Trastuzumab Emtansine Plus Non-Pegylated Liposomal Doxorubicin in HER2-Positive Metastatic Breast Cancer (Thelma): A Single-Arm, Multicenter, Phase Ib Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Study Population
2.2. Treatment Exposure
2.3. MTD Determination
2.4. General Safety
2.5. Cardiac Safety
2.6. Antitumor Efficacy
2.7. Pharmacokinetics Analysis
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Study Design
4.3. Study Assessments
4.4. Serum HER2 ECD Assessment
4.5. PK Evaluation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007, 357, 39–51. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cesca, M.G.; Vian, L.; Cristóvão-Ferreira, S.; Pondé, N.; de Azambuja, E. HER2-positive advanced breast cancer treatment in 2020. Cancer Treat. Rev. 2020, 88, 102033. [Google Scholar] [CrossRef] [PubMed]
- Kunte, S.; Abraham, J.; Montero, A.J. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer 2020. [Google Scholar] [CrossRef]
- Leo, C.P.; Hentschel, B.; Szucs, T.D.; Leo, C. FDA and EMA Approvals of New Breast Cancer Drugs-A Comparative Regulatory Analysis. Cancers 2020, 12, 437. [Google Scholar] [CrossRef][Green Version]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef][Green Version]
- Krop, I.E.; Kim, S.-B.; González-Martín, A.; LoRusso, P.M.; Ferrero, J.-M.; Smitt, M.; Yu, R.; Leung, A.C.F.; Wildiers, H. TH3RESA study collaborators Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 689–699. [Google Scholar] [CrossRef]
- Perez, E.A.; Barrios, C.; Eiermann, W.; Toi, M.; Im, Y.-H.; Conte, P.; Martin, M.; Pienkowski, T.; Pivot, X.; Burris, H.A.; et al. Trastuzumab Emtansine with or Without Pertuzumab Versus Trastuzumab Plus Taxane for Human Epidermal Growth Factor Receptor 2–Positive, Advanced Breast Cancer: Primary Results From the Phase III MARIANNE Study. J. Clin. Oncol. 2017, 35, 141–148. [Google Scholar] [CrossRef]
- Singal, P.K.; Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 1998, 339, 900–905. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Layard, M.W.; Basa, P.; Davis, H.L.; Von Hoff, A.L.; Rozencweig, M.; Muggia, F.M. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 1979, 91, 710–717. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Ewer, M.S.; Lenihan, D.J. Left Ventricular Ejection Fraction and Cardiotoxicity: Is Our Ear Really to the Ground? JCO 2008, 26, 1201–1203. [Google Scholar] [CrossRef]
- Zardavas, D.; Suter, T.M.; Van Veldhuisen, D.J.; Steinseifer, J.; Noe, J.; Lauer, S.; Al-Sakaff, N.; Piccart-Gebhart, M.J.; de Azambuja, E. Role of Troponins I and T and N-Terminal Prohormone of Brain Natriuretic Peptide in Monitoring Cardiac Safety of Patients With Early-Stage Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer Receiving Trastuzumab: A Herceptin Adjuvant Study Cardiac Marker Substudy. JCO 2016, 35, 878–884. [Google Scholar] [CrossRef]
- Perik, P.J.; de Vries, E.G.E.; Gietema, J.A.; van der Graaf, W.T.A.; Smilde, T.D.J.; Sleijfer, D.T.; Veldhuisen, D.J. van Serum HER2 levels are increased in patients with chronic heart failure. Eur. J. Heart Fail. 2007, 9, 173–177. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Cohen, V.; Gosavi, S.; Carver, J.R.; Wiegers, S.E.; Martin, R.P.; et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am. J. Cardiol. 2011, 107, 1375–1380. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chan, S.; Davidson, N.; Juozaityte, E.; Erdkamp, F.; Pluzanska, A.; Azarnia, N.; Lee, L.W. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann. Oncol. 2004, 15, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Batist, G.; Ramakrishnan, G.; Rao, C.S.; Chandrasekharan, A.; Gutheil, J.; Guthrie, T.; Shah, P.; Khojasteh, A.; Nair, M.K.; Hoelzer, K.; et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 2001, 19, 1444–1454. [Google Scholar] [CrossRef]
- Harris, L.; Batist, G.; Belt, R.; Rovira, D.; Navari, R.; Azarnia, N.; Welles, L.; Winer, E. TLC D-99 Study Group Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 2002, 94, 25–36. [Google Scholar] [CrossRef]
- Chia, S.; Clemons, M.; Martin, L.-A.; Rodgers, A.; Gelmon, K.; Pond, G.R.; Panasci, L. Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: A multicenter phase II trial. J. Clin. Oncol. 2006, 24, 2773–2778. [Google Scholar] [CrossRef]
- Cortes, J.; Cosimo, S.D.; Climent, M.A.; Cortés-Funes, H.; Lluch, A.; Gascón, P.; Mayordomo, J.I.; Gil, M.; Benavides, M.; Cirera, L.; et al. Nonpegylated Liposomal Doxorubicin (TLC-D99), Paclitaxel, and Trastuzumab in HER-2-Overexpressing Breast Cancer: A Multicenter Phase I/II Study. Clin. Cancer Res. 2009, 15, 307–314. [Google Scholar] [CrossRef][Green Version]
- Baselga, J.; Manikhas, A.; Cortés, J.; Llombart, A.; Roman, L.; Semiglazov, V.F.; Byakhov, M.; Lokanatha, D.; Forenza, S.; Goldfarb, R.H.; et al. Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Ann. Oncol. 2014, 25, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Fumoleau, P.; Dewar, J.A.; Albanell, J.; Limentani, S.A.; Campone, M.; Chang, J.C.; Patre, M.; Strasak, A.; de Haas, S.L.; et al. Trastuzumab emtansine (T-DM1) plus docetaxel with or without pertuzumab in patients with HER2-positive locally advanced or metastatic breast cancer: Results from a phase Ib/IIa study. Ann. Oncol. 2016, 27, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Dieras, V.; Lorenzen, S.; Montemurro, F.; Riera-Knorrenschild, J.; Thuss-Patience, P.; Allegrini, G.; Laurentiis, M.D.; Lichinitser, M.; Lohrisch, C.; et al. Abstract CT096: Trastuzumab emtansine (T-DM1) + capecitabine in HER2-positive metastatic breast cancer (mBC) and HER2-positive locally advanced (LA)/metastatic gastric cancer (mGC): Results from the phase I/randomized phase II TRAXHER2 study. Cancer Res. 2018, 78, CT096. [Google Scholar] [CrossRef]
- Krop, I.E.; Beeram, M.; Modi, S.; Jones, S.F.; Holden, S.N.; Yu, W.; Girish, S.; Tibbitts, J.; Yi, J.-H.; Sliwkowski, M.X.; et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 2010, 28, 2698–2704. [Google Scholar] [CrossRef] [PubMed]
- Dzimitrowicz, H.; Berger, M.; Vargo, C.; Hood, A.; Abdelghany, O.; Raghavendra, A.S.; Tripathy, D.; Valero, V.; Hatzis, C.; Pusztai, L.; et al. T-DM1 Activity in Metastatic Human Epidermal Growth Factor Receptor 2–Positive Breast Cancers That Received Prior Therapy With Trastuzumab and Pertuzumab. JCO 2016, 34, 3511–3517. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cohort 1 (n = 3) | Cohort 2 (n = 3) | Cohort 3 (n = 9) | Overall (n = 15) |
---|---|---|---|---|
Age, median (range), years | ||||
50.0 (39.0–62.0) | 58.0 (57.0–61.0) | 42.0 (31.0–62.0) | 50.0 (31.0–62.0) | |
ECOG performance status, n (%) | ||||
0 | 3 (100) | 3 (100) | 7 (77.8) | 13 (86.7) |
1 | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
HER2 expression, n (%) | ||||
IHC 3+ | 2 (66.7) | 2 (66.7) | 7 (77.8) | 11 (73.3) |
IHC 2+ and ISH+ | 1 (33.3) | 1 (33.3) | 2 (22.2) | 4 (26.7) |
Hormone receptor status, n (%) | ||||
ER-positive | 2 (66.7) | 3 (100) | 6 (66.7) | 11 (73.3) |
ER-negative | 1 (33.3) | 0 (0) | 3 (33.3) | 4 (26.7) |
PR-positive | 1 (33.3) | 2 (66.7) | 4 (44.4) | 7 (46.7) |
PR-negative | 2 (66.7) | 1 (33.3) | 5 (55.6) | 8 (53.3) |
Disease stage at initial diagnosis, n (%) | ||||
I | 0 (0) | 0 (0) | 1 (11.1) | 1 (6.7) |
II | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
III | 0 (0) | 0 (0) | 3 (33.3) | 3 (20.0) |
IV | 3 (100) | 3 (100) | 3 (33.3) | 9 (60.0) |
De novo metastatic disease, n (%) | ||||
Yes | 3 (100) | 3 (100) | 3 (33.3) | 9 (60) |
No | 0 (0) | 0 (0) | 6 (66.7) | 6 (40) |
Sites of metastases, n (%) | ||||
Lymph Node | 2 (66.7) | 1 (33.3) | 7 (77.8) | 10 (66.7) |
Bone | 3 (100) | 3 (100) | 4 (44.4) | 10 (66.7) |
Liver | 0 (0) | 2 (66.7) | 4 (44.4) | 6 (40.0) |
Lung | 0 (0) | 1 (33.3) | 4 (44.4) | 5 (33.3) |
Brain | 1 (33.3) | 0 (0) | 1 (11.1) | 2 (13.3) |
Skin | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Others | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Lines of previous treatment for advanced disease, n (%) | ||||
1 | 0 (0) | 3 (100) | 8 (88.9) | 11 (73.3) |
2 | 3 (100) | 0 (0) | 0 (0) | 3 (20.0) |
3 | 0 (0) | 0 (0) | 1 (11.1) | 1 (6.7) |
Prior taxane treatment, n (%) | ||||
3 (100) | 3 (100) | 9 (100) | 15 (100) | |
Prior anthracycline treatment, n (%) | ||||
0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Prior trastuzumab treatment, n (%) | ||||
3 (100) | 3 (100) | 9 (100) | 15 (100) | |
Prior pertuzumab treatment, n (%) | ||||
1 (33.3) | 3 (100) | 8 (88.9) | 12 (80.0) |
Adverse Event | Cohort 1 (n = 3) n (%) | Cohort 2 (n = 3) n (%) | Cohort 3 (n = 9) n (%) | Overall (n = 15) n (%) |
---|---|---|---|---|
Hematological | ||||
Neutropenia | 1 (33.3) | 3 (100) | 7 (77.8) | 11 (73.3) |
Thrombopenia | 1 (33.3) | 2 (66.7) | 6 (66.7) | 9 (60.0) |
Anemia | 1 (33.3) | 1 (33.3) | 4 (44.4) | 4 (26.7) |
Leukopenia | 0 (0) | 1 (33.3) | 2 (22.2) | 3 (20.0) |
Lymphopenia | 0 (0) | 1 (33.3) | 2 (22.2) | 3 (20.0) |
Decreased hemoglobin | 1 (33.3) | 1 (33.3) | 0 (0) | 2 (13.3) |
Decreased lymphocyte count | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Non-Hematological | ||||
Asthenia | 3 (100) | 2 (66.7) | 4 (44.4) | 9 (60.0) |
Nausea | 2 (66.7) | 3 (100) | 4 (44.4) | 9 (60.0) |
Increased aspartate aminotransferase | 1 (33.3) | 1 (33.3) | 6 (66.7) | 8 (53.3) |
Increased alanine aminotransferase | 1 (33.3) | 1 (33.3) | 4 (44.4) | 6 (40.0) |
Increased brain natriuretic peptide | 0 (0) | 2 (66.7) | 4 (44.4) | 6 (40.0) |
Increased gamma-glutamyl transferase | 2 (66.7) | 2 (66.7) | 2 (22.2) | 6 (40.0) |
Increased troponin I | 0 (0) | 1 (33.3) | 4 (44.4) | 5 (33.3) |
Decreased appetite | 1 (33.3) | 1 (33.3) | 3 (33.3) | 5 (33.3) |
Alopecia | 0 (0) | 1 (33.3) | 3 (33.3) | 4 (26.7) |
Epistaxis | 0 (0) | 1 (33.3) | 2 (22.2) | 3 (20.0) |
Rhinorrhea | 0 (0) | 1 (33.3) | 2 (22.2) | 3 (20.0) |
Headache | 0 (0) | 2 (66.7) | 0 (0) | 2 (13.3) |
Fatigue | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Mucosal inflammation | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Increased blood alkaline phosphatase | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Aphthous ulcer | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Constipation | 1 (33.3) | 0 (0) | 1 (11.1) | 2 (13.3) |
Diarrhea | 1 (33.3) | 0 (0) | 1 (11.1) | 2 (13.3) |
Dry mouth | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Gingival bleeding | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Vomiting | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Hypoalbuminemia | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Rash | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Adverse event | Cohort 1 (n = 3) | Cohort 2 (n = 3) | Cohort 3 (n = 9) | Overall (n = 15) |
---|---|---|---|---|
Hematological | ||||
Neutropenia | 0 (0) | 2 (66.7) | 6 (66.7) | 8 (53.3) |
Thrombopenia | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Leukopenia | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Lymphopenia | 0 (0) | 1 (33.3) | 1 (11.1) | 2 (13.3) |
Non-Hematological | ||||
Increased aspartate aminotransferase | 0 (0) | 0 (0) | 2 (22.2) | 2 (13.3) |
Fatigue | 0 (0) | 0 (0) | 1 (11.1) | 1 (6.7) |
Treatment Dose Level | T-DM1 3.6 mg/kg Plus NPLD 45 mg/m2 (n = 3) | T-DM1 3.6 mg/kg Plus NPLD 50 mg/m2 (n = 6) | T-DM1 3.6 mg/kg Plus NPLD 60 mg/m2 (n = 9) | |||
---|---|---|---|---|---|---|
CYCLE 1 | ||||||
Parameter | T-DM1 mean (% CV) | Doxorubicin mean (% CV) | T-DM1 mean (% CV) | Doxorubicin mean (% CV) | T-DM1 mean (% CV) | Doxorubicin mean (% CV) |
AUCinf (μg × h/mL) a | 355 (15.2) | NE | 380 (29.1) | NE | 321 (18.6) | NE |
AUClast (μg × h/mL) | 348 (14.4) | 2.14 (89.6) | 372 (30.3) | 19.9 (126.6) | 317 (18.9) | 10.8 (68.3) |
Cmax (μg/mL) | 73.3 (3.6) | 0.957 (88.2) | 79.6 (28.5) | 4.23 (91.5) | 67.8 (17.8) | 2.68 (47.5) |
Tmax (h) b | 1.95 (1.83–2.00) | 1.08 (1.08–1.17) | 1.83 (1.83–2.02) | 1.17 (1.08–1.43) | 1.95 (1.80–2.08) | 1.17 (1.13–1.33) |
T1/2 (days) a | 3.57 (33.8) | NE | 4.25 (13.2) | NE | 3.48 (11.7) | NE |
Vd (mL/kg) a | 50.1 (10.1) | NE | 56.4 (19.5) | NE | 55.9 (21.6) | NE |
Cl (mL/kg/day) a | 10.0 (12.1) | NE | 10.1 (32.1) | NE | 11.0 (16.3) | NE |
CYCLE 2 | ||||||
Parameter | T-DM1 mean (% CV) | Doxorubicin mean (% CV) | T-DM1 mean (% CV) | Doxorubicin mean (% CV) | T-DM1 mean (% CV) | Doxorubicin mean (% CV) |
AUClast (μg × h/mL) | NA | 3.85 (45.6) | NA | 21.5 (122.4) | NA | 8.27 (42.7) |
Cmax (μg/mL) | NA | 1.58 (52.6) | NA | 4.71 (86.2) | NA | 2.57 (28.3) |
Tmax (h) a | NA | 1.15 (1.10–1.35) | NA | 1.17 (1.08–1.17) | NA | 1.33 (1.13–1.37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Miranda, E.; Pérez-García, J.M.; Di Cosimo, S.; Brain, E.; Ravnik, M.; Escrivá-de-Romaní, S.; Vidal, M.; Gligorov, J.; Borštnar, S.; Calabuig, L.; et al. Trastuzumab Emtansine Plus Non-Pegylated Liposomal Doxorubicin in HER2-Positive Metastatic Breast Cancer (Thelma): A Single-Arm, Multicenter, Phase Ib Trial. Cancers 2020, 12, 3509. https://doi.org/10.3390/cancers12123509
López-Miranda E, Pérez-García JM, Di Cosimo S, Brain E, Ravnik M, Escrivá-de-Romaní S, Vidal M, Gligorov J, Borštnar S, Calabuig L, et al. Trastuzumab Emtansine Plus Non-Pegylated Liposomal Doxorubicin in HER2-Positive Metastatic Breast Cancer (Thelma): A Single-Arm, Multicenter, Phase Ib Trial. Cancers. 2020; 12(12):3509. https://doi.org/10.3390/cancers12123509
Chicago/Turabian StyleLópez-Miranda, Elena, José Manuel Pérez-García, Serena Di Cosimo, Etienne Brain, Maja Ravnik, Santiago Escrivá-de-Romaní, Maria Vidal, Joseph Gligorov, Simona Borštnar, Laura Calabuig, and et al. 2020. "Trastuzumab Emtansine Plus Non-Pegylated Liposomal Doxorubicin in HER2-Positive Metastatic Breast Cancer (Thelma): A Single-Arm, Multicenter, Phase Ib Trial" Cancers 12, no. 12: 3509. https://doi.org/10.3390/cancers12123509