |
Other associated diseases | |||
Other clonal/neoplastic diseases * | 10/32 (31%) | 4/25 (16%) | NS |
Autoimmune diseases * (including cytopenias) | 16/35 (46%) | 18/28 (64%) | NS |
Autoimmune diseases * (other than cytopenias) | 5/33 (15%) | 7/28 (25%) | NS |
Other diseases * | 10/33 (30%) | 10/23 (43%) | NS |
Outcome and follow-up | |||
Need for LGLL therapy *3 | 4/44 (9%) | 12/24 (50%) | 0.0001 |
Time to LGLL therapy (months) # | Not reached $ | 72 (1–180) | 0.0001 |
Disease Progression * | 2/36 (6%) | 3/22 (14%) | NS |
Deaths * (overall deaths) | 8/44 (18%) | 4/24 (17%) | NS |
Deaths *4 | 1/44 (2%) | 2/23 (9%) | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-García, N.; Jara-Acevedo, M.; Caldas, C.; Bárcena, P.; López, A.; Puig, N.; Alcoceba, M.; Fernández, P.; Villamor, N.; Flores-Montero, J.A.; et al. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers 2020, 12, 3508. https://doi.org/10.3390/cancers12123508
Muñoz-García N, Jara-Acevedo M, Caldas C, Bárcena P, López A, Puig N, Alcoceba M, Fernández P, Villamor N, Flores-Montero JA, et al. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers. 2020; 12(12):3508. https://doi.org/10.3390/cancers12123508
Chicago/Turabian StyleMuñoz-García, Noemí, María Jara-Acevedo, Carolina Caldas, Paloma Bárcena, Antonio López, Noemí Puig, Miguel Alcoceba, Paula Fernández, Neus Villamor, Juan A. Flores-Montero, and et al. 2020. "STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features" Cancers 12, no. 12: 3508. https://doi.org/10.3390/cancers12123508
APA StyleMuñoz-García, N., Jara-Acevedo, M., Caldas, C., Bárcena, P., López, A., Puig, N., Alcoceba, M., Fernández, P., Villamor, N., Flores-Montero, J. A., Gómez, K., Lemes, M. A., Hernández, J. C., Álvarez-Twose, I., Guerra, J. L., González, M., Orfao, A., & Almeida, J., on behalf of the EuroFlow Consortium. (2020). STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers, 12(12), 3508. https://doi.org/10.3390/cancers12123508