Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome
Abstract
:1. Introduction
2. Results
2.1. Intelligence and Psychomotor Development
2.2. Psychopathological Outcome
2.3. Influence of IQ on Psychopathological Outcome
2.4. Role of T2H and Peripheral/spinal Neurophibromas
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Intelligence and Psychomotor Development
4.3. Psychopathological Assessment
4.4. Statistical Analysis
5. Conclusions
Data Availability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, D.; Howard, E.; Giblin, C.; Clancy, T.; Spencer, H.; Huson, S.; Lalloo, F. Birth Incidence and Prevalence of Tumor-prone Syndromes: Estimates from a UK Family Genetic Register Service. Am. J. Med. Genet. A 2010, 152, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Guillamo, J.; Creange, A.; Kalifa, C.; Grill, J.; Rodriguez, D.; Doz, F.; Barbarot, S.; Zerah, M.; Sanson, M.; Bastuji-Garin, S. Prognostic Factors of CNS Tumours in Neurofibromatosis 1 (NF1) A Retrospective Study of 104 Patients. Brain 2002, 126, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Campen, C.J.; Gutmann, D.H. Optic Pathway Gliomas in Neurofibromatosis Type 1. J. Child Neurol. 2018, 33, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, D.H.; Rasmussen, S.A.; Wolkenstein, P.; MacCollin, M.M.; Guha, A.; Inskip, P.D.; North, K.N.; Poyhonen, M.; Birch, P.H.; Friedman, J.M. Gliomas Presenting After Age 10 in Individuals with Neurofibromatosis Type 1 (NF1). Neurology 2002, 59, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Listernick, R.; Ferner, R.E.; Liu, G.T.; Gutmann, D.H. Optic Pathway Gliomas in Neurofibromatosis-1: Controversies and Recommendations. Ann. Neurol. 2007, 61, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, D.H.; Ferner, R.E.; Listernick, R.H.; Korf, B.R.; Wolters, P.L.; Johnson, K.J. Neurofibromatosis Type 1. Nat. Rev. Dis. Primers 2017, 3, e17004. [Google Scholar] [CrossRef] [PubMed]
- Tonsgard, J.H. Clinical Manifestations and Management of Neurofibromatosis Type 1. Semin. Pediatri. Neurol. 2006, 13, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Sievert, A.J.; Fisher, M.J. Pediatric Low-Grade Gliomas. J. Child Neurol. 2009, 24, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Brossier, N.M.; Gutmann, D.H. Improving Outcomes for Neurofibromatosis 1–associated Brain Tumors. Expert Rev. Anticancer Ther. 2015, 15, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, A.; Howie, E.; Trump, D.; Huson, S.M. Behaviour in Children with Neurofibromatosis Type 1: Cognition, Executive Function, Attention, Emotion, and Social Competence. Dev. Med. Child Neurol. 2013, 55, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.; Shores, A.; North, K. The Nature and Frequency of Cognitive Deficits in Children with Neurofibromatosis Type 1. Neurology 2005, 65, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.D.; Denckla, M.B. Neurofibromatosis. In Pediatric Neuropsychology: Research, Theory, and Practice; Yeates, K.O., Ris, M.D., Taylor, H.G., Pennington, B.F., Eds.; Guilford Press: New York, NY, USA, 1999; pp. 149–170. [Google Scholar]
- Domon-Archambault, V.; Gagnon, L.; Benoît, A.; Perreault, S. Psychosocial Features of Neurofibromatosis Type 1 in Children and Adolescents. J. Child Neurol. 2018, 33, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Graf, A.; Landolt, M.A.; Mori, A.C.; Boltshauser, E. Quality of Life and Psychological Adjustment in Children and Adolescents with Neurofibromatosis Type 1. J. Pediatr. 2006, 149, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.D.; Slopis, J.M.; Schomer, D.; Jackson, E.F.; Levy, B.M. Neuropsychological Significance of Areas of High Signal Intensity on Brain MRIs of Children with Neurofibromatosis. Neurology 1996, 46, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Goh, W.H.; Khong, P.; Leung, C.S.; Wong, V.C. T 2-Weighted Hyperintensities (Unidentified Bright Objects) in Children with Neurofibromatosis 1: Their Impact on Cognitive Function. J. Child Neurol. 2004, 19, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Vago, C.; Erbetta, A.; Saletti, V.; Esposito, S.; Micheli, R.; Bulgheroni, S. The Key Search Subtest of the Behavioural Assessment of the Dysexecutive Syndrome in Children (BADS-C) Instrument Reveals Impaired Planning without External Constraints in Children with Neurofibromatosis Type 1. J. Child Neurol. 2017, 32, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, A.; Boiani, F.; Capponi, S.; Duca, M.; Angotti, M.; Pignataro, V.; Sacrato, L.; Spinardi, L.; Vara, G.; Maltoni, L. Neuropsychological Profile in Italian Children with Neurofibromatosis Type 1 (NF1) and their Relationships with Neuroradiological Data: Preliminary Results. Pediatr. Neurol. 2018, 22, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, R.; Schuierer, G.; Wessel, A.; Neveling, N.; Weglage, J. Development of MRI T2 Hyperintensities and Cognitive Functioning in Patients with Neurofibromatosis Type 1. Acta Paediatr. 2010, 99, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Chabernaud, C.; Sirinelli, D.; Barbier, C.; Cottier, J.; Sembely, C.; Giraudeau, B.; Deseille-Turlotte, G.; Lorette, G.; Barthez, M.; Castelnau, P. Thalamo-Striatal T2-Weighted Hyperintensities (Unidentified Bright Objects) Correlate with Cognitive Impairments in Neurofibromatosis Type 1 during Childhood. Dev. Neuropsychol. 2009, 34, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Massimino, M.; Giorgi, C.; Nichelli, F.; Erbetta, A.; Usilla, A.; Vago, C.; Bulgheroni, S. Cognition before and After Chemotherapy Alone in Children with Chiasmatic-Hypothalamic Tumors. J. Neurooncol. 2009, 92, e49. [Google Scholar] [CrossRef] [PubMed]
- Lacaze, E.; Kieffer, V.; Streri, A.; Lorenzi, C.; Gentaz, E.; Habrand, J.; Dellatolas, G.; Kalifa, C.; Grill, J. Neuropsychological Outcome in Children with Optic Pathway Tumours when First-Line Treatment is Chemotherapy. Br. J. Cancer 2003, 89, e2038. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.N.; Ashford, J.M.; Panandiker, A.S.P.; Klimo, P.; Merchant, T.E.; Billups, C.A.; Conklin, H.M. Cognitive Outcomes among Survivors of Focal Low-Grade Brainstem Tumors Diagnosed in Childhood. J. Neurooncol. 2016, 129, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Listernick, R.; Charrow, J.; Greenwald, M.; Mets, M. Natural History of Optic Pathway Tumors in Children with Neurofibromatosis Type 1: A Longitudinal Study. J. Pediatr. 1994, 125, 63–66. [Google Scholar] [CrossRef]
- Fisher, M.J.; Avery, R.A.; Allen, J.C.; Ardern-Holmes, S.L.; Bilaniuk, L.T.; Ferner, R.E.; Gutmann, D.H.; Listernick, R.; Martin, S.; Ullrich, N.J.; et al. Functional Outcome Measures for NF1-Associated Optic Pathway Glioma Clinical Trials. Neurology 2013, 81, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.D.; Ater, J.L.; Needle, M.N.; Slopis, J.; Copeland, D.R. Neuropsychological Profile of Children with Neurofibromatosis, Brain Tamor, Or Both. J. Child Neurol. 1994, 9, 368–377. [Google Scholar] [CrossRef] [PubMed]
- De Winter, A.E.; Moore, B.D., III; Slopis, J.M.; Ater, J.L.; Copeland, D.R. Brain Tumors in Children with Neurofibromatosis: Additional Neuropsychological Morbidity? Neuro-Oncology 1999, 1, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Reichel, D.; Schanz, J. Developmental Psychological Aspects of Scoliosis Treatment. Pediatr. Rehabil. 2003, 6, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Wolkenstein, P.; Rodriguez, D.; Ferkal, S.; Gravier, H.; Buret, V.; Algans, N.; Simeoni, M.; Bastuji-Garin, S. Impact of Neurofibromatosis 1 upon Quality of Life in Childhood: A Cross-sectional Study of 79 Cases. Br. J. Dermatol. 2009, 160, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Page, P.Z.; Page, G.P.; Ecosse, E.; Korf, B.R.; Leplege, A.; Wolkenstein, P. Impact of Neurofibromatosis 1 on Quality of Life: A Cross-sectional Study of 176 American Cases. Am. J. Med. Genet. A 2006, 140, 1893–1898. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Wolters, P.; Baldwin, A.; Gillespie, A.; Dombi, E.; Walker, K.; Widemann, B. Social–emotional Functioning of Children and Adolescents with Neurofibromatosis Type 1 and Plexiform Neurofibromas: Relationships with Cognitive, Disease, and Environmental Variables. J. Pediatr. Psychol. 2012, 37, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.A.; Lewis, V.L., Jr. Neurofibromatosis Type 1: Review of Cutaneous and Subcutaneous Tumor Treatment on Quality of Life. Plast. Reconstr. Surg. Glob. Open. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Aarsen, F.K.; Paquier, P.F.; Reddingius, R.E.; Streng, I.C.; Arts, W.M.; Evera-Preesman, M.; Catsman-Berrevoets, C.E. Functional Outcome After Low-grade Astrocytoma Treatment in Childhood. Cancer 2006, 106, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Saal, H.; Lovell, A.; Schorry, E. Social and Emotional Problems in Children with Neurofibromatosis Type 1: Evidence and Proposed Interventions. J. Pediatr. 1999, 134, 767–772. [Google Scholar] [CrossRef]
- Listernick, R.; Darling, C.; Greenwald, M.; Strauss, L.; Charrow, J. Optic Pathway Tumors in Children: The Effect of Neurofibromatosis Type 1 on Clinical Manifestations and Natural History. J. Pediatr. 1995, 127, 718–722. [Google Scholar] [CrossRef]
- Molloy, P.T.; Bilaniuk, L.T.; Vaughan, S.N.; Needle, M.N.; Liu, G.T.; Zackai, E.H.; Phillips, P.C. Brainstem Tumors in Patients with Neurofibromatosis Type 1: A Distinct Clinical Entity. Neurology 1995, 45, 1897–1902. [Google Scholar] [CrossRef] [PubMed]
- Pollack, I.F.; Shultz, B.; Mulvihill, J.J. The Management of Brainstem Gliomas in Patients with Neurofibromatosis 1. Neurology 1996, 46, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Gillespie, A.; Dombi, E.; Goodwin, A.; Goodspeed, W.; Fox, E.; Balis, F.M.; Widemann, B.C. Characteristics of Children Enrolled in Treatment Trials for NF1-Related Plexiform Neurofibromas. Neurology 2009, 73, 1273–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolters, P.L.; Burns, K.M.; Martin, S.; Baldwin, A.; Dombi, E.; Toledo-Tamula, M.A.; Dudley, W.N.; Gillespie, A.; Widemann, B.C. Pain Interference in Youth with Neurofibromatosis Type 1 and Plexiform Neurofibromas and Relation to Disease Severity, Social-emotional Functioning, and Quality of Life. Am. J. Med. Genet. A 2015, 167, 2103–2113. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Nutakki, K.; Swigonski, N.L. Speech Difficulties and Patient Health Communication Mediating Effects on Worry and Health-related Quality of Life in Children, Adolescents, and Young Adults with Neurofibromatosis Type 1. Am. J. Med. Genet. A 2019, 179, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Arend, I.; Henik, A.; Okon-Singer, H. Dissociating Emotion and Attention Functions in the Pulvinar Nucleus of the Thalamus. Neuropsychology 2015, 29, e191. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Barbarot, S.; Charbonnier, V.; Gayet-Delacroix, M.; Stalder, J.; Roulin, J.; Le Gall, D. Examining the Frontal Subcortical Brain Vulnerability Hypothesis in Children with Neurofibromatosis Type 1: Are T2-Weighted Hyperintensities Related to Executive Dysfunction? Neuropsychology 2015, 29, e473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, J.M.; Moharir, M.D.; Webster, R.; North, K.N. Brain Structure and Function in Neurofibromatosis Type 1: Current Concepts and Future Directions. J. Neurol. Neurosurg. Psychiatry 2010, 81, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, S.C.J.; de Sonneville, L.M.J. Does Cognitive Impairment Explain Behavioral and Social Problems of Children with Neurofibromatosis Type 1? Behav. Genet. 2011, 41, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eby, N.S.; Griffith, J.L.; Gutmann, D.H.; Morris, S.M. Adaptive Functioning in Children with Neurofibromatosis Type 1: Relationship to Cognition, Behavior, and Magnetic Resonance Imaging. Dev. Med. Child. Neurol. 2019, 61, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Rietman, A.B.; van der Vaart, T.; Plasschaert, E.; Nicholson, B.A.; Oostenbrink, R.; Krab, L.C.; Descheemaeker, M.; Wit, M.Y.d.; Moll, H.A.; Legius, E. Emotional and Behavioral Problems in Children and Adolescents with Neurofibromatosis Type 1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Cutting, L.E.; Levine, T.M. Cognitive Profile of Children with Neurofibromatosis and Reading Disabilities. Child Neuropsychol. 2010, 16, 417–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah-Shmouni, F.; Stratakis, C.A. Growth hormone excess in neurofibromatosis 1. Genet. Med. 2019, 21, e1254. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.A.; O’Reilly, M.A.; Clayden, J.D.; Seunarine, K.K.; Chong, W.K.; Dale, N.; Salt, A.; Clark, C.A.; Dattani, M.T. Effect of growth hormone deficiency on brain structure, motor function and cognition. Brain 2011, 135, 216–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, D.; Pantaleoni, C.; Devoti, M.; Saletti, V.; Nichelli, F.; Giorgi, C. Late neuropsychological and behavioural outcome of children surgically treated for craniopharyngioma. Childs Nerv. Syst. 1998, 14, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Jacola, L.M.; Conklin, H.M.; Scoggins, M.A.; Ashford, J.M.; Merchant, T.E.; Mandrell, B.N.; Ogg, R.J.; Curtis, E.; Wise, M.S.; Indelicato, D.J. Investigating the role of hypothalamic tumor involvement in sleep and cognitive outcomes among children treated for craniopharyngioma. J. Pediatr. Psychol. 2016, 41, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.; Jaspan, T.; Milano, G.; Gregson, R.; Parker, T.; Ritzmann, T.; Benson, C.; Walker, D. Radiological Classification of Optic Pathway Gliomas: Experience of a Modified Functional Classification System. Br. J. Radiol. 2008, 81, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Ferner, R.E.; Chaudhuri, R.; Bingham, J.; Cox, T.; Hughes, R.A. MRI in Neurofibromatosis 1. the Nature and Evolution of Increased Intensity T2 Weighted Lesions and their Relationship to Intellectual Impairment. J. Neurol. Neurosurg. Psychiatry 1993, 56, 492–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBella, K.; Poskitt, K.; Szudek, J.; Friedman, J.M. Use of “Unidentified Bright Objects” on MRI for Diagnosis of Neurofibromatosis 1 in Children. Neurology 2000, 54, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. (Ed.) Wechsler Intelligence Scale for Children, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Wechsler, D. (Ed.) Wechsler Intelligence Scale for Children, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Wechsler, D. (Ed.) Wechsler Intelligence Scale for Children-Revised; The Psychological Corporation: San Antonio, TX, USA, 1993. [Google Scholar]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence (WPPSI); The Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Griffiths, R. The Griffiths Mental Developmental Scales-Extended Revised: 2 to 8 Years; Hogrefe: Firenze, Italy, 2006. [Google Scholar]
- Griffiths, R. The Griffiths Mental Developmental Scales from Birth-2 Years; Hogrefe: Firenze, Italy, 1996. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA School-Age Forms & Profiles; University of Vermont: Research Center for Children, Youth, & Families; Illustrated Edition: Burlington, VT, USA, 2001. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA Preschool Forms and Profiles; University of Vermont, Research Center for Children, Youth and Families: Burlington, VT, USA, 2000. [Google Scholar]
- Frigerio, A.; Cozzi, P.; Pastore, V.; Molteni, M.; Borgatti, R.; Montirosso, R. The Evaluation of Behavioral and Emotional Problems in a Sample of Italian Preschoolers using the Child Behavior Checklist and the Caregiver-Teacher Report Form. Infanz. Adolesc. 2006, 5, 24–32. [Google Scholar]
- IBM Corporation. SPSS Statistics for Windows 2.0; IBM Corporation: Armonk, NY, USA, 2011. [Google Scholar]
- Vogel, A.C.; Gutmann, D.H.; Morris, S.M. Neurodevelopmental Disorders in Children with Neurofibromatosis Type 1. Dev. Med. Child Neurol. 2017, 59, 1112–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cognitive Tests | NF1 | NF1 + OPG | NF1wCT | Total Sample | One-Way ANOVA | |||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | F | p-Value * | Post-Hoc § | p-Value | |
Full IQ/GQ | 99 (11) | 86 (20) | 84 (20) | 90 (18) | 5.27 | 0.007 | NF1 > OPG | 0.027 |
NF1 > CT | 0.018 | |||||||
OPG > CT | 0.999 | |||||||
Verbal IQ/DQ | 98 (11) | 87 (22) | 90 (19) | 92 (18) | 2.77 | 0.07 | n.s. | |
Performance IQ/DQ | 101 (13) | 89 (18) | 88 (19) | 93 (17) | 4.798 | 0.011 | NF1 > OPG | 0.034 |
NF1 > CT | 0.027 | |||||||
OPG > CT | 0.999 | |||||||
Block Design | 10.5 (2.7) | 7.6 (2.6) | 8.5 (3.1) | 9.0 (3.0) | 6.733 | 0.002 | NF1 > OPG | 0.002 |
NF1 > CT | 0.082 | |||||||
OPG < CT | 0.999 | |||||||
Digit Span | 8.7 (1.8) | 8.1 (3.0) | 6.2 (2.2) | 7.9 (2.5) | 4.113 | 0.022 | NF1 > OPG | 0.999 |
NF1 > CT | 0.019 | |||||||
OPG > CT | 0.136 | |||||||
Symbol search | 10.52 (2.8) | 9.0 (2.9) | 7.7 (3.3) | 9.3 (3.0) | 3.335 | 0.044 | NF1 > OPG | 0.473 |
NF1 > CT | 0.044 | |||||||
OPG > CT | 0.786 |
CBCL Measures | Problems Levels | NF1 N (%) | NF1 + OPG N (%) | NF1 + CT N (%) | χ2 | p-Value |
---|---|---|---|---|---|---|
CBCL Int | Normal | 12 (48.0) | 14 (58.3) | 12 (75.0) | 10.412 | 0.034 |
Borderline | 8 (32.0) | 1 (4.2) | 1 (6.2) | |||
Pathological | 5 (20.0) | 9 (37.5) | 3 (19.0) | |||
CBCL Ext | Normal | 20 (80) | 15 (65.2) | 14 (87.5) | 6.245 | 0.182 |
Borderline | 3 (12) | 2 (8,3) | 0 (0.0) | |||
Pathological | 2 (8) | 7 (29,2) | 2 (12.5) | |||
CBCL Tot | Normal | 15 (60) | 12 (50) | 13 (81,3) | 5.114 | 0.276 |
Borderline | 4 (16) | 5 (20,8) | 0 (0) | |||
Pathological | 6 (24) | 7 (29,2) | 3 (18,1) |
CBCL (T Score) | NF1 Mean (SD) | NF1 + OPG Mean (SD) | NF1 + CT Mean (SD) | One-Way ANOVA | One-Way ANOVA Controlling for IQ | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value * | post-hoc tests § NF1 < OPG NF1 < CNS | post-hoc tests OPG > CNS | F | p-Value | post-hoc tests NF1 vs. OPG NF1 vs. CNS OPG > CNS | ||||
Int Total | 55 (11) | 59 (13) | 54 (12) | 0.582 | 0.562 | n.s. | n.s. | 0.783 | 0.508 | n.s. |
Ext Total | 51 (10) | 56 (11) | 51 (9) | 1.438 | 0.245 | n.s. | n.s. | 3.357 | 0.024 | n.s. |
Total | 55 (11) | 58 (12) | 53 (12) | 0.981 | 0.381 | n.s. | n.s. | 1.902 | 0.139 | n.s. |
Attention problems | 59 (8) | 62 (11) | 57 (9) | 1.690 | 0.193 | n.s. | n.s. | 7.727 | <0.001 | n.s. |
Oppositional deviant problems | 55 (6) | 58 (8) | 52 (7) | 3.388 | 0.040 | n.s. | 0.035 | 3.339 | 0.025 | n.s. |
Age/Sex | NF1 (n = 26) | NF1 + OPG (n = 26) | NF1 + CT (n = 19) | Total sample (n = 71) | Statistical Tests * | |
---|---|---|---|---|---|---|
Mean age months (SD) | 112 (41) | 107 (53) | 90.53 (47) | 104 (48) | F = 1.217 | p = 0.303 |
Female (%) | 12 (46.2%) | 15 (57.7%) | 6 (31.6%) | 33 (46.5%) | χ2 = 3.011 | p = 0.222 |
ID | Sex | Age (months) | Total IQ | Verbal IQ | Performance IQ | Tumor localization * | Neurofibromas | T2H | CBCL Int T (0 = normal, 1 = borderline, 2 = clinical) | CBCL Ext T (0 = normal, 1 = borderline, 2 = clinical) | CBCL Tot T (0 = normal, 1 = borderline, 2 = clinical) |
---|---|---|---|---|---|---|---|---|---|---|---|
01CT | M | 76 | 110 | 101 | 117 | Brainstem (medulla) | Tha, SubTha, Br, BG, Hip/Amy, Cer | 58 (0) | 51 (0) | 50 (0) | |
02CT | F | 97 | 89 | 92 | 88 | Thalamus left, CC sx (splenium), stage 3a | Peripheral and spinal | SubTha, Hip/Amy, Cer, WM | |||
03CT | F | 163 | 59 | 78 | 56 | Brainstem (middle inferior cerebral peduncle right) | Hip/Amy, Cer | 78 (2) | 66 (2) | 72 (2) | |
04CT | F | 177 | 93 | 90 | 106 | Hypothalamus | Peripheral | Tha, Br, BG, Cer, WM | 75 (2) | 69 (2) | 75 (2) |
05CT | M | 81 | 83 | 98 | 87 | Brainstem (lateral pons right) | Tha, BG, Br, Hip/Amy, Cer | 57 (0) | 56 (0) | 58 (0) | |
06CT | M | 185 | 43 | 51 | 45 | Third ventricle (midbrain); Hypothalamus Basal Ganglia | Peripheral and spinal | Cer, Hip/Amy | N.a. | ||
07CT | M | 43 | 69 | 72 | 88 | Brainstem (medulla) | Tha, SubTha, Br, Hipp/Amy, Cer | 48 (0) | 38 (0) | 66 (2) | |
08CT | F | 42 | 69 | 89 | 79 | Basal ganglia left (anterior internal capsule, globus pallidus, putamen); chiasma, hypothalamus | Peripheral | Br, Hipp/Amy, Cer | 43 (0) | 49 (0) | 45 (0) |
09CT | M | 145 | 66 | 80 | 80 | Brainstem (medulla) | Ta, SubTha, BG, Hip/Amy, Cer | N.a. | |||
10CT | M | 65 | 97 | 96 | 100 | Brainstem (pons and medulla) | SubTha, BG, Br, Hip/Amy, Cer, Coll | 47 (0) | 48 (0) | 47 (0) | |
11CT | F | 43 | 77 | 85 | 88 | Hypothalamus; medulla | Tha, BG, Br, Cer, Hipp/Amy | 40 (0) | 49 (0) | 43 (0) | |
12CT | M | 50 | 102 | 108 | 93 | Brainstem (pons and medulla) | Tha, BG, Br, Cer, Hip/Amy, Coll | 59 (0) | 58 (0) | 59 (0) | |
13CT | M | 60,5 | 62 | 53 | 78 | Brainstem (pons); bilateral cerebellar hemispheres dx>sx | Tha, BG, Br, Hip/Amy, Cer | 59 (0) | 55 (0) | 59 (0) | |
14CT | M | 26,5 | 65 | 69 | 62 | Brainstem (pons and medulla left) | SubTha, Tha, BG, Br, Hip/Amy, Cer, Coll, WM | 43 (0) | 52 (0) | 44 (0) | |
15CT | M | 95 | 99 | 105 | 93 | Brainstem (pons and medulla) | SubTha, Tha, BG, Br, Hip/Amy, Cer, Coll, WM | 65 (2) | 58 (1) | 63 (1) | |
16CT | M | 80 | 107 | 114 | 104 | Brainstem (medulla right) | SubTha, Tha, BG, Br, Hip/Amy, Cer | 50 (0) | 48 (0) | 45 (0) | |
17CT | F | 80 | 94 | 98 | 100 | Brainstem (pons and medulla left) | Tha, BG, Br, Hip/Amy, Cer | 43 (0) | 41 (0) | 38 (0) | |
18CT | M | 121 | 113 | 118 | 113 | Hypothalamus | Peripheral | BG, Br, Hip/Amy | 61 (1) | 48 (0) | 53 (0) |
19CT | M | 90 | 105 | 116 | 92 | Brainstem (lamina quadrigemina) | SubTha, Tha, BG, Br, Hip/Amy, Cer | 41 (0) | 33 (0) | 34 (0) |
ID | Sex | Age (months) | Total IQ | Verbal IQ | Performance IQ | Tumor localization * | Neurofibromas | T2H | CBCL Int T (0 = normal, 1 = borderline, 2 = clinical) | CBCL Ext T (0 = normal, 1 = borderline, 2 = clinical) | CBCL Tot T (0 = normal, 1 = borderline, 2 = clinical) |
---|---|---|---|---|---|---|---|---|---|---|---|
01OPG | F | 53 | 106 | 120 | 90 | 1c left | SubTha, BG, Hip/Amy, Cer | 52 (0) | 54 (0) | 52 (0) | |
02OPG | F | 112 | 107 | 100 | 102 | 2b left | Peripheral | BG, Br, Hip/Amy, Cer | 70 (2) | 59 (0) | 63 (1) |
03OPG | M | 170 | 79 | 86 | 87 | 1a left | Spinal | BG, Br, Hip/Amy, Cer, CC | 44 (0) | 43 (0) | 42 (0) |
04OPG | F | 102 | 99 | 108 | 88 | 1a left | SubTha, Br, WM | 49 (0) | 43 (0) | 48 (0) | |
05OPG | F | 75 | 102 | 100 | 100 | 2a | Peripheral | BG, Hip/Amy, Cer | 52 (0) | 34 (0) | 52 (0) |
06OPG | M | 50 | 69 | 48 | 82 | Chiasm and Hypothalamus | 59 (0) | 61 (1) | 62 (1) | ||
07OPG | M | 136 | 80 | 69 | 97 | Chiasm and Hypothalamus | |||||
08OPG | M | 77 | 102 | 100 | 108 | 2a H+ | SubTha, BG, Hip/Amy, Cer | 77 (2) | 67 (2) | 77 (2) | |
09OPG | F | 191 | 65 | 66 | 71 | 2a H+ | Peripheral and spinal | BG, Hip/Amy, Cer | 56 (0) | 49 (0) | 52 (0) |
10OPG | F | 141 | 114 | 107 | 118 | 3a H+ | Spinal | Tha, BG, Br, Hip/Amy | 59 (0) | 56 (0) | 54 (0) |
11OPG | M | 149 | 88 | 81 | 97 | 1a left | Peripheral and spinal | Tha, BG, Br, Hip/Amy, Cer, Coll | 70 (2) | 51 (0) | 62 (1) |
12OPG | F | 127 | 103 | 92 | 106 | 1a right | SubTha, Tha, BG, Br, Hip/Amy, Cer | 50 (0) | 62 (1) | 58 (0) | |
13OPG | M | 43 | 37 | 33 | 39 | 2b right H+ | SubTha, Tha, BG, Br, Hip/Amy, Cer | 50 (0) | 64 (2) | 52 (0) | |
14OPG | F | 206 | 79 | 86 | 93 | 2b right | Spinal | WM | 76 (2) | 56 (0) | 66 (2) |
15OPG | M | 31 | 69 | 65 | 87 | 3b H+; basal ganglia | SubTha, Tha, BG, Br, Hip/Amy, Cer, WM | 47 (0) | 57 (0) | 54 (0) | |
16OPG | F | 83 | 110 | 96 | 119 | 3b H+ | Tha, BG, Br, Cer, WM | 33 (0) | 41 (0) | 36 (0) | |
17OPG | F | 198 | 46 | 58 | 58 | 1a | SubTha, Tha, Br, Hip/Amy, Cer, WM | 67 (2) | 68 (2) | 70 (2) | |
18OPG | F | 100 | 66 | 76 | 65 | 2b | Peripheral | BG, Br, Hip/Amy, Cer | 78 (2) | 67 (2) | 75 (2) |
19OPG | M | 41 | 97 | 106 | 87 | 3a H+ | SubTha, Tha, BG, Br, Hip/Amy, Cer | 41 (0) | 77 (2) | 60 (1) | |
20OPG | F | 182 | 85 | 90 | 87 | 1a left | Spinal | 62 (1) | 55 (0) | 63 (1) | |
21OPG | F | 97 | 98 | 103 | 93 | 2b | BG | 71 (2) | 59 (0) | 68 (2) | |
22OPG | F | 110 | 101 | 120 | 102 | 1a left | SubTha, Tha, BG, Br, Hip/Amy, Cer, Coll | 39 (0) | 34 (0) | 32 (0) | |
23OPG | M | 30,5 | 69 | 69 | 75 | 1c; fornix | SubTha, Tha, BG, Br, Hip/Amy, Cer, Fornix | 66 (2) | 66 (2) | 74 (2) | |
24OPG | M | 60 | 83 | 84 | 93 | 2b left H+ | BG, Br, Hip/Amy, Cer | 66 (2) | 71 (2) | 73 (2) | |
25OPG | M | 81 | 91 | 96 | 90 | 3b H+ | SubTha, BG, Br, Hip/Amy, WM | ||||
26OPG | F | 130 | 97 | 106 | 87 | 2b H+; lamina quadrigemina | SubTha, Tha, BG, BR, Hip/Amy, Cer | 59 (0) | 47 (0) | 54 (0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taddei, M.; Erbetta, A.; Esposito, S.; Saletti, V.; Bulgheroni, S.; Riva, D. Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome. Cancers 2019, 11, 1772. https://doi.org/10.3390/cancers11111772
Taddei M, Erbetta A, Esposito S, Saletti V, Bulgheroni S, Riva D. Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome. Cancers. 2019; 11(11):1772. https://doi.org/10.3390/cancers11111772
Chicago/Turabian StyleTaddei, Matilde, Alessandra Erbetta, Silvia Esposito, Veronica Saletti, Sara Bulgheroni, and Daria Riva. 2019. "Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome" Cancers 11, no. 11: 1772. https://doi.org/10.3390/cancers11111772
APA StyleTaddei, M., Erbetta, A., Esposito, S., Saletti, V., Bulgheroni, S., & Riva, D. (2019). Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome. Cancers, 11(11), 1772. https://doi.org/10.3390/cancers11111772