Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Clinicopathologic Patient Data
2.2. Expression Analysis of a microRNA Panel in Serum Exosomes
2.3. Differential Expression Analysis of miR-200b and miR-200c in Circulating Serum Exosomes
2.4. Diagnostic Analysis of Circulating Exosomal miR-200b and miR-200c
2.5. Survival Analysis of Circulating Exosomal miR-200b and miR-200c
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Collection of Whole Blood, Blood Serum Exosomes, and EpCAM-Positive Exosomes
4.3. Relative Quantification of microRNA Expression by RT-qRT-PCR
4.4. Western Blotting
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Tempero, M.A. NCCN Guidelines Updates: Pancreatic Cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 603–605. [Google Scholar]
- O’Reilly, E.M.; Oh, D.Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.C.; Vlahovic, G.; et al. Durvalumab with or Without Tremelimumab for Patients with Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Niedzwiecki, D.; Hollis, D.; Sutherland, S.; Schrag, D.; Hurwitz, H.; Innocenti, F.; Mulcahy, M.F.; O’Reilly, E.; Wozniak, T.F.; et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 2010, 28, 3617–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philip, P.A.; Benedetti, J.; Corless, C.L.; Wong, R.; O’Reilly, E.M.; Flynn, P.J.; Rowland, K.M.; Atkins, J.N.; Mirtsching, B.C.; Rivkin, S.E.; et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J. Clin. Oncol. 2010, 28, 3605–3610. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006, 355, 2408–2417. [Google Scholar] [CrossRef]
- Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1673–1684. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Trager, M.M.; Dhayat, S.A. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int. J. Cancer 2017, 141, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhayat, S.A.; Mardin, W.A.; Seggewiss, J.; Strose, A.J.; Matuszcak, C.; Hummel, R.; Senninger, N.; Mees, S.T.; Haier, J. MicroRNA Profiling Implies New Markers of Gemcitabine Chemoresistance in Mutant p53 Pancreatic Ductal Adenocarcinoma. PLoS ONE 2015, 10, e0143755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhayat, S.A.; Abdeen, B.; Kohler, G.; Senninger, N.; Haier, J.; Mardin, W.A. MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin. Epigenet. 2015, 7, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhayat, S.A.; Traeger, M.M.; Rehkaemper, J.; Stroese, A.J.; Steinestel, K.; Wardelmann, E.; Kabar, I.; Senninger, N. Clinical Impact of Epithelial-to-Mesenchymal Transition Regulating MicroRNAs in Pancreatic Ductal Adenocarcinoma. Cancers 2018, 10, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael Traeger, M.; Rehkaemper, J.; Ullerich, H.; Steinestel, K.; Wardelmann, E.; Senninger, N.; Abdallah Dhayat, S. The ambiguous role of microRNA-205 and its clinical potential in pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 2419–2431. [Google Scholar] [CrossRef] [PubMed]
- Stroese, A.J.; Ullerich, H.; Koehler, G.; Raetzel, V.; Senninger, N.; Dhayat, S.A. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 2377–2390. [Google Scholar] [CrossRef]
- Grasedieck, S.; Scholer, N.; Bommer, M.; Niess, J.H.; Tumani, H.; Rouhi, A.; Bloehdorn, J.; Liebisch, P.; Mertens, D.; Dohner, H.; et al. Impact of serum storage conditions on microRNA stability. Leukemia 2012, 26, 2414–2416. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Shigeyasu, K.; Toden, S.; Zumwalt, T.J.; Okugawa, Y.; Goel, A. Emerging Role of MicroRNAs as Liquid Biopsy Biomarkers in Gastrointestinal Cancers. Clin. Cancer Res. 2017, 23, 2391–2399. [Google Scholar] [CrossRef] [Green Version]
- Thery, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Nuzhat, Z.; Kinhal, V.; Sharma, S.; Rice, G.E.; Joshi, V.; Salomon, C. Tumour-derived exosomes as a signature of pancreatic cancer—Liquid biopsies as indicators of tumour progression. Oncotarget 2017, 8, 17279–17291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashed, H.M.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, A.K.; Rupp, C.; Keller, S.; Brase, J.C.; Ehehalt, R.; Fogel, M.; Moldenhauer, G.; Marme, F.; Sultmann, H.; Altevogt, P. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol. Oncol. 2011, 122, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, B.; Yue, S.; Galli, U.; Rana, S.; Gross, W.; Muller, M.; Giese, N.A.; Kalthoff, H.; Becker, T.; Buchler, M.W.; et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int. J. Cancer 2015, 136, 2616–2627. [Google Scholar] [CrossRef]
- Castillo, J.; Bernard, V.; San Lucas, F.A.; Allenson, K.; Capello, M.; Kim, D.U.; Gascoyne, P.; Mulu, F.C.; Stephens, B.M.; Huang, J.; et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 2018, 29, 223–229. [Google Scholar] [CrossRef]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef]
- Hatley, M.E.; Patrick, D.M.; Garcia, M.R.; Richardson, J.A.; Bassel-Duby, R.; van Rooij, E.; Olson, E.N. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010, 18, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27, 2128–2136. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, E.; Funel, N.; Peters, G.J.; Del Chiaro, M.; Erozenci, L.A.; Vasile, E.; Leon, L.G.; Pollina, L.E.; Groen, A.; Falcone, A.; et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010, 70, 4528–4538. [Google Scholar] [CrossRef] [Green Version]
- Mikamori, M.; Yamada, D.; Eguchi, H.; Hasegawa, S.; Kishimoto, T.; Tomimaru, Y.; Asaoka, T.; Noda, T.; Wada, H.; Kawamoto, K.; et al. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci. Rep. 2017, 7, 42339. [Google Scholar] [CrossRef]
- Hasegawa, S.; Eguchi, H.; Nagano, H.; Konno, M.; Tomimaru, Y.; Wada, H.; Hama, N.; Kawamoto, K.; Kobayashi, S.; Nishida, N.; et al. MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 2014, 111, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, S.; Stebbing, J.; Frampton, A.E.; Zagorac, S.; Krell, J.; de Giorgio, A.; Trabulo, S.M.; Nguyen, V.T.M.; Magnani, L.; Feng, H.; et al. TGF-beta induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat. Commun. 2018, 9, 1845. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, Y.S. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci. Rep. 2017, 7, 38232. [Google Scholar] [CrossRef]
- Peng, L.; Liu, Z.; Xiao, J.; Tu, Y.; Wan, Z.; Xiong, H.; Li, Y.; Xiao, W. MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway. Oncol. Rep. 2017, 38, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Humphries, B.; Yang, C. The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2015, 6, 6472–6498. [Google Scholar] [CrossRef] [Green Version]
- Moletta, L.; Serafini, S.; Valmasoni, M.; Pierobon, E.S.; Ponzoni, A.; Sperti, C. Surgery for Recurrent Pancreatic Cancer: Is It Effective? Cancers 2019, 11, 991. [Google Scholar] [CrossRef] [Green Version]
- Krantz, B.A.; O’Reilly, E.M. Biomarker-Based Therapy in Pancreatic Ductal Adenocarcinoma: An Emerging Reality? Clin. Cancer Res. 2018, 24, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, U.; Boeri, M.; Sestini, S.; Sabia, F.; Silva, M.; Suatoni, P.; Verri, C.; Cantarutti, A.; Sverzellati, N.; Corrao, G.; et al. PL02.04 Blood MicroRNA and LDCT Reduce Unnecessary LDCT Repeats in Lung Cancer Screening: Results of Prospective BioMILD Trial. J. Thorac. Oncol. 2019, 14, S5–S6. [Google Scholar] [CrossRef]
- Valladares-Ayerbes, M.; Reboredo, M.; Medina-Villaamil, V.; Iglesias-Diaz, P.; Lorenzo-Patino, M.J.; Haz, M.; Santamarina, I.; Blanco, M.; Fernandez-Tajes, J.; Quindos, M.; et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med. 2012, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Dhayat, S.A.; Mardin, W.A.; Kohler, G.; Bahde, R.; Vowinkel, T.; Wolters, H.; Senninger, N.; Haier, J.; Mees, S.T. The microRNA-200 family—A potential diagnostic marker in hepatocellular carcinoma? J. Surg. Oncol. 2014, 110, 430–438. [Google Scholar] [CrossRef]
- Meng, X.; Muller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016, 7, 16923–16935. [Google Scholar] [CrossRef] [Green Version]
- Schultz, N.A.; Dehlendorff, C.; Jensen, B.V.; Bjerregaard, J.K.; Nielsen, K.R.; Bojesen, S.E.; Calatayud, D.; Nielsen, S.E.; Yilmaz, M.; Hollander, N.H.; et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA 2014, 311, 392–404. [Google Scholar] [CrossRef]
- Yokoi, A.; Matsuzaki, J.; Yamamoto, Y.; Yoneoka, Y.; Takahashi, K.; Shimizu, H.; Uehara, T.; Ishikawa, M.; Ikeda, S.I.; Sonoda, T.; et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat. Commun. 2018, 9, 4319. [Google Scholar] [CrossRef]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. Micrornas derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Santasusagna, S.; Moreno, I.; Navarro, A.; Martinez Rodenas, F.; Hernandez, R.; Castellano, J.J.; Munoz, C.; Monzo, M. Prognostic Impact of miR-200 Family Members in Plasma and Exosomes from Tumor-Draining versus Peripheral Veins of Colon Cancer Patients. Oncology 2018, 95, 309–318. [Google Scholar] [CrossRef]
- Endzelins, E.; Berger, A.; Melne, V.; Bajo-Santos, C.; Sobolevska, K.; Abols, A.; Rodriguez, M.; Santare, D.; Rudnickiha, A.; Lietuvietis, V.; et al. Detection of circulating miRNAs: Comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017, 17, 730. [Google Scholar] [CrossRef]
- Tengda, L.; Shuping, L.; Mingli, G.; Jie, G.; Yun, L.; Weiwei, Z.; Anmei, D. Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res. 2018, 28, 295–303. [Google Scholar] [CrossRef]
- Lai, X.; Wang, M.; McElyea, S.D.; Sherman, S.; House, M.; Korc, M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017, 393, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Que, R.; Ding, G.; Chen, J.; Cao, L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J. Surg. Oncol. 2013, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.F.; Hannafon, B.N.; Zhao, Y.D.; Postier, R.G.; Ding, W.Q. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017, 8, 77028–77040. [Google Scholar] [CrossRef]
- Boudouresque, F.; Siret, C.; Dobric, A.; Silvy, F.; Soubeyran, P.; Iovanna, J.; Lombardo, D.; Berthois, Y. Ribonuclease MCPiP1 contributes to the loss of micro-RNA-200 family members in pancreatic cancer cells. Oncotarget 2018, 9, 35941–35961. [Google Scholar] [CrossRef]
- Le, M.T.; Hamar, P.; Guo, C.; Basar, E.; Perdigao-Henriques, R.; Balaj, L.; Lieberman, J. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Investig. 2014, 124, 5109–5128. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Ahn, Y.H.; Won, H.S.; Sun, S.; Kim, Y.H.; Ko, Y.H. Prognostic Role of the MicroRNA-200 Family in Various Carcinomas: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2017, 2017, 1928021. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, H.; Gahan, P.B. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Teplyuk, N.M.; Uhlmann, E.J.; Gabriely, G.; Volfovsky, N.; Wang, Y.; Teng, J.; Karmali, P.; Marcusson, E.; Peter, M.; Mohan, A.; et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: First steps toward the clinic. EMBO Mol. Med. 2016, 8, 268–287. [Google Scholar] [CrossRef]
- van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017, 18, 1386–1396. [Google Scholar] [CrossRef]
- ClinicalTrials. Available online: https://clinicaltrials.gov (accessed on 20 October 2019).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Category | Total | HC 1 | CP 2 | PDAC 3 UICC 4 II | PDAC UICC III | PDAC UICC IV | p-Value |
---|---|---|---|---|---|---|---|
n5 | 89 | 22 | 11 | 18 | 22 | 16 | |
Age (years) | 0.831 | ||||||
Median (range) | 66 (26–87) | 68 (43–87) | 62 (55–80) | 67 (53–82) | 70 (48–82) | 64 (26–78) | |
<60 | 27 | 5 | 3 | 5 | 8 | 6 | |
≥60 | 62 | 17 | 8 | 13 | 14 | 10 | |
Gender | 0.826 | ||||||
Female | 36 | 11 | 5 | 6 | 8 | 6 | |
Male | 53 | 11 | 6 | 12 | 14 | 10 | |
Body mass index (kg/m2) | 0.205 | ||||||
Median (range) | 25.0 (19.0–47.6) | 27.0 (21.6–36) | 26.0 (19.8–44.3) | 24.0 (19.0–32.0) | 24.8 (19.0–33.0) | 24.0 (17.1–47.6) | |
<25 | 43 | 6 | 5 | 10 | 12 | 10 | |
≥25 | 46 | 16 | 6 | 8 | 10 | 6 | |
Smoking | 0.916 | ||||||
No | 58 | 15 | 7 | 10 | 15 | 11 | |
Yes | 31 | 7 | 4 | 8 | 7 | 5 | |
Alcohol | 0.226 | ||||||
No | 80 | 22 | 9 | 15 | 19 | 15 | |
Yes | 9 | 0 | 2 | 3 | 3 | 1 | |
Pre-surgical diabetes mellitus | 0.760 | ||||||
No | 64 | 18 | 8 | 13 | 14 | 11 | |
Yes | 25 | 4 | 3 | 5 | 8 | 5 | |
Pre-surgical pancreatitis | <0.001 | ||||||
No | 68 | 22 | 0 | 16 | 15 | 15 | |
Yes | 21 | 0 | 11 | 2 | 7 | 1 | |
Pre-surgical CA.19-9 6 (U/mL) | 0.007 | ||||||
Median (range) | 142 (0.6–20640) | 7.7 (3.5–18.9) | 33.6 (10.0–218) | 81.5 (0.6–3136) | 238.2 (2.6–19160) | 530.5 (2.4–20640) | |
<30 | 21 | 5 | 4 | 4 | 5 | 3 | |
≥30 | 47 | 1 | 4 | 13 | 17 | 13 | |
Pre-surgical CEA 7 (ng/mL) | 0.257 | ||||||
Median (range) | 2.4 (0.2–54.8) | 1.2 (0.2–3.1) | 2.2 (0.2–4.5) | 2.4 (0.4–9.6) | 2.6 (0.2–54.8) | 3.5 (0.6–14.2) | |
<5 | 48 | 5 | 8 | 12 | 14 | 9 | |
≥5 | 14 | 0 | 0 | 3 | 7 | 4 | |
Pre-surgical bilirubin (mg/dL) | 0.096 | ||||||
Median (range) | 0.7 (0.2–15.9) | 0.6 (0.2–1.6) | 0.5 (0.2–1.4) | 0.9 (0.2–5.5) | 0.9 (0.3–7.1) | 0.75 (0.3–15.9) | |
<1.2 | 63 | 19 | 9 | 10 | 14 | 11 | |
≥1.2 | 23 | 2 | 1 | 7 | 8 | 5 |
Category | Number of PDAC Patients | Predicted Median OS 1 (Months) | 95% CI 2 | p-Value |
---|---|---|---|---|
Total | 56 | 13 | 7.9–18.1 | |
Age (years) | 0.330 | |||
<60 | 19 | 11 | 5.8–16.2 | |
≥60 | 37 | 14 | 7.1–20.9 | |
Gender | 0.895 | |||
Female | 20 | 17 | 6.9–27.1 | |
Male | 36 | 13 | 9.1–16.9 | |
Body mass index | 0.542 | |||
<25 | 33 | 13 | 7.4–18.6 | |
≥25 | 23 | 14 | 9.2–18.8 | |
Smoking | 0.905 | |||
No | 36 | 14 | 5.9–22.1 | |
Yes | 20 | 11 | 4.4–17.6 | |
Alcohol | 0.621 | |||
No | 49 | 13 | 6.5–19.5 | |
Yes | 7 | 4 | 1.9–6.1 | |
Pre-surgical diabetes mellitus | 0.128 | |||
No | 38 | 17 | 12.6–21.4 | |
Yes | 18 | 10 | 6.5–13.5 | |
Pre-surgical pancreatitis | 0.994 | |||
No | 46 | 13 | 7.2–18.8 | |
Yes | 10 | 12 | 2.2–21.8 | |
Pre-surgical CA.19-9 (U/L) | 0.600 | |||
<30 | 12 | 18 | 5.7–30.3 | |
≥30 | 43 | 13 | 8.6–17.4 | |
Pre-surgical CEA (ng/mL) | 0.960 | |||
<5 | 35 | 18 | 10.9–25.1 | |
≥5 | 14 | 17 | 10.7–23.3 | |
Pre-surgical bilirubin (mg/dL) | 0.984 | |||
<1.2 | 35 | 13 | 4.7–21.3 | |
≥1.2 | 20 | 14 | 7.7–20.3 | |
UICC stage | 0.013 | |||
IIA | 4 | NR 3 | ||
IIB | 14 | 18 | ||
III | 22 | 17 | 8.7–25.3 | |
IV | 16 | 8 | 5.8–10.2 | |
T stage | 0.062 | |||
T1 | 1 | NR | ||
T2 | 5 | NR | ||
T3 | 22 | 14 | 4.2–23.8 | |
T4 | 24 | 11 | 4.6–17.4 | |
Nodal invasion | 0.373 | |||
N0 | 9 | 34 | ||
N1 | 23 | 12 | 5.5–18.5 | |
N2 | 6 | 10 | ||
Metastasis | 0.008 | |||
M0 | 40 | 18 | 11.0–25.0 | |
M1 | 16 | 8 | 5.8–10.2 | |
Type of surgery | 0.006 | |||
PPPD 4 | 15 | NR | ||
Pancreatic left resection | 9 | 18 | ||
Excisional biopsy | 32 | 11 | 6.6–15.4 | |
Administration of chemotherapy | <0.001 | |||
No | 9 | 4 | ||
Yes | 46 | 14 | 7.2–20.8 |
Variable | Subset | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
HR (95% CI) 1,2 | p | HR (95% CI) | p | ||
Age (years) | ≥60/<60 | 0.70 (0.34–1.50) | 0.340 | ||
Gender | Male/Female | 1.05 (0.50–2.23) | 0.897 | ||
Body mass index | ≥25/<25 | 0.71 (0.44–1.52) | 0.380 | ||
Smoker | Yes/No | 0.95 (0.43–2.10) | 0.906 | ||
Alcohol | Yes/No | 1.31 (0.44–3.91) | 0.626 | ||
Pre-surgical diabetes | Yes/No | 1.76 (0.83–3.73) | 0.139 | ||
Pre-surgical pancreatitis | Yes/No | 1.00 (0.29–3.37) | 0.994 | ||
Pre-surgical CA.19-9 (U/L) | ≥30/<30 | 1.25 (0.53–2.95) | 0.607 | ||
Pre-surgical CEA (ng/mL) | ≥5/<5 | 0.98 (0.36–2.65) | 0.960 | ||
Pre-surgical bilirubin (mg/dL) | ≥1.2/<1.2 | 1.01 (0.45–2.27) | 0.984 | ||
UICC stage | III-IV/II | 3.27 (1.33–8.05) | 0.010 | 2.97 (1.00–8.88) | 0.051 |
T stage | T3-4/T1-2 | 5.00 (0.40–63.1) | 0.214 | ||
Nodal invasion | N1-2/N0 | 1.71 (0.67–4.38) | 0.263 | ||
Metastasis | M1/M0 | 2.63 (1.23–5.60) | 0.013 | 2.11 (0.85–5.24) | 0.109 |
Grading | G3/G2 | 2.00 (0.59–6.85) | 0.268 | ||
Lymphatic invasion | L1/L0 | 0.96 (0.23–4.06) | 0.956 | ||
Vene invasion | V1/V0 | 2.40 (0.57–10.2) | 0.235 | ||
Resection margin | R1/R0 | 1.61 (0.35–7.31) | 0.540 | ||
Surgery | PPPD 3/left | 4.32 (0.61–30.7) | 0.144 | ||
Chemotherapy | Yes/No | 0.09 (0.02–0.43) | 0.002 | 0.05 (0.01–0.31) | 0.001 |
miR-200b (EpCAM-Exo 4) | High/Low | 2.23 (1.04–4.76) | 0.040 | 2.40 (1.03–5.58) | 0.044 |
miR-200c (S-Exo 5) | High/Low | 2.10 (1.01–4.37) | 0.046 | 0.92 (0.40–2.14) | 0.924 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reese, M.; Flammang, I.; Yang, Z.; Dhayat, S.A. Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma. Cancers 2020, 12, 197. https://doi.org/10.3390/cancers12010197
Reese M, Flammang I, Yang Z, Dhayat SA. Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma. Cancers. 2020; 12(1):197. https://doi.org/10.3390/cancers12010197
Chicago/Turabian StyleReese, Moritz, Isabelle Flammang, Zixuan Yang, and Sameer A. Dhayat. 2020. "Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma" Cancers 12, no. 1: 197. https://doi.org/10.3390/cancers12010197
APA StyleReese, M., Flammang, I., Yang, Z., & Dhayat, S. A. (2020). Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma. Cancers, 12(1), 197. https://doi.org/10.3390/cancers12010197