Prognostic and Predictive Implications of PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives
Abstract
:1. Introduction
2. Preclinical Studies of Chromosome Ten’s (PTEN) Role in Breast Cancer (BC)
3. Clinical Studies of PTEN’s Role in BC
3.1. Association with Prognosis
3.2. Association with Treatment Response
3.2.1. mTOR Inhibitors
3.2.2. AKT Inhibitors
3.2.3. Anti-HER2-Based Treatments
3.3. Single Anti-HER2 Blockade
3.3.1. Trastuzumab
Early BC: Neoadjuvant Setting
Early BC: Adjuvant Setting
3.3.2. Lapatinib
Metastatic BC
3.4. Dual Anti-HER2 Blockade
3.4.1. Trastuzumab and Pertuzumab
Early BC: Neoadjuvant Setting
Early BC: Adjuvant Setting
Metastatic BC
3.4.2. Trastuzumab and Lapatinib
Early BC: Neoadjuvant Setting
3.4.3. Trastuzumab-emtansine (TDM1)
3.4.4. Immunotherapy
3.4.5. Endocrine Therapy
3.4.6. PARP-Inhibitor
4. Conclusions
Funding
Conflicts of Interest
References
- Li, D.M.; Sun, H. TEP1, Encoded by a Candidate Tumor Suppressor Locus, is a Novel Protein Tyrosine Phosphatase Regulated by Transforming Growth Factor Beta. Cancer Res. 1997, 57, 2124–2129. [Google Scholar] [PubMed]
- Steck, P.A.; Pershouse, M.A.; Jasser, S.A.; Yung, W.K.; Lin, H.; Ligon, A.H.; Langford, L.A.; Baumgard, M.L.; Hattier, T.; Davis, T.; et al. Identification of a Candidate Tumour Suppressor Gene, MMAC1, at Chromosome 10q23.3 that is Mutated in Multiple Advanced Cancers. Nat. Genet. 1997, 15, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; et al. PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science 1997, 275, 1943–1947. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J.; Cantley, L.C. Ras, PI(3)K and mTOR Signalling Controls Tumour Cell Growth. Nature 2006, 441, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Song, M.S.; Carracedo, A.; Salmena, L.; Song, S.J.; Egia, A.; Malumbres, M.; Pandolfi, P.P. Nuclear PTEN Regulates the APC-CDH1 Tumor-Suppressive Complex in a Phosphatase-Independent Manner. Cell 2011, 144, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, D.J.; Li, A.G.; Wei, G.; Li, H.H.; Kertesz, N.; Lesche, R.; Whale, A.D.; Martinez-Diaz, H.; Rozengurt, N.; Cardiff, R.D.; et al. PTEN Tumor Suppressor Regulates p53 Protein Levels and Activity through Phosphatase-Dependent and -Independent Mechanisms. Cancer Cell 2003, 3, 117–130. [Google Scholar] [CrossRef]
- Ma, J.; Benitez, J.A.; Li, J.; Miki, S.; Ponte de Albuquerque, C.; Galatro, T.; Orellana, L.; Zanca, C.; Reed, R.; Boyer, A.; et al. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer Cell 2019, 35, 816. [Google Scholar] [CrossRef] [Green Version]
- Leslie, N.R.; Spinelli, L.; Tibarewal, P.; Zilidis, G.; Weerasinghe, N.; Lim, J.C.; Maccario, H.; Downes, C.P. Indirect Mechanisms of Carcinogenesis Via Downregulation of PTEN Function. Adv. Enzyme Regul. 2010, 50, 112–118. [Google Scholar] [CrossRef]
- Song, M.S.; Salmena, L.; Pandolfi, P.P. The Functions and Regulation of the PTEN Tumour Suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13, 283–296. [Google Scholar] [CrossRef]
- Yehia, L.; Ngeow, J.; Eng, C. PTEN-Opathies: From Biological Insights to Evidence-Based Precision Medicine. J. Clin. Investig. 2019, 129, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, C.M.; Johnston, D.S.; Strahs, A.; Burczynski, M.E.; Bacus, S.; Hill, J.; Feingold, J.M.; Zacharchuk, C.; Berkenblit, A. Approaches and Limitations of Phosphatidylinositol-3-Kinase Pathway Activation Status as a Predictive Biomarker in the Clinical Development of Targeted Therapy. Breast Cancer Res. Treat. 2010, 124, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bazzichetto, C.; Conciatori, F.; Pallocca, M.; Falcone, I.; Fanciulli, M.; Cognetti, F.; Milella, M.; Ciuffreda, L. PTEN as a Prognostic/Predictive Biomarker in Cancer: An Unfulfilled Promise? Cancers 2019, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Lan, K.H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; et al. PTEN Activation Contributes to Tumor Inhibition by Trastuzumab, and Loss of PTEN Predicts Trastuzumab Resistance in Patients. Cancer Cell 2004, 6, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; et al. An Integrative Genomic and Proteomic Analysis of PIK3CA, PTEN, and AKT Mutations in Breast Cancer. Cancer Res. 2008, 68, 6084–6091. [Google Scholar] [CrossRef] [PubMed]
- Perez-Tenorio, G.; Alkhori, L.; Olsson, B.; Waltersson, M.A.; Nordenskjold, B.; Rutqvist, L.E.; Skoog, L.; Stal, O. PIK3CA Mutations and PTEN Loss Correlate with Similar Prognostic Factors and are Not Mutually Exclusive in Breast Cancer. Clin. Cancer Res. 2007, 13, 3577–3584. [Google Scholar] [CrossRef] [PubMed]
- Alimonti, A.; Carracedo, A.; Clohessy, J.G.; Trotman, L.C.; Nardella, C.; Egia, A.; Salmena, L.; Sampieri, K.; Haveman, W.J.; Brogi, E.; et al. Subtle Variations in Pten Dose Determine Cancer Susceptibility. Nat. Genet. 2010, 42, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Wu, J.; Shi, L.; Li, X.X.; Zhu, L.; Sun, X.; Qian, J.Y.; Wang, Y.; Wei, J.F.; Ding, Q. PTEN Expression is Upregulated by a RNA-Binding Protein RBM38 Via Enhancing its mRNA Stability in Breast Cancer. J. Exp. Clin. Cancer Res. 2017, 36, 149. [Google Scholar] [CrossRef]
- Trimboli, A.J.; Cantemir-Stone, C.Z.; Li, F.; Wallace, J.A.; Merchant, A.; Creasap, N.; Thompson, J.C.; Caserta, E.; Wang, H.; Chong, J.L.; et al. Pten in Stromal Fibroblasts Suppresses Mammary Epithelial Tumours. Nature 2009, 461, 1084–1091. [Google Scholar] [CrossRef]
- Majumder, S.; Jacob, S.T. Emerging Role of microRNAs in Drug-Resistant Breast Cancer. Gene Expr. 2011, 15, 141–151. [Google Scholar] [CrossRef]
- Shen, H.; Wang, D.; Li, L.; Yang, S.; Chen, X.; Zhou, S.; Zhong, S.; Zhao, J.; Tang, J. MiR-222 Promotes Drug-Resistance of Breast Cancer Cells to Adriamycin Via Modulation of PTEN/Akt/FOXO1 Pathway. Gene 2017, 596, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, W.C.; Li, P.; Guo, H.; Poh, S.B.; Brady, S.W.; Xiong, Y.; Tseng, L.M.; Li, S.H.; Ding, Z.; et al. Combating Trastuzumab Resistance by Targeting SRC, a Common Node Downstream of Multiple Resistance Pathways. Nat. Med. 2011, 17, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Yoshida, M.; Tanimura, H.; Fujii, T.; Sakata, K.; Tachibana, Y.; Ohwada, J.; Ebiike, H.; Kuramoto, S.; Morita, K.; et al. The Selective Class I PI3K Inhibitor CH5132799 Targets Human Cancers Harboring Oncogenic PIK3CA Mutations. Clin. Cancer Res. 2011, 17, 3272–3281. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, S.M.; Hofmann, I.; Schnell, C.; Fritsch, C.; Wee, S.; Lane, H.; Wang, S.; Garcia-Echeverria, C.; Maira, S.M. Specific Apoptosis Induction by the Dual PI3K/mTor Inhibitor NVP-BEZ235 in HER2 Amplified and PIK3CA Mutant Breast Cancer Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 22299–22304. [Google Scholar] [CrossRef] [PubMed]
- Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; et al. Convergent Loss of PTEN Leads to Clinical Resistance to a PI(3)Kalpha Inhibitor. Nature 2015, 518, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Luen, S.J.; Asher, R.; Lee, C.K.; Savas, P.; Kammler, R.; Dell’Orto, P.; Biasi, O.M.; Demanse, D.; JeBailey, L.; Dolan, S.; et al. Association of Somatic Driver Alterations with Prognosis in Postmenopausal, Hormone Receptor-Positive, HER2-Negative Early Breast Cancer: A Secondary Analysis of the BIG 1-98 Randomized Clinical Trial. JAMA Oncol. 2018, 4, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.A.; Dueck, A.C.; McCullough, A.E.; Chen, B.; Geiger, X.J.; Jenkins, R.B.; Lingle, W.L.; Davidson, N.E.; Martino, S.; Kaufman, P.A.; et al. Impact of PTEN Protein Expression on Benefit from Adjuvant Trastuzumab in Early-Stage Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer in the North Central Cancer Treatment Group N9831 Trial. J. Clin. Oncol. 2013, 31, 2115–2122. [Google Scholar] [CrossRef]
- Nuciforo, P.G.; Aura, C.; Holmes, E.; Prudkin, L.; Jimenez, J.; Martinez, P.; Ameels, H.; de la Pena, L.; Ellis, C.; Eidtmann, H.; et al. Benefit to Neoadjuvant Anti-Human Epidermal Growth Factor Receptor 2 (HER2)-Targeted Therapies in HER2-Positive Primary Breast Cancer is Independent of Phosphatase and Tensin Homolog Deleted from Chromosome 10 (PTEN) Status. Ann. Oncol. 2015, 26, 1494–1500. [Google Scholar] [CrossRef]
- Baselga, J.; Cortes, J.; Im, S.A.; Clark, E.; Ross, G.; Kiermaier, A.; Swain, S.M. Biomarker Analyses in CLEOPATRA: A Phase III, Placebo-Controlled Study of Pertuzumab in Human Epidermal Growth Factor Receptor 2-Positive, First-Line Metastatic Breast Cancer. J. Clin. Oncol. 2014, 32, 3753–3761. [Google Scholar] [CrossRef]
- Xu, B.; Guan, Z.; Shen, Z.; Tong, Z.; Jiang, Z.; Yang, J.; DeSilvio, M.; Russo, M.; Leigh, M.; Ellis, C. Association of Phosphatase and Tensin Homolog Low and Phosphatidylinositol 3-Kinase Catalytic Subunit Alpha Gene Mutations on Outcome in Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer Patients Treated with First-Line Lapatinib Plus Paclitaxel Or Paclitaxel Alone. Breast Cancer Res. 2014, 16, 405. [Google Scholar] [PubMed]
- Kim, S.B.; Wildiers, H.; Krop, I.E.; Smitt, M.; Yu, R.; Lysbet de Haas, S.; Gonzalez-Martin, A. Relationship between Tumor Biomarkers and Efficacy in TH3RESA, a Phase III Study of Trastuzumab Emtansine (T-DM1) Vs. Treatment of Physician’s Choice in Previously Treated HER2-Positive Advanced Breast Cancer. Int. J. Cancer 2016, 139, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Stern, H.M.; Gardner, H.; Burzykowski, T.; Elatre, W.; O’Brien, C.; Lackner, M.R.; Pestano, G.A.; Santiago, A.; Villalobos, I.; Eiermann, W.; et al. PTEN Loss is Associated with Worse Outcome in HER2-Amplified Breast Cancer Patients but is Not Associated with Trastuzumab Resistance. Clin. Cancer Res. 2015, 21, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Krop, I.; Paulson, J.; Campbell, C.; Kiermaier, A.; André, F.; Fumagalli, D.; de Haas, S.; Salgado, R.; Loibla, S.; Bailey, A.; et al. Genomic Correlates of Response to Adjuvant Trastuzumab and Pertuzumab in HER2+ Breast Cancer: Biomarker Analysis of the APHINITY Trial. In Proceedings of the ASCO 2017, Chicago, IL, USA, 31 May–4 June 2017. [Google Scholar]
- Treilleux, I.; Arnedos, M.; Cropet, C.; Wang, Q.; Ferrero, J.M.; Abadie-Lacourtoisie, S.; Levy, C.; Legouffe, E.; Lortholary, A.; Pujade-Lauraine, E.; et al. Translational Studies within the TAMRAD Randomized GINECO Trial: Evidence for mTORC1 Activation Marker as a Predictive Factor for Everolimus Efficacy in Advanced Breast Cancer. Ann. Oncol. 2015, 26, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.N.; Chen, D.; Piccart, M.; Rugo, H.S.; Burris, H.A., 3rd; Pritchard, K.I.; Campone, M.; Noguchi, S.; Perez, A.T.; Deleu, I.; et al. Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results from BOLERO-2. J. Clin. Oncol. 2016, 34, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Dent, R.; Im, S.A.; Espie, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al. Ipatasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer (LOTUS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Oncol. 2017, 18, 1360–1372. [Google Scholar] [CrossRef]
- Oliveira, M.; Saura, C.; Nuciforo, P.; Calvo, I.; Andersen, J.; Passos-Coelho, J.L.; Gil Gil, M.; Bermejo, B.; Patt, D.A.; Ciruelos, E.; et al. FAIRLANE, a Double-Blind Placebo-Controlled Randomized Phase II Trial of Neoadjuvant Ipatasertib Plus Paclitaxel for Early Triple-Negative Breast Cancer. Ann. Oncol. 2019, 30, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Abraham, J.; Chan, S.; Wheatley, D.; Brunt, M. AZD5363 Plus Paclitaxel Versus Placebo Plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer (PAKT): A Randomized, Double-Blind, Placebo-Controlled, Phase II Trial. J. Clin. Oncol. 2018, 36, 1007. [Google Scholar] [CrossRef]
- Jones, R.; Carucci, M.; Casbard, A.; Butler, A.; Alchami, F.; Bale, C.; Bezecny, P.; Joffe, J.; Moon, S.; Twelves, C.; et al. Capivasertib (AZD5363) Plus Fulvestrant Versus Placebo Plus Fulvestrant After Relapse Or Pregression on an Aromatase Inhibitor in Metastatic ER Positive Breast Cancer (FAKTION): A Ramdomized Double-Blind Placebo-Controlled Phase II Trial. In Proceedings of the ASCO 2019, Chicago, IL, USA, 31 May–4 June 2019. [Google Scholar]
- Gruber, J.; Afghahi, A.; Hatton, A.; Scott, D.; McMilan, A.; Ford, J.; Telli, M. Talazoparib Beyond BRCA: A Phase II Trial of Talazoparib Monotherapy in BRCA 1 and BRCA2 Wild-Type Patients with Advanced HER2negative Breast Cancer or Other Solid Tumors with a Mutation in Homologous Recombination Pathway Genes. In Proceedings of the ASCO 2019, Chicago, IL, USA, 31 May–4 June 2019. [Google Scholar]
- Liang, X.; Briaux, A.; Becette, V.; Benoist, C.; Boulai, A.; Chemlali, W.; Schnitzler, A.; Baulande, S.; Rivera, S.; Mouret-Reynier, M.A.; et al. Molecular Profiling of Hormone Receptor-Positive, HER2-Negative Breast Cancers from Patients Treated with Neoadjuvant Endocrine Therapy in the CARMINA 02 Trial (UCBG-0609). J. Hematol. Oncol. 2018, 11, 124. [Google Scholar] [CrossRef]
- Dave, B.; Migliaccio, I.; Gutierrez, M.C.; Wu, M.F.; Chamness, G.C.; Wong, H.; Narasanna, A.; Chakrabarty, A.; Hilsenbeck, S.G.; Huang, J.; et al. Loss of Phosphatase and Tensin Homolog Or Phosphoinositol-3 Kinase Activation and Response to Trastuzumab Or Lapatinib in Human Epidermal Growth Factor Receptor 2-Overexpressing Locally Advanced Breast Cancers. J. Clin. Oncol. 2011, 29, 166–173. [Google Scholar] [CrossRef]
- Loibl, S.; Darb-Esfahani, S.; Huober, J.; Klimowicz, A.; Furlanetto, J.; Lederer, B.; Hartmann, A.; Eidtmann, H.; Pfitzner, B.; Fasching, P.A.; et al. Integrated Analysis of PTEN and p4EBP1 Protein Expression as Predictors for pCR in HER2-Positive Breast Cancer. Clin. Cancer Res. 2016, 22, 2675–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, S.; Trudeau, M.; Kaufman, B.; Boussen, H.; Blackwell, K.; LoRusso, P.; Lombardi, D.P.; Ben Ahmed, S.; Citrin, D.L.; DeSilvio, M.L.; et al. Phase II Study of Predictive Biomarker Profiles for Response Targeting Human Epidermal Growth Factor Receptor 2 (HER-2) in Advanced Inflammatory Breast Cancer with Lapatinib Monotherapy. J. Clin. Oncol. 2008, 26, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Chia, S.; Hegg, R.; Tausch, C.; Deb, R.; Ratnayake, J.; McNally, V.; Ross, G.; Kiermaier, A.; Cortes, J. Evaluating the Predictive Value of Biomarkers for Efficacy Outcomes in Response to Pertuzumab- and Trastuzumab-Based Therapy: An Exploratory Analysis of the TRYPHAENA Study. Breast Cancer Res. 2014, 16, R73. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, G.; Kiermaier, A.; Bianchi, G.V.; Im, Y.H.; Pienkowski, T.; Liu, M.C.; Tseng, L.M.; Dowsett, M.; Zabaglo, L.; Kirk, S.; et al. Biomarker Analysis of the NeoSphere Study: Pertuzumab, Trastuzumab, and Docetaxel Versus Trastuzumab Plus Docetaxel, Pertuzumab Plus Trastuzumab, Or Pertuzumab Plus Docetaxel for the Neoadjuvant Treatment of HER2-Positive Breast Cancer. Breast Cancer Res. 2017, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Holmes, F.A.; Espina, V.; Liotta, L.A.; Nagarwala, Y.M.; Danso, M.; McIntyre, K.J.; Osborne, C.R.; Anderson, T.; Krekow, L.; Blum, J.L.; et al. Pathologic Complete Response After Preoperative Anti-HER2 Therapy Correlates with Alterations in PTEN, FOXO, Phosphorylated Stat5, and Autophagy Protein Signaling. BMC Res. Notes 2013, 6, 507. [Google Scholar] [CrossRef]
- Guarneri, V.; Dieci, M.V.; Frassoldati, A.; Maiorana, A.; Ficarra, G.; Bettelli, S.; Tagliafico, E.; Bicciato, S.; Generali, D.G.; Cagossi, K.; et al. Prospective Biomarker Analysis of the Randomized CHER-LOB Study Evaluating the Dual Anti-HER2 Treatment with Trastuzumab and Lapatinib Plus Chemotherapy as Neoadjuvant Therapy for HER2-Positive Breast Cancer. Oncologist 2015, 20, 1001–1010. [Google Scholar] [CrossRef]
- Toomey, S.; Eustace, A.J.; Fay, J.; Sheehan, K.M.; Carr, A.; Milewska, M.; Madden, S.F.; Teiserskiene, A.; Kay, E.W.; O’Donovan, N.; et al. Impact of Somatic PI3K Pathway and ERBB Family Mutations on Pathological Complete Response (pCR) in HER2-Positive Breast Cancer Patients Who Received Neoadjuvant HER2-Targeted Therapies. Breast Cancer Res. 2017, 19, 87. [Google Scholar] [CrossRef]
- Rimawi, M.F.; De Angelis, C.; Contreras, A.; Pareja, F.; Geyer, F.C.; Burke, K.A.; Herrera, S.; Wang, T.; Mayer, I.A.; Forero, A.; et al. Low PTEN Levels and PIK3CA Mutations Predict Resistance to Neoadjuvant Lapatinib and Trastuzumab without Chemotherapy in Patients with HER2 Over-Expressing Breast Cancer. Breast Cancer Res. Treat. 2018, 167, 731–740. [Google Scholar] [CrossRef]
- Baselga, J.; Lewis Phillips, G.D.; Verma, S.; Ro, J.; Huober, J.; Guardino, A.E.; Samant, M.K.; Olsen, S.; de Haas, S.L.; Pegram, M.D. Relationship between Tumor Biomarkers and Efficacy in EMILIA, a Phase III Study of Trastuzumab Emtansine in HER2-Positive Metastatic Breast Cancer. Clin. Cancer Res. 2016, 22, 3755–3763. [Google Scholar] [CrossRef]
- Perez, E.A.; de Haas, S.L.; Eiermann, W.; Barrios, C.H.; Toi, M.; Im, Y.H.; Conte, P.F.; Martin, M.; Pienkowski, T.; Pivot, X.B.; et al. Relationship between Tumor Biomarkers and Efficacy in MARIANNE, a Phase III Study of Trastuzumab Emtansine +/− Pertuzumab Versus Trastuzumab Plus Taxane in HER2-Positive Advanced Breast Cancer. BMC Cancer 2019, 19, 517. [Google Scholar]
- Berns, K.; Horlings, H.M.; Hennessy, B.T.; Madiredjo, M.; Hijmans, E.M.; Beelen, K.; Linn, S.C.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Hauptmann, M.; et al. A Functional Genetic Approach Identifies the PI3K Pathway as a Major Determinant of Trastuzumab Resistance in Breast Cancer. Cancer Cell 2007, 12, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andre, F.; Hurvitz, S.; Fasolo, A.; Tseng, L.M.; Jerusalem, G.; Wilks, S.; O’Regan, R.; Isaacs, C.; Toi, M.; Burris, H.; et al. Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis from BOLERO-1 and BOLERO-3. J. Clin. Oncol. 2016, 34, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, J.; De Angelis, C.; Reis-Filho, J.S.; Pascual, T.; Prat, A.; Rimawi, M.F.; Osborne, C.K.; Schiff, R. De-Escalation of Treatment in HER2-Positive Breast Cancer: Determinants of Response and Mechanisms of Resistance. Breast 2017, 34 (Suppl. S1), S19–S26. [Google Scholar] [CrossRef]
- Pandolfi, P.P. Breast Cancer—Loss of PTEN Predicts Resistance to Treatment. N. Engl. J. Med. 2004, 351, 2337–2338. [Google Scholar] [CrossRef] [PubMed]
- Crowder, R.J.; Lombardi, D.P.; Ellis, M.J. Successful Targeting of ErbB2 Receptors-is PTEN the Key? Cancer Cell 2004, 6, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Q.; Zhang, J.; Sun, S.; Guo, H.; Jia, Z.; Wang, B.; Shao, Z.; Wang, Z.; Hu, X. PI3K Pathway Activation Results in Low Efficacy of both Trastuzumab and Lapatinib. BMC Cancer 2011, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Majewski, I.; Guarneri, V.; Nekljudova, V.; Holmes, E.; Bria, E.; Denkert, C.; Schem, C.; Sotiriou, C.; Loi, S.; et al. PIK3CA Mutations are Associated with Reduced Pathological Complete Response Rates in Primary HER2-Positive Breast Cancer: Pooled Analysis of 967 Patients from Five Prospective Trials Investigating Lapatinib and Trastuzumab. Ann. Oncol. 2016, 27, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Tyekucheva, S.; Pernas-Simon, S.; Exman, P.; Jain, E.; Garrido-Castro, A.C.; Files, J. PTEN alterations and Tumor Mutational Burden (TMB) as Potential Predictors of Resistance Or Response to Immune Checkpoint Inhibitors (ICI) in Metastatic Triple-Negative Breast Cancer (mTNBC). In Proceedings of the 2018 San Antonio Breast Cancer Symposium, Philadelphia (PA): AACR, San Antonio, TX, USA, 4–8 December 2018. Cancer Res. 2019, 79 (Suppl. S4), 5–12. [Google Scholar]
- Mansour, W.Y.; Tennstedt, P.; Volquardsen, J.; Oing, C.; Kluth, M.; Hube-Magg, C.; Borgmann, K.; Simon, R.; Petersen, C.; Dikomey, E.; et al. Loss of PTEN-Assisted G2/M Checkpoint Impedes Homologous Recombination Repair and Enhances Radio-Curability and PARP Inhibitor Treatment Response in Prostate Cancer. Sci. Rep. 2018, 8, 3947. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Pereira, A.M.; Martin, S.A.; Brough, R.; McCarthy, A.; Taylor, J.R.; Kim, J.S.; Waldman, T.; Lord, C.J.; Ashworth, A. Synthetic Lethal Targeting of PTEN Mutant Cells with PARP Inhibitors. EMBO Mol. Med. 2009, 1, 315–322. [Google Scholar] [CrossRef] [PubMed]
Drug Family | Agent | Trial | Phase | Population | Setting | Arms | N pts (Translational Analysis) | PTEN Analysis | Main Results |
---|---|---|---|---|---|---|---|---|---|
mTOR Inhibitor | Everolimus | TAMRAD [35] | II | HR+/HER2- MBC | AI-resistant | Tamoxifene + Everolimus Tamoxifene | 30 25 | IHC clone 138G6 Cell Signaling Technology (% and intensity: 1+, 2+, 3+) | No predictive role (TTP) |
BOLERO-2 [36] | III | HR+/HER2- MBC | AI-resistant | Exemestane + Everolimus Exemestane + Placebo | 209 93 | NGS (at least 1 mutation) | No predictive role (PFS) | ||
IHC (low-PTEN: H-score < 10) | No predictive role (PFS) | ||||||||
AKT Inhibitor | Ipatasertib | LOTUS [37] | II | TN MBC | First Line | Paclitaxel + Ipatasertib Paclitaxel + Placebo | 54 47 (IHC) 49 (NGS) | IHC (low PTEN score 0 in at least 50% of tumor cells) | No predictive role (PFS) |
NGS (genetic-inactivating alterations) | mPFS of 9.0 m with ipatasertib versus 4.9 m with placebo (non-stratified HR 0.44, p = 0.041) in PIK3CA/AKT1/ PTEN-altered subgroup | ||||||||
FARLAINE [38] | II | TN EBC | Neoadjuvant | CT + Ipatasertib CT + Placebo | Overall 132 | IHC clone Ventana SP218 (low PTEN: score 0%–50% of tumor cells) | pCR rate 16% with ipatasertib versus 13% with placebo in PTEN-low population | ||
NGS (PTEN genomic alterations) | pCR rate 18% with ipatasertib versus 12% with placebo in PIK3CA/AKT1/PTEN-altered subgroup | ||||||||
Capivasertib | PAKT [39] | II | TN MBC | First Line | Paclitaxel + Capivasertib Paclitaxel + Placebo | Overall 140 | NGS (genetic alteration) | mPFS of 9.3 m with capivasertib versus 3.7 m with placebo in PIK3CA, AKT1 or PTEN-altered subgroup (HR 0.30, p = 0.01) | |
FAKTION [40] | II | HR+/HER2- MBC | AI-resistant | Fulvestrant + Capivasertib Fulvestrant + Placebo | 69 71 | IHC | No predictive role (PFS) | ||
PARP Inhibitor | Talazoparib | NCT02401347 [41] | II | HER2- MBC (plus other solid tumor) | Pretreated | Talazoparib | 20 (13 BRCA1/2 wt MBC and 7 non- breast) | NGS (homologous recombination pathway: PTEN gene mutation) | 3 pts had a RECIST response (ORR = 25%, 2 gPALB2, 1 gCHEK2/gFANCA/sPTEN) and 3 additional pts (gPALB2, sATR, sPTEN) had SD ≥ 6 m. (CBR = 50%) |
Endocrine Therapy | Anastrozole/Fulvestrant | CARMINA 02 [42] | II | HER2- EBC | Neoadjuvant | Anastrozole Fulvestrant | Overall 55 (RNA) 89 (NGS) | gene expression (PTEN-related encoding gene TPTE) | PTEN-related encoding gene TPTE significantly overexpressed in responders but not in non-responders |
Treatment Strategy | Agent | Trial | Phase | Population | Setting | Arms | N pts (Translational Analysis) | PTEN Analysis | Main Results |
---|---|---|---|---|---|---|---|---|---|
Single anti-HER2 blockade | Trastuzumab | NCT00133796 [43] | II | EBC | Neoadjuvant | CT + Trastuzumab | 35 | IHC (protein level: 0 versus 1+ versus 2+ versus 3+) | pCR rates in low-PTEN versus high-PTEN: 15.4% versus 44.4% |
GeparQuattro [44] | III | EBC | Neoadjuvant | CT (anthra-taxane) + Trastuzumab 2 arms with CT (anthra-taxane-cape) + Trastuzumab | Overall 108 | automated quantitative immunofluorescence (PTEN-low <60.1) | pCR rates in high-PTEN versus low-low PTEN: 57.1% versus 27.6% | ||
N9831 [28] | III | EBC | Adjuvant | CT alone CT + sequential trastuzumab CT + concurrent trastuzumab | 601 650 551 | IHC (PTEN+: >0% invasive cells with ≥1+ cytoplasmatic staining; examination of alternate cut-points) | No predictive role with different cut-points (DFS) | ||
BCIRG-006 [33] | III | EBC | Adjuvant | CT (anthra) + Trastuzumab CT (non-anthra) + Trastuzumab CT | 402 405 394 | IHC clone 9559 Cell Signaling Technology (protein level: 0 versus 1+ versus 2+ versus 3+) | No predictive role (DFS, OS) | ||
Lapatinib | EGF103009 [45] | II | MBC | Refractory or recurrent after anthracycline-containing regimen in the adjuvant or metastatic setting | Lapatinib | 30 | IHCclone by Cascade Bioscience (protein level: 0 versus 1+ versus 2+ versus 3+) | No predictive role (ORR) | |
EGF104535 [31] | III | MBC | First-line | CT + Lapatinib CT + placebo | 180 175 | IHC clone 138G6 Cell Signaling Technology (protein level: 0 versus 1+ versus 2+ versus 3+; two alternative cutoffs for PTEN-low: 0/1+ or 0) | No predictive role (PFS, OS) | ||
Dual anti-HER2 blockade | Trastuzumab + Pertuzumab | Cleopatra [30] | III | MBC | First-line | CT + Trastuzumab + Pertuzumab CT + Trastuzumab + Placebo | Overall 497 | IHC clone AF847; R and D Systems (modified H-scores: 0–400, for membrane, cytoplasm and nucleus; low versus high: median value adopted as cutoff) | No predictive role (PFS, OS) |
TRYPHAENA [46] | II | EBC | Neoadjuvant | 3 arms of Pertuzumab + Trastuzumab + CT (different CT regimens) | Overall 225 | IHC clone by Cell Signalling (modified H-score: 0–400, nuclear compartment; low versus high: median value adopted as cutoff) | No predictive role (pCR) | ||
NeoSphere [47] | II | EBC | Neoadjuvant | CT + Trastuzumab CT + Pertuzumab + Trastuzumab CT + Pertuzumab Trastuzumab + Pertuzumab | 95 95 85 98 | IHC (modified H-score: 0–400, cytoplasmatic compartment; low versus high: median value adopted as cutoff) | No predictive role (pCR) | ||
Aphinity [34] | III | EBC | Adjuvant | CT + Trastuzumab + Pertuzumab CT + Trastuzumab + Placebo | Overall 939 | DNA analysis for PI3K pathway alterations | Trend towards decreased benefit from pertuzumab in patients with PTEN/AKT/PIK3CA alterations (NS) | ||
Trastuzumab + Lapatinib | NCT00206427 [43] | II | EBC | Neoadjuvant | CT + Trastuzumab + Lapatinib | 49 | IHC clone AF847, R and D Systems (protein level: 0 versus 1+ versus 2+ versus 3+) | pCR rates in low PTEN versus normal-PTEN: 92.3% versus 41.2% | |
NCT00524303 [48] | II | EBC | Neoadjuvant | CT + Trastuzumab CT + Lapatinib CT + Trastuzumab + Lapatinib | Overall 49 | NA | No predictive role (pCR) | ||
Neo-ALTTO [29] | III | EBC | Neoadjuvant | Trastuzumab Lapatinib Trastuzumab + Lapatinib | Overall 429 | IHC clone 6H2.1 DAKO and clone 138G6 Cell Signaling Technology (H score system: PTEN-low H-score < 50 in invasive tumor cell compartment; analysis of alternative cut-point H-score ≤ 10; 2 observers) | No predictive role (pCR) | ||
CHER-LOB [49] | II | EBC | Neoadjuvant | CT+ Trastuzumab CT + Lapatinib CT + Trastuzumab + Lapatinib | Overall 121 | IHC clone 28H6 Novocastra (PTEN loss: staining < 10% cancer cells) | No predictive role (pCR) | ||
ICORG 10-05 [50] | II | EBC | Neoadjuvant | CT + Trastuzumab CT + Lapatinib CT + Trastuzumab + Lapatinib | 21 6 18 | IHC clone 6H2.1 Dako (protein level: 0 versus 1+ versus 2+ versus 3+) | No predictive role (pCR) | ||
TBCRC006 [51] | II | EBC | Neoadjuvant | Trastuzumab + Lapatinib | 59 | IHC clone D4.3 Cell Signaling (H-score. PTEN low versus high: H-score <100 versus ≥100) | pCR rates in high-PTEN versus low-PTEN: 32% versus 9% | ||
Drug conjugate | TDM1 | Emilia [52] | III | MBC | Previous treatment with Trastuzumab and a taxane | TDM1 CT + Lapatinib | 134 137 | IHC clone 138G6 Cell Signaling Technology (cytoplasmic PTEN expression: none versus decreased versus slightly decreased versus equivalent versus increased) | Absent or decreased tumor PTEN expression associated PFS benefit with T-DM1 relative to that with CT + Lapatinib |
TH3RESA [32] | III | MBC | ≥2 previous anti-HER2 regimens (including Trastuzumab and Lapatinib in the advanced setting) | TDM1 TPC | 247 111 | IHC clone 138G6 Cell Signaling Technology (H-score: 0–400; low versus high: median adopted as cutoff = 200) | No predictive role (PFS) | ||
Marianne [53] | III | MBC | First-line | CT + Trastuzumab TDM1 TDM1 + Pertuzumab | 182 181 179 | IHC clone 138G6 Cell Signaling Technology (protein level: 0 versus 1+ versus 2+ versus 3+; H-score: median value adopted as cutoff, cytoplasmatic compartment) | No predictive role (PFS) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbognin, L.; Miglietta, F.; Paris, I.; Dieci, M.V. Prognostic and Predictive Implications of PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives. Cancers 2019, 11, 1401. https://doi.org/10.3390/cancers11091401
Carbognin L, Miglietta F, Paris I, Dieci MV. Prognostic and Predictive Implications of PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives. Cancers. 2019; 11(9):1401. https://doi.org/10.3390/cancers11091401
Chicago/Turabian StyleCarbognin, Luisa, Federica Miglietta, Ida Paris, and Maria Vittoria Dieci. 2019. "Prognostic and Predictive Implications of PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives" Cancers 11, no. 9: 1401. https://doi.org/10.3390/cancers11091401
APA StyleCarbognin, L., Miglietta, F., Paris, I., & Dieci, M. V. (2019). Prognostic and Predictive Implications of PTEN in Breast Cancer: Unfulfilled Promises but Intriguing Perspectives. Cancers, 11(9), 1401. https://doi.org/10.3390/cancers11091401